Speaker A / B question answer. This is multiple choice question 18 of the APRIL/MAY 2008 PHY 138Y EXAMINATION - version 1, and question 3 of version 2.

QUESTION

Speakers A and B are sitting at the same large distance (many sound wavelengths) away from a stationary observer, emitting a sinusoidal wave of frequency $f=1 / T$. The waves they emit are identical except that they have a phase difference which causes the crest of the wave from Speaker B to encounter the observer a time t_{0} after the crest of the wave from Speaker A. Speaker A is moved slightly further away from the observer, while Speaker B remains fixed, and the intensity of the combined sound from both speakers as heard by the observer increases at first. Which of the following is a possible value of t_{0} for this situation?

Choices are:
$0.3 T$
$0.6 T$
$0.7 T$
$0.9 T$
$1.57 T$

ANSWER

As is done in Knight Chapter 21.6, let's model the waves as measured at the observer as:

$$
\begin{aligned}
& D_{A}=a \sin \left(k x_{A}-\omega t+\phi_{0 A}\right) \\
& D_{B}=a \sin \left(k x_{B}-\omega t+\phi_{0 B}\right)
\end{aligned}
$$

Where x_{A} is the distance between the observer and Speaker A , and x_{B} is the distance between the observer and Speaker B . When $x_{A}=x_{B}$, the phase of $D_{B}\left(t=t_{0}\right)$ equals the phase of $D_{A}(t=0)$. Therefore:

$$
\left(k x-\omega t_{0}+\phi_{0 B}\right)=\left(k x-0+\phi_{0 A}\right)
$$

solving for the phase difference:

$$
\Delta \phi=\phi_{0 B}-\phi_{0 A}=\omega t_{0}
$$

What happens to the phase difference $\Delta \phi$ when Speaker A is moved a small distance ε away from the observer, while Speaker B remains stationary? We will replace $x_{A}=x$ with $x_{A}=x+\varepsilon$. The new phase difference will be

$$
\Delta \phi^{\prime}=\left[k x+\phi_{0 B}\right]-\left[k(x+\varepsilon)+\phi_{0 A}\right]=\omega t_{0}-k \varepsilon
$$

The phase difference has decreased slightly from $\Delta \phi=2 \pi t_{0} / T$ to something smaller.

Note that the amplitude of the superposition of the two waves is:

$$
A=\left|2 a \cos \left(\frac{\Delta \phi}{2}\right)\right|
$$

or

$$
A=\left|2 a \cos \left(\frac{\pi t_{0}}{T}\right)\right|
$$

Here is a graph of combined wave amplitude versus t_{0} / T :

Phase difference increases with t_{0}. We are given a situation in which, when the phase difference decreases slightly, the combined sound intensity increases at first. Intensity increases with amplitude. So we must have a negative slope of amplitude versus phase difference. It is clear from the graph that of the five values given, only $t_{0}=0.3 T$ gives a negative slope of amplitude versus phase difference.

