Practical 6 Questions

1. A conducting rod of length L and mass m slides freely down an inclined plane, as shown in the figure. The plane is inclined at an angle θ from the horizontal. A uniform magnetic field of strength B acts in the positive z-direction. Determine the magnitude and the direction of the current that would have to be passed through the rod to hold it in position on the inclined plane.

2. A proton moving at speed v enters a region in space where a magnetic field given by uniform \vec{B} pointed along the negative z-axis. The velocity vector of the proton is at an angle $\theta=60^{\circ}$ with respect to the positive z -axis.
(a) Analyze the motion of the proton and describe its trajectory (in qualitative terms only).
(b) Calculate the radius, r, of the trajectory projected onto a plane perpendicular to the magnetic field (in the xy-plane).
(c) Calculate the period, T, and frequency, f, of the motion in that plane.
(d) Calculate the pitch of the motion (the distance traveled by the proton in the direction of the magnetic field in 1 period).
