Practical Discussion Problems (3)

Q1: A nasty teenager is dropping tomatoes from a bridge onto cars on the road below. The height of the bridge (the point from which the tomatoes are dropped) is 10 m above the ground. The teen first sees the cars when they are 50 m away. All cars drive at exactly the speed limit of 40 kilometers per hour. Assume that the tomatoes accelerate downward at $10 \mathrm{~m} / \mathrm{s} 2$ (this gravitational acceleration is denoted "g" and has an actual experimental value of about $9.8 \mathrm{~m} / \mathrm{s} 2$ at sea level). How long after a car appears does she need to wait before dropping a tomato to hit the hood of the car at a height of 1.0 m above the ground?
(A) 4.0 s
(B) 0.8 s
(C) 2.8 s
(D) 3.2 s
(E) 4.5 s

Q2: A rock is thrown with speed V exactly horizontally from the edge of a cliff of height H and hits the ground a distance D away from the base of the cliff. Find the value for D in terms of V, H, and the gravitational acceleration g is given by
(A) $D=v \sqrt{H / g}$
(B) $D=v \sqrt{g / 2 H}$
(C) $D=v \sqrt{2 H / g}$
(D) $D=v \sqrt{H / 2 g}$

Q3: Consider the three vectors A, B and C shown below

$$
\overrightarrow{|\vec{A}|=1} \quad \stackrel{\rightharpoonup}{B}|=2 \quad \quad||\vec{C}|=1
$$

1. The vector $\mathbf{A}+\mathbf{B}+\mathbf{C}$ is given by (circle one)
a.

b.

d.
 e. \uparrow
2. The vector $\mathbf{A}-\mathbf{C}$ is given by (circle one)
a.

b.

$\{$
c.

d.

e. \downarrow
3. The vector $\mathbf{A}-\mathbf{B}+\mathbf{C}$ is given by (circle one)
a.

c.

d.

e.

