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Theory of a one-atom laser in a photonic band-gap microchip
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We present a quantum theory of a coherently pumped two-level atom in a photonic baiBgapcoupled
to both a multimode waveguide channel and a high-quality microcavity embedded within a photonic crystal.
One mode is engineered to exhibit a sharp cutoff within the PBG, leading to a large discontinuity in the local
photon density of states near the atom, and the cavity field mode is resonant with the central component of the
Mollow spectrum of atomic resonance fluorescence. Another mode of the waveguide channel is used to
propagate the pump beam. We derive analytical expressions for the optical amplitude, intensity, second-order
correlation functions, and conjugate quadrature variances for the light emitted by the atom into the microcavity.
The quantum degree of second-order coherence in the cavity field reveals enhanced, inversionless, nearly
coherent light generation when the photon density of states jump between the Mollow spectral components is
large. The cavity field characteristics are highly distinct from that of a correspondindhagtvity in ordinary
vacuum. In the case of a vanishing photon density of states on the lower Mollow sideband and no dipolar
dephasing, the emitted photon statistics is Poissonian, and the cavity field exhibits quadrature coherence.
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[. INTRODUCTION with the spontaneous emission and cavity decay katee
much larger than the atom-cavitgoupling frequency scale

Photonic crystal§PC9 are periodic dielectric structures g, describing reversible evolution in the interaction of the
which can prohibit light propagation over a continuous rangeatom with the cavity mode. The theory of the free space,
of frequencies, irrespective of the direction of propagationone-atom laser with strong coupling has been developed
The possibility of achieving photon localizatih] and pho-  [17—19 mainly by numerical means.
tonic band gap$PBGS [2,3] has been a driving force behind ~ In this paper we present a detailed quantum theory of the
the synthesis of these microstructures. This, in turn, has pra!nique features of a one-atom laser in an engineered PBG
vided a compelling starting point for research of both funda-microchip. We study the effect of coherent pumping near a
mental and technological importance. discontinuous photonic DOS on the quantum features of la-

One of the key features that distinguishes the photoni&er emission. Using a secular approximafi2], our model
radiation reservoir associated with a PBG material from itsyields an analytical solution for the emission intensity and
free space counterpart is that the photonic density of stategPherence properties. In particular, we demonstrate strong
(DOS) within or near the PBG can nearly vanish or exhibit enhancement of the cavity fieldelative to free spageand
discontinuous changes as a function of frequency with apenhanced coherence, resulting from the radiation reservoir of
propriate engineering. This leads to interesting optical phethe PBG microchip. We also present a specific photonic crys-
nomena, such as photon-atom bound stiatgdractionalized tal architecture for the practical realization of this system.
single-atom inversiofi5], optical bistability and switching in  This consists of a quantum dot embedded in a dielectric mi-
multiatom system§6], possible modification of Plank black- crocavity placed within a multimode waveguide channel in a
body radiation in microstructured metdlg], and coherent PBG microchip.
control of spontaneous emission through quantum interfer- The outline of this paper is as follows. In Sec. I, we
ence[8]. present the photonic crystal architecture relevant for the sys-

Recent advances in the fabrication of photonic cryg@ls tem we study. In Sec. Ill, we present the model Hamiltonian
have been accompanied by studies of lasing in these mate@nd derive the master equation for the atom-cavity system
als[10]. On the other hand, a microlaser with a single atomwithin coherent pumping. In Sec. IV, we investigate the ef-
or a quantum dot interacting with the quantized field of afect of the magnitude of the photonic DOS discontinuity and
high-Q microcavity represents a unique tool for the investi-microcavity quality factor on the emission amplitude and
gation of quantum electrodynamic effects. In free space, ifhtensity. The coherence properties of the emission are de-
the 0ptica| domain, h|g|@ thica| cavities have allowed in- rived in Sec. V. FinaIIy, in Sec. VI, we discuss the results and
vestigations of the vacuum Rabi splittifgl], photon anti- Possible generalizations of the model developed here.
bunching [12], and conditional phase shifts for quantum
logic gates[13]. In addition, the realization of an optical
laser containing only a single active atom has been reported
[14]. In such a system, it is possible to study the lasing
process at the quantum level and identify features not readily We begin by demonstrating how photonic crydi@éfect
distinguished in conventional laser systems. The one-atormode engineering can be used to physically realize the
laser theory in free spa¢é5,1€ has been developed for the model Hamiltonian we present in this paper for the one-atom
case of weak coupling, in which the loss rateassociated laser. The fundamental challenge is to obtain strong coupling

II. PHOTONIC CRYSTAL ARCHITECTURE
FOR A ONE-ATOM MICROLASER
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X FIG. 2. The band structure of the waveguide structure formed by
removing two line of rods from the 2D photonic crystal, which has

a band gap in the rang®.308—-0.45827c/a. Inside the band gap,

¢ the lower waveguide mode is symmetric about the center line of the

FIG. 1. The configuration of the hybrid structure. Two lines o . : X h X . )
waveguide, while the higher waveguide mode is antisymmetric.

