Lesson Planning -microteaching course-

Today`s learning outcomes

- Analyze elements of effective lesson planning and specific cases in which they can apply them for a lab/tutorial
- Design a lesson plan for a physics lecture

Activating Prior Learning (Mental or Anticipatory Set)

Closure

Sharing Objective & Purpose

Elements of Lesson Design

Checking for understanding

Practice – Guided & Independent **Input –** information to be learned

Modeling

Hunter, M. (1994). Enhancing Teaching. New York: Macmillan College.

Sharing Objectives and Purpose

Think of the objective you have in mind for the lesson

Write it down

Share that objective and purpose with your students

Learning Outcome

Articulate what a student should know or be able to do by the end of the class

Activity: Write learning outcomes

 Write down one learning outcome for the 5 min presentation you did today

- Use ACTIVE verbs: communicate, explain, implement, develop, evaluate, analyze, create, identify, prepare, design
- Don't use VAGUE verbs: understand, appreciate, discuss, enhance knowledge of

Activating Prior Knowledge

Activating Prior Knowledge

- Get their minds ready to learn
- Engage students
 - they will feel more encouraged to participate when you start from a level they are comfortable with
- Links to the past experiences or knowledge will help students build stronger logical connections
- How?

Activating Prior Knowledge

- Get their minds ready to learn
- Engage students
 - they will feel more encouraged to participate when you start from a level they are comfortable with
- Links to the past experiences or knowledge will help students build stronger logical connections
- Activate prior knowledge by:
 - Ask them questions in class
 - Questionnaire based assessment
 - Overview of the previous lecture

Modeling /Demonstration

- Clear demonstration of the concepts presented in the input
- Students can discuss what they see or hear and identify critical elements in the learning outcomes
- Examples:
 - Solving a problem in class (illustrate all the steps and generalize for a particular class of problems)
 - Show a demo of a concept you have just discussed
 - Illustrate a lab procedure by doing it yourself

Input: share new information

The average percent retention of information after 24 hours for each of the instruction methods.

Note that the percentages are not additive.

Source: Adapted from National Training Laboratories of Bethel and NTL Institute of Alexandria, VA, cited in David Sousa (2006) , *How the Brain Learns*, 3rd ed. California: Corwin Press.

Retention During a Learning Episode

What is active learning?

Definition:

Active Learning: anything that students do in a classroom other than merely passively listening to an instructor's lecture.

What is involved?:

- Writing based
- Discussion based
- Reciprocal Peers Teaching
- ► Problem Solving
- Graphic Information
 Organizers

Keys to Success

- Thoughtful active learning strategies
- Clear / Developed Lesson Plan
- Well defined goals
- Detailed objectives
- Debriefing that identifies where student can improve.

Dan Meyers, 2010, TEDxNYED

Be effective in lab/tutorial

- Use multimedia
- Encourage student's intuition
- Ask the shortest questions possible
- Let the student build the problem
- Be less helpful

Checking for understanding

YES Example: Consider the problem we have just solved, what are the differences between the quantum and classical oscillator. Try to think of oscillation amplitude and frequency, energy levels. Take 1 min to write your ideas on a piece of paper. I will ask 3 students to share their thoughts with the rest of the class.

NO Example: Does everyone understand how the quantum oscillator works? Any questions?

Checking for understanding

- Involve all students (active participation)
 Students get specific feedback on their answers
- □ Give some time to think of the answers □ Used before practice
- Example: ask them to write down some
 - "muddy points", which you can revisit at the end of the class

Practice: Guided or Independent

- Must relate to lesson outcomes and involve all students
- Guided practice:
 - Support from instructor, peers
 - Immediate feedback and support
 - ► To use before working independently
- Independent practice:
 - Without support (working on your own in class or outside of the class)

Closure

- Final check for understanding : revisit "muddy points"
- Summary of key learning in the lesson
- Relate summary to the learning objectives

Designing a Lesson Plan

Use the lesson design template and work in pairs to begin designing a lesson plan