Practical 9 Questions

1. In a sound interference experiment, two identical loudspeakers are placed 4.00 m apart, facing in a direction perpendicular to the line that connects them. A microphone attached to a carrier sliding on a rail picks up the sound from the speakers at a distance of $400 . \mathrm{m}$, as shown in the figure. The two speakers are driven in phase by the same signal generator at a frequency of $3400 . \mathrm{Hz}$. Assume that the speed of sound in air is $340 . \mathrm{m} / \mathrm{s}$.

(a) At what point(s) on the rail should the microphone be located for the sound reaching it to have maximum intensity?
(b) At what point(s) should it be located for the sound reaching it to be zero?
(c) What is the separation between two points of maximum intensity?
(d) What is the separation between two points of zero intensity?
(e) How would things change if the two loudspeakers produced sounds of the same frequency but different intensities?
2. A car traveling at $54 \mathrm{~km} / \mathrm{h}$ honks its horn as it directly approaches the side of a large building. The horn produces a long sustained note of frequency $f_{0}=260 \mathrm{~Hz}$. The sound is reflected off the building back to the car's driver. The sound wave from the original note and that reflected off the building combine to create a beat frequency. What is the beat frequency that the driver hears (which tells him that he had better hit the brakes!)? Speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