rods (parallel to they axis) are removed from the 2D photonic
crystal to form a two-mode waveguide. In the center of the wave-
guide, two identical elliptic rods are introduced as defect rods. Thds the H-polarization mode, where the magnetic field is par-
major axes of these two elliptic rods are parallel to the waveguidellel to the rods. For simplicity, only thE-polarization mode
direction. The semimajor axis i5=0.4a and the semiminor axisis is considered here. Both the plane wave expansion method
r«=0.2a. The distance between two elliptic rodsom center to  [22] and the supercell methd@3] are used to calculate the
centej is 0.5. band structure and the electric field pattern of the relevant
modes. A 2D photonic crystal with a square latti¢attice
within the PBG of the atom with an external pump lagad ~ constanta) and circular dielectric rodgadiusr,=0.17a) is
a high-quality-factor microcavity. While the first condition used. The dielectric constant of the rods is 11.9. This struc-
can be satisfied by replacing the ato@ ¢lot) within the  ture has a band gap in the ran(e308-0.4582wc/a. In
waveguide channel of a three-dimensiof@D) PBG mate- OUr expansion, plane wave wave vectors are chosen by the
rial, strong coupling of the atom to a microcavity requirescondition|G|<4.0(2x/a), where|G| is a reciprocal lattice
that the microcavity is also in close proximity to the wave- VECtor.
guide. In general, this may lead also to direct, strong cou- When one line of rods is removed from the 2D photonic
pling between the microcavity and the waveguide, with acrystal, a waveguide is formed with its mode frequency in-
concomitant degradation of th@ factor of the microcavity. ~Side the photonic band gaj24]. Usually, this waveguide
In our photonic crystal architecture, we overcome this probmode is a symmetric mode, i.e., the electric field pattern has
lem by designing the symmetry of the electromagneticd mirror symmetry about the axigenter ling of propaga-
modes of the waveguide and the microcavity, so that thigion. If two lines of rods are removed, there are two wave-
direct coupling is eliminated by orthogonality. In this way, guide modes inside the band gap. One mode is symmetric
both the atom-microcavity coupling and the atom-waveguideind the other is antisymmetric with respect to the waveguide
coupling can be strong, whereas the direct microcavity-2xis(see Fig. 2 The antisymmetric mode usually has higher
waveguide coupling is suppressed. In order to achieve a fa@nergy than the symmetric one because the antisymmetric
tor of 100 jump in the reservoir density of states, a threemode has one node in the field pattern while the symmetric
dimensional PBG architecture is useful. A general techniqué&ne has none. The field pattern of symmetric and antisym-
for embedding the waveguides and microcavity in a 3D PB@netric waveguide modegor the E-polarized modes of the
material using an intercalated two-dimensional microchip2D photonic crystal depicted in Fig) Is plotted in Fig. 3. In
layer has been presented elsewhig@#]. For simplicity of

illustration, we consider below a purely 2D photonic crystal 2.5 e

with the understanding that the 2D architecture is embeddec 24*O" O © (b) ® O "OHMm:

in a 2D-3D heterostructurg21]. y 2
In Fig. 1, we depict the top view of a 2D microchip layer 1 22

that is sandwiched between suitable 3D PBG cladding layersy 1. 0Of © @ (a) ®@ O ©O -4

above and below. The 2D microchip consists Of @ SQUArE| (3 rprrrrrrerrrrrrrrrrerremrrerrrrrrerrrerrerrerreprrerrerrre &

lattice of cylindrical dielectric rods in an air background.
Two missing rows of these rods represent a two-mode wave-
guide channel. The rods with elliptical cross section within G, 3. The field patterns of waveguide modes. Xtandy axes

this waveguide channel represent a microcavity resonatogre in units of lattice constaat The solid lines are dielectric rods.
We consider a quantum dot embedded within one of thesgy) The real part of the electric field of the symmetric waveguide

eIIipticaI. defect rods. '_rhere are two kian of electrpme_lgnetiqnode whenk,=0.3(27/a); (b) the imaginary part of the electric
modes in 2D photonic crystals. One is tkepolarization field of the antisymmetric waveguide mode wHem=0. The direc-
mode, i.e., the electric field is parallel to the rods. The othetion of propagation is along thg axis.
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FIG. 4. The band structure of the defect structure formed by @)

changing two nearby rods of the 2D photonic crystal into larger
rods. The radius of the defect rods is &.3vherea is the square

lattice constant. The solid lines with various symbols are defect
modes. FIG. 5. The electric field pattern of the defect modes wken

. . =0. The solid lines are dielectric rod®) The —« mode;(b) the
the calculations of the waveguide modes, the supercell con-y mode:(c) the 1| mode; andd) the — — mode.

tains 10< 1 unit cells of the square lattice, where thaxis is
normal to the waveguide direction and tgieaxis is in the =~ composed of two dipole patterns arranged in the following
waveguide direction. way (frequencies from low to high —«, 17, T/, and

Near the cutoff frequency of the antisymmetric mode, the«—«. Among these four defect modes, the mode with field
local electromagnetic density of stat@€DOS) in the vicin-  pattern] | can provide a higl cavity mode if centered on
ity of the waveguide channel exhibits a peak whose height ishe waveguide axis. This mode is antisymmetric about the
limited by the overall length(in the y direction of the axis of the waveguide, so it will not couple to the symmetric
sample. For an infinite system, this LDOS becomes a squar&vaveguide mode. Moreover, this mode is antisymmetric
root singularity. In addition to this peak, the LDOS has aabout the line connecting the rod centers. Therefore, it also is
small background contribution from the symmetric mode,orthogonal to the antisymmetric waveguide mogg k,
which has a large group velocity and nearly linear dispersior=0) if the line connecting the rod centers is perpendicular to
near the cutoff frequency of the antisymmetric mode. Wethe waveguide direction. As a result, this mode can be
now describe the introduction of an additional microcavitybrought to the vicinity of the cutoff frequency of the anti-
defect near the waveguide, with an isolated, localized modesymmetric waveguide mod&vhich occurs ak,=0) without
of frequency near the waveguide cutoff. disturbing the LDOS discontinuity.

