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PHY152H1S – Practical 2 

Uncertainty in Physical Measurements Module 4:  

Repeated Measurements 
 

Don’t forget: 

 Write your Pod Number clearly on the front of the booklet, and fill in “1” for the book no. – If 
you require more than one booklet during today’s practical, ask your TA and fill out the book 
number and total number of books used on each booklet. 

 List the Names of all participants on the cover of the booklet.  You do not need to write your 
student numbers.  Note if any participants arrived late or left early. 

 Fill in the Date on the front page of the booklet. 

 

Note that the activities below have numbers which refer to numbers in the Physics Practicals Modules at 

http://faraday.physics.utoronto.ca/Practicals/ .   

 

1. Introduction 
In Uncertainty in Physical Measurements Modules 2 and 3 we considered a single measurement of some 

physical quantity. In each of the examples we discussed, repeating the measurement of the same object 

using the same instrument almost certainly would give the same result. So repeating these measurements 

doesn’t give us any added information about the value and uncertainty of the quantity being measured. 

In this Module we will think about cases where repeated measurements do not give the same value of 

the measurand, and you will measure the time for a piece of paper to fall to the floor. 

 

We will begin by thinking about the following experimental apparatus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

A curved ramp is mounted on a table. You release a small ball from rest at the top of the ramp, it rolls 

down the ramp, and then travels along the dashed path. There is a special paper on the floor where the 

ball lands and when the ball strikes the paper it will leave a mark on it where it landed. We measure the 

horizontal distance d the ball travels when it hits the floor. It is hard for you to release the ball from 
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exactly the same position each time, and the ramp and ball are not completely smooth so the ball 

bounces around a bit as it goes down the ramp. Therefore, if you repeat the measurement a few times, it 

is unlikely that the ball landed in exactly the same place each time.  Perhaps after 5 trials the paper looks 

like Figure 2. We call such measurements scattered or dispersed. 

 

 

 

Figure 2 

 

It the absence of air resistance and for a very small ball, Newton’s Laws can be used to show that the 

theoretical value of d, dtheory is: 

   

 dtheory = 2 ab                                                               (1) 

 

The question, then, is does the data taken from Figure 2 match this theoretical prediction within the 

experimental uncertainty? Since more-or-less random factors have made the measurements of d 

dispersed, repeating the measurement will hopefully mean that the mean value of all the trials will give 

us a better estimate of the true value of the distance.  

 

There are many other circumstances where more-or-less random factors cause the results of repeated 

measurements to not give the exact same result.   Bell-shaped curves are often called Gaussian 

distributions because Carl Friedrich Gauss studied them extensively in the early 19th century. They 

occur so often that sometimes they are called normal distributions. We can write a formula for the 

amplitude n(x) of a bell-shaped curve for a variable x as: 

 n(x) = nmaxe
-

(x-m )2

2s 2

                                                  (2) 

 

where nmax is the maximum value of n, m  is the value x for which n(x) = nmax and s  is the standard 

deviation.  

 

As always, the total area under the pdf must equal to 1.  But the area A under a Gaussian can be shown 

from integral calculus to be: 

 

 A = 2p ´ nmax ´s                                                   (3) 

 

Therefore for a probability distribution function nmax must be related to s  by: 

  nmax =
1

2p s
                                                        (4) 

 

Figure 3 shows two Gaussian pdfs, both with total areas equal to 1. Both have values of m = 50 . The 

solid curve has s =10  and the dashed curve has s = 20 .  We see that s  is a measure of the width of 

the distribution. 
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Figure 3 

 

From integral calculus it can be shown that the area under the curve between m -s  and m +s is 0.68. 

 

Question 1 (Please answer all questions in your booklet.) 

Imagine that the data of the experiment in Figures 1 and 2 gives distances d between 0.62 and .73 

m. True Gaussians, Eqn. 2, only approach zero asymptotically as x® ±¥.  So if we use a Gaussian 

probability distribution function to describe the data of experiment of Figure 1, this says that there 

is a small but non-zero probability of getting a result of d = −432 km.  Is this physically possible? 

