COLLEGE PHYSICS

Chapter 2 INTRODUCTION: Kinematics in One Dimension

Lesson 3

Video Narrated by Jason Harlow, Physics Department, University of Toronto

KINEMATICS

- Kinematics is the study of motion without considering its causes.
- Dynamics is the study of motion considering causes, such as force and energy.
- In this chapter, we examine the simplest type of kinematics: motion along a straight line, or onedimensional kinematics.
- In the next chapter, two-dimensional
kinematics, we apply the concepts developed here to study motion along curved paths.

POSITION

- These cyclists in Vietnam can be described by their position relative to buildings and a canal.

- Position is often described numerically by the distance from a certain point: the origin.
- The origin and the x-axis define a reference frame

DISTANCE VS. DISPLACEMENT

- Displacement is simply the final position minus the initial position: $\Delta x=x_{\mathrm{f}}-x_{0}$
- For example, if $x_{0}=0$ and $x_{\mathrm{f}}=3 \mathrm{~m}$, then $\Delta x=+3 \mathrm{~m}$.

- If the object started at $x_{0}=0$, traveled all the way to $x=4 \mathrm{~m}$, then, returned to $x_{\mathrm{f}}=3 \mathrm{~m}$, then the distance traveled was $d=4+1=5 \mathrm{~m}$.
- Displacement can be positive or negative; distance is always positive.

GIVE IT A TRY!

You walk from 3 km to the grocery store and then back home. What is your distance traveled, d, and displacement, Δx ?
A. $d=0 \mathrm{~km}, \Delta x=6 \mathrm{~km}$
B. $d=3 \mathrm{~km}, \Delta x=0 \mathrm{~m}$
C. $d=6 \mathrm{~km}, \Delta x=6 \mathrm{~km}$
D. $d=6 \mathrm{~km}, \Delta x=0 \mathrm{~m}$
E. $d=6 \mathrm{~km}, \Delta x=3 \mathrm{~km}$

VECTORS VS. SCALARS

- A vector is any quantity with both magnitude and direction.
- Examples of vectors include displacement, velocity, acceleration and force.
- The direction of a vector in one-dimensional motion is given simply by a plus (+) or minus (-) sign.
- A scalar is a quantity that has magnitude, but no direction.
- Examples of scalars include distance, speed, temperature and mass.

DIRECTION SIGN CONVENTION

It is usually convenient to consider motion upward or to the right as positive (+) and motion downward or to the left as negative (-).

TIME

- Time is change, or the interval over which change occurs.
- Any measurement of time, t, is calibrated by comparison with a standard.
- Elapsed time Δt is the difference between the ending and beginning time:

$$
\Delta t=t_{\mathrm{f}}-t_{0}
$$

- For example, if the lecture starts at 11:10 AM and ends at 12:00 noon, the elapsed time of the lecture is 50 minutes.

VELOCITY

- Average velocity is the displacement divided by the elapsed time:

$$
\bar{v}=\frac{\Delta x}{\Delta t}
$$

- Notice that velocity is a vector because displacement is a vector.
- The average velocity is in the same direction as the displacement.
- The instantaneous velocity v (a.k.a. "velocity") is your velocity at a specific instant in time.
- v can be found by taking the limit of \bar{v} as $\Delta t \rightarrow 0$.

SPEED

- Average speed is the distance traveled divided by the elapsed time
- Average speed doesn't take into acount various instantaneous speeds along the way.
- For example, if you drove a distance of 200 km , and it took you a total of 2 hours, your average speed was 100 km/hr.
- Instantaneous speed (a.k.a. "speed") is your speed at any instant.
- Your instantaneous speed is given by your speedometer.

GIVE IT A TRY!

You drive from 3 km to the grocery store and then back home in half an hour. What was your average speed and average velocity?
A. \quad speed $=0 \mathrm{~km} / \mathrm{hr}$, velocity $=12 \mathrm{~km} / \mathrm{hr}$
B. speed $=6 \mathrm{~km} / \mathrm{hr}$, velocity $=0 \mathrm{~km} / \mathrm{hr}$
C. speed $=12 \mathrm{~km} / \mathrm{hr}$, velocity $=12 \mathrm{~km} / \mathrm{hr}$
D. speed $=12 \mathrm{~km} / \mathrm{hr}$, velocity $=0 \mathrm{~km} / \mathrm{hr}$
E. speed $=12 \mathrm{~km} / \mathrm{hr}$, velocity $=6 \mathrm{~km} / \mathrm{hr}$

Example: Graphs of Hockey Puck Motion

Note: velocity $=$ slope of pos. vs.t graph

$$
\begin{aligned}
& v_{1}=\frac{+2.0 \mathrm{~m}}{2.99 \mathrm{~s}}=\frac{\text { rise }}{r u n .} \\
& 0.67 \mathrm{~m} / \mathrm{s} v_{2}=\frac{-1.0 \mathrm{~m}}{(6.6-2.94 \mathrm{~s})} \\
& v_{2}=-0.28 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