If only one single rod(instead of one line of rodsis In order to remove spurious defect modes from the band
removed or changed, a localized defect manigcrocavity  gap, both the shape and the position of the defect rods can be
mode can be created within the PB[@5]. When the rod is engineered. Using elliptic defect rods, in place of circular
replaced by a rod larger than the original or(d&lectric  defect rods, selects modes with dipole along the major axis
defec}, two degenerate modes can be created. The localizeof the ellipse. For sufficient ellipticity, two modes with di-
electric field pattern has a dipolar character, and these twpole along the minor axis can be removed from the band gap.
degenerate modes correspond to dipoles along two perpehi this case, only two modes with electric field pattérh
dicular directions(denoted? and —). These defect modes and?| remain in the PBG. To further separate these remain-
form sharp peaksof width inversely proportional to thel@  ing defect modes, the distance between the elliptic rods can
facton in the LDOS. However, the naive introduction of a be reduced. At an appropriate separation, only the desired
defect near our waveguide structure will, in general, disruptlefect mode remains inside the bandgap.
the band structure of the waveguide mode, due to direct cou- The desired microlaser architecture is shown in Fig. 1.
pling between modes with the same symmetry. Since thdwo columns of rods are removed from the 2D photonic
dipole mode7 is symmetric, it will strongly couple to the crystal to form a waveguide and two identical elliptic rods
symmetric waveguide mode, leading to rapid decay of radiaare placed on either side of the waveguide awghin the
tion (low Q) from the microcavity. To avoid direct coupling waveguid¢. The major axes of these two elliptic rods are
between the waveguide mode and the microcavity mode, wparallel to each other, as well as parallel to the waveguide
can engineer the defect rods to support only one antisymmetirection. The semimajor axis s, and the semiminor axis is
ric localized mode inside the band gap. This is realized ber,, withr,:r,=2:1. Thedistance between the centers of the
low by introducing two defect rods of suitable shape. two defect rods is chosen to be 842r,. When the

In general, if two neighboring rods are replaced by largersemiminor axisr, is around 0.2, only one defect mode is
defect rods in a 2D photonic crystal, four defect modes willinside the band gap, and this mode is near the cutoff fre-
be formed in the band gaff-ig. 4). These two defect rods quency of the antisymmetric waveguide mode.
have the same radius=0.3a; and the supercell has ¥ In Fig. 6, the band structure of the system containing both
unit cells of the square lattice. The electric field pattern ofwaveguide and microcavity is plotted. The size of the defect
these defect modes is plotted in Fig. 5. These modes ameds decreases in Fig(# to Fig. 6c) from r,=0.19% to
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waveguide mode and retains a hi@hfactor.

The electric field patterns of both the cavity mode and the
antisymmetric waveguide modgwith parameters corre-
sponding to Fig. &)] are plotted in Fig. 7. The electric field
of the cavity mode is localized around the defect; while the
waveguide mode spreads over the waveguide with some
fields concentrated on the center of defect rods. Qheot
can be placed in one of the elliptic defect rods, where it
couples strongly to both the waveguide mode and the cavity
mode. We now consider a model Hamiltonian for atom—
radiation field interactions near this microcavity in the fre-

FIG. 6. The band structure of the one-atom, PBG laser with botlquency range of the antisymmetric waveguide mode cutoff.
waveguide and microcavity. The solid lines indicate the frequency

of the cavity modes whek=0. The dashed lines are symmetric
waveguide modes, and the dotted lines are antisymmetric wave-
guide modes(a) The semiminor axis,=0.19%; (b) the semimi-

nor axisr,=0.19&; and(c) the semiminor axis,=0.197.

Ill. DRESSED-STATE MASTER EQUATION

We consider a single two-level atorfguantum dot
strongly coupled to a higk} microcavity described above

and driven by a coherent external laser field propagating
ry=0.197a. The supercell contains ¥015 unit cells of the through the symmetric waveguide mode. The excited atomic
square lattice. The symmetric waveguide mode goes fromsystem decays by spontaneous emission to the modes of the
0.356(2rc/a) (at k,=0) to 0.368(2rc/a) [at Kk, radiation reservoifin our case, the waveguide modesso-
=0.033(2r/a)]. The antisymmetric waveguide mode goesciated with the engineered photonic crystal. The atom has
from 0.363(27c/a) (at ky=0) to 0.3642(2rc/a) [at k,  excited statd2), ground stat¢1), and transition frequency
=0.033(2r/a)]. The remaining mode is the microcavity w,. The coupling constant between the atomic transition and
mode whose frequency varies with the size of the defecthe microcavity mode is denoted lgy The atom is driven
rods. Whenr,=0.197, the microcavity mode frequency is near resonance by a coherent external field at a frequency
very close to that of the cutoff frequency of the antisymmet-and Rabi frequencyintensity) . The Rabi frequency char-
ric waveguide mode. However, as a result of symmetries oécterizes the strength of the driving field, and is proportional
each mode, the microcavity does not couple directly to eitheto the product of the transition dipole mometh, and the
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FIG. 7. The electric field pat-
tern of the one-atom, PBG laser
with both waveguide and micro-
cavity. The parameters are the
same as those in Fig.(§. The
wave vectork=0. (a) The cavity
mode and (b) the waveguide
mode.
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driving field amplitudeE (e =d;4 E|/A). For simplicity, we 4
treat the driving external field classically. The Hamiltonian p()
of the system in the interaction picture[i6] @, @

