## Practical 5 Questions

1. Consider a group of charged toner particles and how one of them can be moved around in the group. Four charged particles form a square with side length $a=6.9 \mu \mathrm{~m}$. Particles 1, 3 , and 4 carry charge $+q=3.9 \times 10^{-15} \mathrm{C}$, and particle 2 carries charge $-2 q$. Particles 2 and 4 are diagonally opposite each other. How much work must be done by an external agent on particle 4 to pull it out of its corner, slide it around outside the perimeter of the square past particles 3,2 , and 1 , and then place it stationary at the center of the square?

2. A spherical water drop $50.0 \mu \mathrm{~m}$ in diameter has a uniformly distributed charge of +20.0 pC . Find (a) the potential at its surface and (b) the potential at its center.
3. Three parallel-plate capacitors are separately connected to identical batteries. Capacitor 1 has a plate area $A$ and a plate separation $d$. Capacitor 2 has a plate area $2 A$ and a plate separation $d$. Capacitor 3 has a plate area $A$ and a plate separation $2 d$. Rank the three capacitors, largest first, based on (a) capacitance, (b) charge stored, (c) electric field magnitude between the plates, (d) energy stored, and (e) energy density.