What does this tell you about using a Gaussian pdf ? 

 

For a finite number of measurements we can only estimate the mean: 

 xest =

xi
i=1

N

å

N
, N ¹ ¥                                                   (5) 

 

Since we can only estimate the mean, we can only estimate the variance and the standard deviation: 

 

 

varest =

(xi - xest )
2

i=1

N

å

N -1

s est = varest =

(xi - xest )
2

i=1

N

å

N -1

                                        (6) 



PRACTICAL 2: UNCERTAINTY IN PHYSICAL MEASUREMENTS: REPEATED MEASUREMENTS   

 

Page 4 of 9 

 

 

 

These equations are essentially identical to the equations for variance and standard deviation that we 

have seen in previous Modules except that they use the estimated mean since we cannot know the true 

value of the mean. Although the variance and standard deviation are just estimates, their interpretation is 

the same.  For any individual measurement xi, the estimated uncertainty in the value of the measurand is: 

 

 u(xi ) = s est
                                                          (7) 

 

Note that this is not the uncertainty in the value of the estimated mean xest
: it is the uncertainty in each 

individual measurand xi.  Above we stated that for a Gaussian pdf, the area under the curve between 

m -s  and m +s is 0.68. Therefore it is reasonable to assume that the probability that for a single 

measurement xi the true value of x  is within s est
 of xi is 0.68.  Put another way, in the experiment of 

Figures 1 and 2 if modeling the pdf as a Gaussian is reasonable, then if you choose one of the 

measurements of the distance xi at random, there is a 68% chance that it is within one standard deviation 

of the true value of the position. 

 

Since this uncertainty arises from the scatter of values due to various random effects, this type of 

uncertainty is often called statistical. 

 

2. Significant Figures Involving Uncertainties 
When uncertainties for quantities are given, the rules for significant figures are: 

1. Uncertainties should be specified to one, or at most two significant figures. 

2. The most precise column in the number for the uncertainty should also be the most precise column 

in the number for the value. 

 

So if the uncertainty is specified to the 1/100th column, the quantity itself should also be specified to the 

1/100th column.   

 

Question 2 
Express the following quantities to the correct number of significant figures: 

a. 25.052 ± 1.502 

b. 92 ± 3.14159 

c. 0.0530854 ± 0.012194 

3. Propagation of Uncertainties 
Say we have measured some quantity x with uncertainty u(x) and a quantity y with uncertainty u(y) and 

wish to combine them to get a value z with uncertainty u(z). As we discussed in Module 2, we need the 

combination to preserve the probabilities associated with the uncertainties in x and y. We will consider a 

number of ways of combining the quantities. Although this Module has been discussing statistical 

uncertainties, this section applies to all uncertainties, including the ones you learned about in Modules 2 

and 3. 
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Addition or Subtraction 
 

As discussed in Modules 2 and 3, if z = x + y or z = x – y then the uncertainties are combined in 

quadrature: 

 

 u(z) = u(x)2 +u(y)2                                                   (8) 

Multiplication or Division 
 

If z = x ´ y  or z = x ¸ y then the fractional uncertainties are combined in quadrature: 

 

 
u(z)

z
=

u(x)

x

æ

èç
ö

ø÷

2

+
u(y)

y

æ

èç
ö

ø÷

2

                                           (9) 

Multiplication by a Constant 
 

If z = a´ x , where a is a constant known to a large number of significant figures, then the uncertainty in 

z is given by Eqn. 12 with the uncertainty in a, u(a) = 0. So: 

 

 u(z) = au(x)                                                      (10) 

Raising to a Power 
 

If z = xn  then: 

 

 u(z) = nx(n-1)u(x)                                                  (11) 

 

which can also be written in terms of the fractional uncertainties: 

 

u(z)

z
= n
u x( )
x

                                                        (12) 

 

Say you are squaring x, so z = x2 = x ´ x . You may be tempted to use Eqn. 9 for 

multiplication and division, but this is incorrect: Eqn. 9 assumes that the uncertainties in 

the quantities x and y are independent of each other. Here there is only one quantity, x. 