0-2Q ®+2Q

H:HO+H1+Hdephase+Hdamping- 3.9

Here,

T 1 T
Ho=fAca'a+ 5hAaos+fie(onp+ o) +hY, Avala,,
N
3.2

and the individual termgin the order they appegdescribe o o e

the unperturbed microcavity field, the atomic system, the in- a b

teraction between the atomic system and the monochromatic FIG. 8. The relative positions of the relevant frequencies con-

pump laser field, and the remainder of the radiation reservoisidered in our studyw,, w_, and w. are the atomic transition

of the photonic crystalresponsible for the radiative decay of frequency, the frequency of the coherent pump field, and the micro-

the aton). In our case, this reservoir consists of the wave-cavity field frequency, respectively + 20 describe the sideband

guide modes within the PBG. The interaction Hamiltonian iscomponents of the Mollow spectrunf)(is the generalized Rabi

frequency, and wy, is the photonic DOS band edge frequency.
H,=ihg(@o,— o) +ik al o= 01a,).
! o(@osz- o) ; On(@nT1z~ oait) The HamiltonianH 3¢ pnasedescribes additional dephasing
(3.3 interactions, which may arise from atomic collisions and

o . . scattering of phonons from the impurity atoms, if the atom is
The individual termg(in the order they apperdescribe the embedded in the solid part of the dielectric material. We

interaction between the atomic system and the microca\’it)éssume for simplicity that the phonon DOS is broad and

field, _and the Interaction between thg atomic system and thgisplays no sharp features. In this case, the dephasing part of
remainder of the photonic crystal radiation reservoir. Hare, ! :
the master equation for the density operatoof the atom-

anda' are the cavity-mode aqnlhllatlon and crgatl.on opera cavity—reservoir system can be written[2S]
tors. ¢j; are the bare atomic operators;;=|i)(j| (i.]

=1,2), ando;=0,,— 01, describes the bare atomic inver-

sion. The coupling constant between the atom and the cavity ax
mode is given byg=(w,dy /%) (hl2eqw V) % uy, where ot =¥p(o3x03—X), (3.9
d;, anduy are the absolute value and the unit vector of the dephase

atomic dipole momeny is the volume of the cavity mode,

is the polarization mode of the cavity radiation field, and wherey, is a phenomenological dephasing rate.

is the dielectric constant. In the optical regime, dipole mo- The HamiltonianH 44 mping describes the damping of the
ments of[27] dy;~10"2° Cm, and a microcavity mode vol- cavity field. In our case, this may arise from infinitesimal
ume of V~(1 um)® yield g~10 %w,. a, anda/ are the asymmetry of the defect architecture or disorder in the wave-
photonic crystal radiation reservoir annihilation and creatiorguide channelcaused by the manufacturing procesisat
operators.A,=w,— w0, Ac=w,— o, andA,=w,— o, allow weak direct coupling between the waveguide mode
are the detuning of the atomic resonance frequangy of  and the microcavity mode within the PBG. Also, a small
the cavity-mode frequenay., and of the frequency, ofa  amount of light can be emitted in the verticaldirection by
modeX\ of the photonic crystal radiation reservag, is the  making the thickness of the 3D PBG cladding layers smaller
coupling constant between the atom and the mods the  in the vicinity of the microcavity. The contribution of this
radiation field of the photonic reservoir. The relevant fre-type of damping to the master equation is expressed as
guencies for our study, and their relative position are pre-

sented in Fig. 8.

. One of j[he unique features qf the quant'um electrpdynam- (a_X) =£[2apaT—aTaX—paTa]. (3.5

ics (QED) in a photonic crystal is the possibility to simulta- gt

neously realize extremely small microcavity mode volumes

and maintain very high cavity) factors. For instance, in a ) . )

2D photonic crystal, a microlaser with a cavity volume of Here, « is the phenomenological cavity decay rate. The cav-
0.03 um?® has already been demonstraf@8]. Within a 3D ity quality factor is then defined &= w/x. _
PBG, with complete light localizatioft,3], there is no fun- The radiative part of the master equation for the density
damental upper bound to the microcavilyfactor. In our ~ Operatory of the system has the form

case, th& factor is determined by the degree of coupling to

damping

the engineered waveguide modes within the PBG and pos- ax i
sible leakage of light from the microcavity in the vertical (—) =—[H,x]. (3.6
direction (surface emitting lasgr I/ ad h
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Equation(3.4) is written in the basig]i)}i_1,, of bare H,=i%g(sca Rge'dc'+c2alR el (e 20t
atomic states. It is useful to use the dressed-state picture, by
introducing the stz_itfeﬁT)_}i:Lz [6,18] of the atomic system —s?alRye/ (e 2D +i5 > g, (scal Rye! !
dressed by the driving field, A
T=c|1)—s|2), 3.7 +c?a] Ry 20 —g23 R, el (A F20)) + H g,
(3.13
[2)=s|1)—c|2). (3.9

Here and below, we drop the tilde on the interaction picture

Here, c=cos(), s=sin(¢), and ¢ is the rotation angle, operators, for the sake of notational simplicity.

which belongs in the intervdl0, 7] and is defined by The interaction-picture density operatpiobeys a master
equation whose radiative part is similar to g§.6), where

the total HamiltoniarH is replaced by the interaction-picture
' (3.9 HamiltonianH,. This equation is formally integrated, and
the solution is replaced into the right-hand side of the equa-

1/ A,
co§¢—§(l+ﬁ

and tion. Further, the master equation for the reduced density
operator of the system of atom plus cavipys Trgx (here,
O =(4€?+A%)2 (3.10  Trg denotes a trace over the reservoir variahlesobtained
from the resulting master equation by tracing over the pho-
is the generalized Rabi frequency. tonic crystal radiation reservoir variablg29:
The atom—applied field part of the Hamiltonikig can be op 1t
diagonalized using the transformation (E) =— ﬁjodt,TrR{[H1(t)=[Hl(t’)1X(t’)]]}'
1 - . rad (3 14)
012=55|n(2¢)R3—3|r12¢R21+ coS¢Ry,, (3.113 :
In the Born approximatiof29], the operatog(t’) in Eq.
0 go— 011=COS 2)Rs—SiN(265) (Ryp+ Ryy), (3.19 is replaced byp(t')Ry, whereR, is an initial reser-

