Practical 4 Questions

1. (a) A charge $Q=10 \mathrm{nC}$ is placed at the origin $\vec{r}=(0,0,0)$, at the centre of a cube of side-length $a=1 \mathrm{~cm}$ whose faces are perpendicular to the x, y, and z-axes as shown below left. What is the total electric flux Φ_{E} through the box, and what is the average of the perpendicular component of the electric field, E_{\perp}, on the right-hand face (the one centred on $(0, a / 2,0))$?

(b) A second charge, $-Q$, is now added at $\vec{r}=(0, a, 0)$, as shown on the right. Now what is the total flux through the box, and the average of the perpendicular component, E_{\perp}, on the face centred on ($0, a / 2,0$) ?
Hint: Neither part of this question requires integration.
2. electric field of a thick infinite slab

A slab with thickness T and infinite in extent in the $x y$-plane, carries a volume charge density of ρ. Sketch the electric field as a function of z for $-2 T<z<2 T$.
3. What is the electric field at a point P, a distance $h=20.0 \mathrm{~cm}$ above an infinite sheet of charge, with a surface charge density of $\sigma=1.3 \mathrm{C} / \mathrm{m}^{2}$ and a hole of radius $R=5.0 \mathrm{~cm}$ with P directly above the center of the hole, as shown in the figure below? (Hint: the formula for the electric field due to a uniformly charged disk is found on p. 633 of the textbook: $\left.E(z)=2 k \pi \sigma\left[1-z / \sqrt{z^{2}+R^{2}}\right]\right)$

