Uncertainty Propagation Aid Sheet

[This is an excerpt from Uncertainty Module 4 http://uoft.me/PPupm4pdf page 8-9]
Say we have measured some quantity x with uncertainty $u(x)$ and a quantity y with uncertainty $u(y)$ and wish to combine them to get a value z with uncertainty $u(z)$. As we discussed in Module 2, we need the combination to preserve the probabilities associated with the uncertainties in x and y. We will consider a number of ways of combining the quantities. Although this Module has been discussing statistical uncertainties, this section applies to all uncertainties, including the ones you learned about in Modules 2 and 3.

Addition or Subtraction

As discussed in Modules 2 and 3, if $z=x+y$ or $z=x-y$ then the uncertainties are combined in quadrature:

$$
\begin{equation*}
u(z)=\sqrt{u(x)^{2}+u(y)^{2}} \tag{11}
\end{equation*}
$$

Multiplication or Division

If $z=x \quad y$ or $z=x \quad y$ then the fractional uncertainties are combined in quadrature:

$$
\begin{equation*}
\frac{u(z)}{z}=\sqrt{\left(\frac{u(x)}{x}\right)^{2}+\left(\frac{u(y)}{y}\right)^{2}} \tag{12}
\end{equation*}
$$

Multiplication by a Constant

If $z=a \quad x$, where a is a constant known to a large number of significant figures, then the uncertainty in z is given by Eqn. 12 with the uncertainty in $a, u(a)=0$. So:

$$
\begin{equation*}
u(z)=a u(x) \tag{13}
\end{equation*}
$$

Raising to a Power

If $z=x^{n}$ then:

$$
\begin{equation*}
u(z)=n x^{(n 1)} u(x) \tag{14}
\end{equation*}
$$

which can also be written in terms of the fractional uncertainties:

$$
\begin{equation*}
\frac{u(z)}{z}=n \frac{u(x)}{x} \tag{15}
\end{equation*}
$$

Say you are squaring x, so $z=x^{2}=x \quad x$. You may be tempted to use Eqn 12 for multiplication and division, but this is incorrect: Eqn 12 assumes that the uncertainties in the quantities x and y are independent of each other.
Here there is only one quantity, x.

The General Case

In general z is some function of x and $y, z=f(x, y)$. The uncertainty in z requires knowing about partial derivatives. If you don't know about these yet, you may skip this subsection and go to the questions. Nonetheless:

$$
\begin{equation*}
u(z)=\sqrt{\left(\frac{\partial f(x, y)}{\partial x} u(x)\right)^{2}+\left(\frac{\partial f(x, y)}{\partial y} u(y)\right)^{2}} \tag{16}
\end{equation*}
$$

Eqns. $11-15$ are just applications of Eqn. 16 for various functions.