(3.11b voir density operator. This corresponds to the second-order
perturbation theory in the interaction between the atom and
R3=R,— Ry1, (3.119  reservoir. It assumes that changes in the reservoir as a result
of atom-reservoir interaction are negligible. Further, we as-
where R;;=[i}{j| are the dressed-state atomic operators>- "< that the photonic density of states at the atomic fre-
This leads to the dressed-state Hamiltonian guency exhibits a step discontinuity, SO that the Mollow com-
ponents of the fluorescent scattering spectri28,5 at
frequenciesw, , o, —2Q), andw, +2() experience strongly
Ho=%#QR;+%Aa’a+%>, Aala,. (3.12  different mode densities. For simplicity, we assume that,
A while singular at one frequency, the photonic density of
. . modes is constant over the spectral regions surrounding the
In the dressed—state paS|s, the bare qtom!c operateys  yressed-state resonant frequencigs, o, —2Q, and w,
021, and o3 in the interaction HamiltonianH,, and 150 This allows[29] for a Markovian treatment of the
(9x/ ) epnaseare replaced by the expressiof®11a and  atom-radiation reservoir system. The Markovian approxima-
(3.11b. Further, we gefme the time-dependent interactionjon neglects memory effects and replaggs’) by p(t). In
picture Hamiltonian H,(t)=U"(t)H,U(t), where U(t) the Born-Markov approximation, the master equation for the
=exp(—iHgt/A). In this interaction picture, the interaction system atom-—cavity field, obtained from Eq3.14), (3.4),
Hamiltonian takes the form and(3.5), is

ap . . . :
E — g{sc[aTRge'Ac‘— Rgae"Act,p] + CZ[aTRlzel(Acfzﬂ)t_ RZlaefl(AfZQ)t,p]

Ay A
7[R3P Rs—p]+ > [R21pR12— R12R21p ]

— s7[alRyel At 2R ae (3200t H11 4

A, K
+ - [RipRo— RoiRiap] +H.C.f + E[2apa*— a'ap—pa'al. (3.19

The first group of terms in the master equati@il5 correspond to the interaction between the dressed atomic system and
the cavity mode, the second group of terms describes the spontaneous emission of the dressed atom into the modes of the
photonic crystal radiation reservoir, and the last group of terms describes the damping of the cavity mode via cavity
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decay. Here, we assume that the cavity and the photonic d

reservoirs are independdi®9]. In this case, the spontaneous a(aTa)= —x(a'a)+gi(Rsa’) +gi(Rqa), (4.10
emission is described by the same type of terms as in the

case when no cavity is present in the system, derived in Ref. d

(6] In Eq. (3.15, Ag=ros°c*+ yp(c®~s), A_=y.s" Gi(Red)=—(71+ <I2)(Raa) + 01~ 72(a), (4.1d
+4y,8°c?, and A, =y.c*+4y,s°c?, and spontaneous
emission decay rates 'y0=2772>\g§5(w)\—w|_), y_
=273,026(wy— 0, +2Q), and y,=273,0926(w)\— o,
—2Q) are proportional to the density of modes at the yict+y_st -
dressed-state transition frequencies. In deriving the sponta- 71:T+47ps cs, (4.29
neous emission terms in E¢.15, we have used a secular

approximation[20,6] valid for strong applied laser field or y.ct—y st
large detunings between the atomic and the laser frequencies. yzz%_
This approximation is based on the assumption that the gen-
eralized Rabi frequency) is much larger than the decay
rates yg, v+, and y_ (Q>vq,y,,y-), and consists in
neglecting rapidly oscillating terms at frequencieQ 2nd

wherey, , are defined by

(4.2b

In the steady-state regime, the dressed-state atomic popula-
tion inversion(R3)s, the cavity field amplitudéa), and the
mean number of photoria'a) are obtained as

4Q).
We focus our study on the case when the cavity field is s

tuned on resonance with the central component of the Mol- (R3)s=——, 4.3
low spectrum. Assumind@)> «x, we can use the secular ap- "1
proximation to ignore the rapidly oscillating terms at fre- 5
quencies 22 and 4} in master equation3.15. The master (a)s=(a")¥=— <0 ﬁ' (4.9
equation(3.15 reduces in this case to ° K 7

dp Ao A 495 (ky1+2v5)

— T_ _ Toy —
—= a'-a)Rs,p]+i=[R3pR + —[RypR alayg=— ——7—. 4.
at 91 ( )Rs,p] 2 [RspR3—p] 2 [R21pR12 (a'a)s 2 y1(kt277) (4.9
—Ry R0+ %[Rlszﬂ_ Ry R1op]+H.c. The properties of the cavity field can be studied using the

expression$4.4) and(4.5) for the cavity field amplitudéa)
« and the mean photon numbéa’a);. We note that light
+ E[Zapa*—aTap—paTa]. (3.19 generation into the .def(.ect mgde does not require positive
bare atomic population inversion. In our model, the steady-
) . ) state mean number of photons in the cavity fidld!a),,
Here,g;=gcsis the “effective” coupling constant. can be expressed in terms of the square of the bare atomic

In what follows, we employ the master equati@16 to  population inversion( o)., rather than as a linear function
derive the properties of the one-atom laser emission in thgf (.

engineered vacuum of a PBG material.