 

  



PRACTICAL 2: UNCERTAINTY IN PHYSICAL MEASUREMENTS: REPEATED MEASUREMENTS   

 

Page 6 of 9 

 

 

The General Case 
 

In general z is some function of x and y, z = f(x, y). The uncertainty in z is found by using partial 

derivatives: 

 

u(z) =
¶ f (x,y)

¶x
u(x)

æ

èç
ö

ø÷

2

+
¶ f (x,y)

¶y
u(y)

æ

èç
ö

ø÷

2

                             (13) 

 

Eqns. 8 – 12 are just applications of Eqn. 13 for various functions. 

 

Question 3.    
Eqn. 11 may look familiar to you.  What does it look like?  Hint: try writing u(z) as dz and u(x) 

as dx.  

 

Question 4.  
You measure a quantity to be 3±1 and another quantity to be 70 ± 2 . What is the uncertainty in 

the sum to one significant figure?  Does the uncertainty in the value of 3 have any effect on the 

uncertainty in the sum to one significant figure? Write down the sum ±  its uncertainty to the 

correct number of significant figures. Remember that the uncertainty only has one or at the very 

most two digits that really are significant, and that the uncertainty determines the number of 

digits in the value that are significant. 

 

4. The Uncertainty in the Mean 
We have seen that for N repeated measurements, x1, x2, … , xN, the statistical uncertainty in each 

individual measurand xi is the estimated standard deviation s est
. We now know enough to determine the 

uncertainty in the estimated mean, u(xest ) . The estimated mean is given by: 

 
xest =

xi
i=1

N

å

N

=
x1 ± u(x1)[ ]+ x2 ± u(x2 )[ ]+ . . .+ xN ± u(xN )[ ]

N

                      (14) 

 

But the uncertainty in each individual measurement is the same, which we will call u(x): 

u(x) º u(x1) = u(x2 ) = . . . = u(xN ). Combining all the uncertainties in the numerator in quadrature gives: 

 xest =
x1 + x2 + . . . xN( ) ± Nu(x)

N
                                        (15) 

 

The numerator is divided by the constant N, so from Eqn. 10: 

 

xest =
x1 + x2 + . . . xN( )

N
±
u(x)

N
                                       (16) 
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or: 

 u(xest ) =
u(x)

N
                                                        (17) 

 

So repeating a measurement N times reduces the statistical uncertainty in the mean by a factor of 1/ N  

times the uncertainty in each individual measurement. So repeating a measurement 4 times reduces the 

uncertainty by a factor of ½. 

 

The fact that the uncertainty in the mean is less than the uncertainty in each individual measurement 

should not be a surprise: we repeat measurements precisely so that we increase our knowledge of the 

true value of what we are measuring, i.e. in order to reduce its uncertainty. 

 

If we were actually doing the experiment of Figure 1, we finally could now determine if the measured 

value of the distance is within experimental uncertainties of the theoretical value of Eqn. 1. 

 

5. Activities 
 

Activity 1 
Imagine that you have measured the time for a pendulum to undergo five oscillations, t5, with a digital 

stopwatch.  You repeat the measurements 4 times, and the data are: 

t5 (s) 

7.53 

7.38 

7.47 

7.43 

What is the mean of the four measurements of t5,  and uncertainty in this mean value? Express your final 

result as t5 ±u(t5 ) .  Be sure to use the rules for significant figures when uncertainties are involved. 

 

Activity 2 
Using the supplied digital stopwatch, try to start it and then stop it at exactly 2.00 s.  Practice a few times 

before beginning to take the data. After practicing, repeat a few times.  All members of the Team should 

do this, so you may end up with about 15 or 20 values.  Just by looking at the data and without doing 

any calculations, choose a value of u such that most but not necessarily all measurements are between  

2.00 – u and 2.00 + u. 
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Activity 3 
It is a good idea to use Python to enter your data as you 

take it, just as you did for rolling dice in Module 1 in 

PHY151. It is probably an excellent idea to review how 

you used Python in that Module now. 

