

Wave Fronts and Rays

- Wave fronts connect points of equal phase on an extended wave.
- Rays show the propagation direction of waves, and are always perpendicular to wave fronts.
- Rays travel in straight lines
- At a boundary they can reflect (bounce off) and refract (penetrate) the different medium.
- Ray angles are measured relative to surface normal.

Reading Assignment

- This week's reading assignment from the text by Knight is: Chapter 23, Sections 23.1-23.7
- Test 2 will cover up to and including Section 23.7, Thin Lenses and Refraction Theory, plus lab materials from this semester.
- A masteringphysics Problem Set is due Friday by 5:00 PM.
It is the last problem set of 2007.
- Suggested Chapter 23 Exercises and Problems for Practice: 11, 17, 19, 27, 39, 49, 73, 81

Virtual Image in a flat mirror

- Light rays emerging from an object obey the law of reflection for the specular surface of a mirror
- Our mind imagines that the rays emerge from points beyond the mirror.
- This thing beyond the mirror is called an image. No light rays actually pass through the image, so it is "virtual".
- It is convenient to describe the size and location of the image as if it were an actual thing.

Index of Refraction

$$
V_{\text {medium }}=\frac{C}{n}
$$

- $v_{\text {medium }}$ is the speed of light in a transparent medium.
- c is the speed of light in a vacuum ($c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
- n is a dimensionless constant: $n \geq 1$
- $n=1$ in a vacuum

Two plane mirrors form a right angle. How many images of the ball can you see in the mirrors?
A. 1
B. 2
C. 3
D. 4

Snell's Law of Refraction

$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

Total Internal Reflection

- Occurs when $n_{2}<n_{1}$
$-\theta_{c}=$ critical angle.
- When $\theta_{1} \geq \theta_{c}$, no light is transmitted through the boundary; 100% reflection

$$
\sin \theta_{c}=\frac{n_{2}}{n_{1}}
$$

A fish swims below the surface of the water. An observer sees the fish at:
A. a greater depth than it really is.
B. its true depth.
C. a smaller depth than it really is.