497 Y7

tay — 2

IV. MICROCAVITY FIELD AMPLITUDE AND INTENSITY (a'a)s=— k+——(oz)s]|. (4.6
K (k+27v1) 2v50

In this section we investigate the influence of the proper- )
ties of the engineered radiation reservoir on the emitted cay-i€re, we have used Eqe3.11D, and(4.1~(4.5. y is the
ity field. The master equatiof8.16 enables the derivation of SPontaneous emission rate in free space, g (v/2)(c”
equations of motion for expectation values of atomic and—S") is the free-space value gf. Clearly, strong intensity
cavity field operators. These expectation values are define®f the cavity field may be achieved for negative bare atomic
as(---y=Tr(p---). Using the fact tha&, a', R;,, Ry, and popglatlon inversion, suggestive of mversmnles_s Ilght_ gen-
R; are time-independent Schfinger operators, the equa- eration. We also note from expressi@hs) that the intensity
tions of motion for their expectation values follow from Of the cavity field increases with increasing/« and de-
dpl dt in the master equatiof8.16). The following closed set Pends on the size of the discontinuity on the photonic density

of equations of motion for the expectation values of variousof statesy_/y. [see also Eq4.2)].
operators is obtained: In Fig. 9, the steady-state cavity photon numgeta), is
plotted as a function of Rabi driving field frequeneyfor
d P various values of the magnitude of the discontinuity in the
m(a}= - E(a>+gl(R3>, (4.1a  photonic density of stateg_ /vy, , ranging from the case of
a full PBG with no waveguide mode for the lower Mollow
sideband,y_/y, =0, to the free-space case, /vy, =1,
E(R Y= — 5~ 71(Ra) 4.10 and no dipolar dephasing. We consider negative detuning
de 3 Y2© YR ' between the atomic resonant frequency and the driving field
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FIG. 9. The steady-state mean number of photons in the cavity
(a'a)s as a function of the scaled driving field Rabi frequency
el|A,|, for negative detuning between the atomic resonant fre-
quency and the driving field frequenay,<0, in the absence of 0.5
dipolar dephasing¥,=0), and for various values of the jump in
the photonic DOSy_ /vy, . We have sek=0.1y, andg=10 « in
the calculations. o

frequencyA ,<0, a strong coupling regimg/ «=10, and a
cavity decay ratec given by «/y, =0.1. For a spontaneous
emission decay ratg, = 100y, this cavity decay rate corre-
sponds to a quality factd of 10°. For a frequency detuning
|A,|=10 "w, in the optical regime, the values of the Rabi
field frequency used in the calculations correspond to electric ~ -1;%— T A E—
field amplitudes ofE~10® V/m. For a pump field passing

through a waveguide channel of cross-sectional akea
~(1 pm)?, this corresponds to nanowatts of poW@®d]. We FIG. 10. The steady-state) dressed an¢b) bare atomic popu-
note that the steady-state microcavity intensity as a functiofation inversior{R;)s and{as)s, as functions of the scaled driving

of the intensity of the coherent pump does not show a threstield Rabi frequencys/|A,|, for negative detuning between the
old behavior. It is essentially linearly amplified, as the driv- atomic resonant frequency and the driving field frequeagy<0,

ing field intensity increases. The absence of the threshold iand for various values of the jump in the photonic DS/ .

the emission input-output characteristic is common in the . .

quantum theory of one-atom lasdk7]. Our model, based |(Ras)| [see Eq(4.13]. In free space, increasingRs)| leads

on the assumption of a strong pumping fi¢hilit, actually, 10 @ decrease af, [see Eqs(4.3) and(4.2) and the defini-
very low power, as shown aboyes, strictly speaking, inap- tion of g;]. On the other hand, in a photonic crystal, the
plicable in the threshold regime. In order to describe such #/Mp in the photonic density of states facilitates the increase
weak pumping regime, it is necessary to include nonof [(Rs)|, without affecting the coupling constant. This, in
Markovian dynamics in the atomic respor{@86]. We note  turn, leads to the enhancement of the emission in photonic
from Fig. 9 that, above threshold, light generation is stronglycrystals. In Fig. 10, we plot the steady-state dressed-state and
enhanced in photonic structures presenting large jumps in thHeare-state atomic population inversiofRs)s and (os)s
photonic density of states, relative to free space. For largEdiven by Eq.(3.110], as functions of the driving field Rabi
values of the driving field intensity and large jumps in thefrequency, for the same values of the jump in the photonic
photonic density of states, the mean number of photons iPOS as for Fig. 9. We note that for large values of the jump
the cavity field exhibits saturation, corresponding to the satuln the photonic density of states of the radiation reservoir and
ration of the atomic popu|ation inversi(ﬁeee Eq(46)] For at Iarge driVing field intensities, the dressed atomic system is
smaller jumps in the photonic density of states, as well as itrapped in the dressed ground stlﬁm and the dressed-state
free space, the mean photon number decreases with furthatomic population inversion achieves values close-tb.
increase of the intensity of the driving field. These qualitativeThis is accompanied by positive bare atomic population in-
features can be explained by noting that the intensity emittedersion. For smaller jumps in the photonic density of states,
into the cavity mode by the dressed atomic system is dete{R;)s and{o3)s approach zero. The loss of light generation
mined by two factors: the effective coupling constgptbe-  at large values of the driving field intensity for photonic
tween the dressed atomic system and the cavity mode, arsfructures with small jumps in the photonic DOS can be
the absolute value of dressed-state population inversioexplained using Eq(4.13 for the cavity field amplitude

ela,|
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FIG. 11. The steady-state mean number of photons in the cavity FIG. 12. The steady-state mean number of photons in the cavity
(a'a), in the presence of dipolar dephasing, as a function of thga'a)s as a function of the scaled cavity decay ratey, in the
scaled driving field Rabi frequency/|A,|, for negative detuning absence of dipolar dephasing, for negative detuning between the
between the atomic resonant frequency and the driving field freatomic resonant frequency and the driving field frequeagyO0,
guencyA,<0, and for various values of the jump in the photonic and for various values of the magnitude of the jump in the photonic
DOSy_/v, . We have sek=0.1y, , g=10 «, andy,=0.1y, in density of statesy_/y,. We have set/|A =2, g=vy,, and
the calculations. 7p=0 in the calculations.