 

You are supplied with a standard 8 ½ by 11 inch sheet of 

paper and a digital stopwatch. Hold the paper 

horizontally at shoulder height and release it. Measure 

the time t it takes the paper to reach the floor. Repeat for 

a total of 20 times, excluding trials where the paper 

strikes something as it falls. 

 

Make a histogram of the results of your experiment by hand. You will need to decide how many bins to 

use in making the histogram.  The decision is based somewhat on the scatter of values. Perhaps a good 

first guess is the number of datapoints divided by 2 rounded down to the nearest integer. You will also 

need to decide the values of t that separate the bins. In general, it is a good idea to make those values 

something easy for humans to read, such as 1.9, 2.0, 2.1, …, instead of something like 1.873, 1.973, 

2.073 … 

 

Is it reasonable to assume that the scatter of values of t can be described by a Gaussian probability 

distribution function? If not, can you think of another simple function that better describes the shape of 

the histogram?  What is that shape, and why is it better? 

 

What is the estimated statistical uncertainty in each measurement of t, i.e. the estimated standard 

deviation?  The Python function to calculate standard deviations is std(). However, just as for the 

var() function you used in Module 1 to calculate the variances, by default the Python standard 

deviation function divides the N, not N – 1. So, just as for the variances, you will need to calculate std( 

data, ddof = 1). 

 

In Activity 2 you estimated an uncertainty in the individual time measurements due to human reaction 

times, call it ureaction(ti ). You have just found another uncertainty in the individual measurements, the 

one due do the random fluctuations in the times you measured for different trials; we will call this the 

statistical uncertainty ustatistical(ti ).  It is reasonable to combine these two uncertainties in quadrature, the 

square root of the sum of the squares, to estimate the total uncertainty in each individual measurement. 

 

Do the calculation of combining these two uncertainties. Remember from Question 3 that if one 

uncertainty is much smaller than the other, than when combining them in quadrature to only1 or 2 

significant figures the smaller value has negligible effect on the combination, and sometimes it is not 

even worth the effort of doing the calculation. Does the smaller of the uncertainties being combined here 

have a significant effect on the value of the combination? 
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Can you think of any other uncertainties, such as the reading uncertainty of a digital instrument or the 

accuracy of the stopwatch, which might have a significant effect on the total uncertainty in your 

measurements of ti? If so, calculate their effects. 

 

Finally, what is estimated mean time for the paper to reach the floor, and what is the uncertainty in this 

time?  Present your final result as t ±u(t ).  

 

 

Activity 4 
This activity is about uncertainties in measurements using analog instruments, which you learned about 

in Module 3, and propagation of uncertainties when the directly measured quantities are being divided, 

which you have learned about in this Module. 

 

You are supplied some circular metal hoops of different sizes. For each hoop determine its diameter and 

its circumference with the supplied meter stick, and include the uncertainties in your determination of 

the diameter and circumference.  A nice way to determine the circumference is to roll the hoop on the 

tabletop for exactly one revolution and measure how far it rolled. 

 

Then, for each hoop calculate the circumference divided by the diameter, and the uncertainty in the ratio.  

Is the ratio the same value within the calculated uncertainties for all the hoops?  Is there some theoretical 

value of the ratio?  If so, what is it and are your measurements within uncertainties of this value?  Also 

if so, if you repeated the measurement for a large number of hoops of different sizes, would you expect 

all of the calculated ratios to be within uncertainties of this value, and if not what fraction of them 

should be within uncertainties of the theoretical value? 

 

 

If you have time Question 

For the “experiment” of Figure 1, Eqn. 1 gives the distance as dtheory = 2 ab . Show that this is true. 

The acceleration due to gravity g does not appear in the equation, so what if the experiment were being 

done in a weightless environment such as the International Space Station, where g = 0?  