(a)s. For small values of Rs)s, the source term in Eg. V. PHOTON STATISTICS
(4.139 is very small, and the field amplitude decreases in time

and reaches a very small steady-state véageial to zero in light emitted into the cavity mode of our one-atom PBG

the case of free space, whe(R;)s=0). , microchip laser, using the quantum degree of second-order
We now investigate the effect of additional dephasing O:oherenceg®(0). This one-time normalized second-order
the emission characteristics. In Fig. 11, we plot the steadyzqrelation function. defined as

state mean number of photons in the cavity field as a func-
tion of the pump intensity, when additional dephasing is
present in the system. Clearly, the dephasing processes sup- (a'%a2)
press the emission process, lowering the number of photons g®(0)= T—S
in the cavity mode, relative to the case when no dipolar (a'a)g
dephasing is presefisee Fig. 9. This deleterious effect on

the light generation is more pronounced in photonic struc- 20
tures presenting large jumps in the photonic DOS. We alsc
obtain that, although the emission is enhanced for large
jumps in the photonic DOS at large values of the driving
field intensity, the number of photons in the cavity field in

this case is comparable to that obtained in free space fo
smaller values of the pumping field intensity. However, bet- ,-
ter coherence of the cavity field may be achieved in photonic’s'®
crystals, as we show in Sec. V.

In Fig. 12, we plot the mean number of photons in the
cavity versus the scaled cavity decay rate/y,
=(w/y)I(Qyy!y), inthe absence of dipolar dephasing, and
for various jumps in the photonic DOS, fax,<0, and
el|A,]=2. Clearly, the light emission is enhanced for larger
jumps in the photonic density of states. Also, the mean num-
ber of photons in the cavity field increases with the cavity

quality factor and the spontaneous emission decay ratio gy 13 The steady-state mean number of photons in the cavity
v+ /. The effect of the additional dephasing on these feazata)_ in the presence of dipolar dephasing, as a function of the
tures is investigated in Fig. 13. We note that the emissioRcaled cavity decay rate/y, for negative detuning between the
enhancement relative to free space for large jumps in thgtomic resonant frequency and the driving field frequengy0,
photonic density of states, although reduced by the dephagnd for various values of the magnitude of the jump in the photonic
ing processes, is still preserved for hightactor microcavi-  density of statesy_/y, . We have set/|A,]=2, g=v,, and
ties. ¥p=0.1y. in the calculations.

In this section, we analyze the coherence properties of the

, (5.7)

— 1,=0
--— Y.y, =0.01
- Y./Y,=0.05
- 1., =0.5
- 1, =1

X/,

+
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can distinguish laser light from the chaotic light generated [
from a thermal source. For chaotic light?)(0)=2, while ,
g®(0)=1 for a source of coherent ligh81,16].

Generally, the moments in the definitiéf 1) of the quan-

I o - Y./,=0.05
tum degree of second-order coherence may be calculated b | ,5| P YH=05 i
numerical means, using the solution of the master equatior / e YA EL

(3.16, or approximately, by means of certain factorization &
schemes. However, our model enables an exact and simpl™* 15
analytical solution for the emitted photon statistics. The fol-
lowing equations of motion can be derived from the master
equation(3.16):

d
m(a*zaz) =—2k(a*?a?)+2g,(a*?aRs)+2g,(a'a’Ry),

(5.2 N
d ‘2 ‘2 ‘2 FIG. 14. The quantum degree of second-order coherence,
a(a aRs)=—(y1+3k/2)(a"“aRs) +gi(a” ) g?(0), as afunction of the scaled driving field Rabi frequency
el|A,|, for the case when no dipolar dephasing is present in the
+2g,(a’a)— y,(a*?a), (5.2b  system, for negative detuning between the atomic resonant fre-

guency and the driving field frequency, and for various values of the
d jump in the photonic density of stateg /y, . We have setk
a(a”) =—«(a"?)+2g,(a'Ry), (5.20  =0.1y., g=10«, andy,=0 in the calculations.

d ., . 2 + ‘2 exhibits a local maximum as a function of the intensity of the
a(a a)=—3(«x/2)(a""a)+2g,(a'aRs) +g1(a” “Ry), driving field. This maximum occurs when tH@b)
(5.20 =v./y_ (y,=0) and corresponds physically to the pump
intensity that causes the bare atomic inversjsee Egs.
d (3.11b and(4.3)]. In addition, one can shoysee the Appen-
a<a+2R3>= —(y1 1 K)(a"?Ra) +2g1(a") — yp(a*?), dix) that at this inversion threshold only the even moments
(5.2¢  of the photon distributioqa®")s are nonzero, while all odd
momentga®"*1) vanish. Physically, this local maximum in

d N . . the second-order coherence function corresponds to the ten-
&(a aRs)=—(y1tk)(a'aRs) +0g1((a)+(a'")) dency of emitting photons in paihoton bunching
In Fig. 14, we plot the quantum degree of second-order
— yy(a'a). (5.2f)  coherenceg®(0), as afunction of Rabi driving field fre-

) ) quencye, in the case when no dipolar dephasing is present
In steady state, Eq$5.2) together with Eqs(4.1) constitute i the system, and for the same values of the parameters
a closed linear system of equations. Their solution gives the, /., "A_, «, andg as for Fig. 9. For small values of the

quantum degree of second-order coherence: driving field intensity, the quantum degree of second-order
5 ) 5 ) coherence increases with the magnitude of the radiation res-
4k(4yay1t3yakt v+ Ky1) ervoir photonic DOS discontinuity, and, in fact, better coher-

2) _ 22
grO=1+(n 72)(K71+2),§)2(K+ y1)(3k+2y,)" ence occurs in free space. However, we note from Fig. 9 that

(5.3 the mean photon number in this case is small. For larger
values of the driving field intensitgwhen the mean number

9‘®(0) depends implicitly on the pump intensity through of photons is large g‘®(0) decreases with the magnitude of
y1.. We first note that, in general, the emitted field photonthe discontinuity in the photonic DOS. Moreover?)(0)
statistics is super-Poissoniag!?(0)>1. This is a direct tends to 1, as it does for coherent states, in the limit of zero
consequence of the fact thgf=y5. In the case of vanishing mode density on the lower Mollow sideband. Dipolar
mode density on the lower Mollow sidebangt(=0) and dephasing reduces the coherence of the cavity field, as shown
no dipolar dephasingy,=0), y;=, [see the definition in Fig. 15, where we plog®(0) as a function of the pump
(4.2 for ], and the cavity field photon statistics is Pois- field intensity for y,#0. We find that better coherence is
sonian. Physically, the enhancement of coherence for largabtained, once again, for large values of the discontinuity in
jump in the photonic density of modes arises because ththe photonic DOS.

bare atomic system becomes invert2d] (see also Fig. 10 In Fig. 16, we studyg®(0) as a function of the scaled
In this case, the system is similar to a conventional lasecavity decay ratex/y, for the same parameters_/vy, ,
operating well above the threshold. A,, e/|A,|, andg, as those used for Fig. 12. For all values

From the analytical expressid.3), it follows that the of the cavity decay rate, the photon statistics of the cavity
quantum degree of second-order coherence of the cavity fieliield is more Poissoniatcoherent lighk for larger disconti-
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FIG. 15. The quantum degree of second-order coherence, FIG. 17. The quantum degree of second-order coherence,
9@(0), as afunction of the scaled driving field Rabi frequency 9®(0), as afunction of the scaled cavity decay ratéy. , in the
&l|A,l, in the presence of dipolar dephasing, for negative detuningresence of dipolar dephasing, for negative detuning between the
between the atomic resonant frequency and the driving field freatomic resonant frequency and the driving field frequefgy<O,
quency, and for various values of the jump in the photonic densityand for various values of the jump in the photonic density of states
of statesy_/y,. We have set=0.1y,, g=10«, and y,  7-/v+. We have set/|A,[=2, g=y,, and y,=0.1y, in the
=0.1y, in the calculations. calculations.

nuities in the photoniC DOS. Also, we note that in the limit gate quadraturex+=|:aT+a]/2 and Xiz[aT_a]/Zi . Us-
of large cavity decay rate, the emission becomes Poissoniafhg the solution of Eqs(4.13—(4.1¢) and (5.2), we obtain
irrespective of the properties of the density of states of the
photonic reservoir. However, in this case, the number of pho-
tons in the cavity field is very smaltee Fig. 12 The influ-
ence of the dipolar dephasing on these characteristics is pre-
sented in Fig. 17, where we plgt?)(0), as afunction of the  and
scaled cavity decay rat&/y, for the same parameters
v_lv., Ay, el|A,], andg, as those used for Fig. 16 and for
¥p=0.1y, . We obtain a loss of coherence for all values of
the cavity decay rate, relative to the case when no dipolar
dephasing is present in the system. Clearly, from Eq.(5.5), the variance of one of the quadra-
In the following, we investigate the quadrature coherencdures is independent of the properties of the photonic reser-
of the cavity field, by analyzing the variances of the conju-voir and the cavity decay, and it reaches the level of the
quantum shot noise limit. In the case of emission in a full
photonic band gap and no dipolar dephasing= vy,), the

4g2

ky1(k+2y1) 64

1
(AX)P)s=7+(¥i= 7))

1
(AX)D)s=3. (5.5

251 T T T T T T T T
it

1 — z-gim variances of both conjugate quadratures are characterized by
T & - 005 the quantum shot noise limit. That is, the cavity field is char-
N e 1,205 acterized by quadrature coherence.
2 e YY1

VI. CONCLUSIONS

We studied the emission properties, photon statistics, and
quadrature coherence properties of a one-atom laser with co-
herent pumping in photonic crystals. We considered the case
when the cavity frequency is tuned close to the Mollow cen-
tral component. In the limit of strong pumping, we derived
analytical expressions for the amplitude, mean photon num-
ber, quantum degree of second-order coherence, and high-
order moments of the cavity field. We showed that, for a

FIG. 16. The quantum degree of second-order coherencdNotonic density of states of the photonic radiation reservoir

g@(0), as afunction of the scaled cavity decay ratéy. , in the

presenting a discontinuity, the fluorescent intensity emerging

absence of dipolar dephasing, for negative detuning between tHéOm the cavity is strongly enhanced and more coherent rela-
atomic resonant frequency and the driving field frequeaigyc0,  tive to the corresponding cavity in a free-space reservoir. The
and for various values of the jump in the photonic density of stateg/ariance of one of the quadratures is characterized by the
v_Ilvy.. We have set/|A,/=2 andg=y, in the calculations. guantum shot noise limit, independently of the photonic res-
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ervoir and the cavity decay. If the microcavity resonancecases it vanishes, while the intensity of the cavity field,

occurs in a full photonic band gap/{=v,), the variance of (a'a), may be very large for the strong coupling limit. In

both conjugate quadratures is characterized by the quantuthis section, we discuss the high-order mome % and

shot noise limit. Physically, this could be realized in a single-associated off-diagonal cavity density matrix elements

mode waveguide channel in a PBG. Also, under certain conp(®) . for these cases. The following equations of motion

ditions, only the even momenta®") can be nonzero, while can be derived from the master equatiGrL6):

the odd momentga"*1) are equal to zero. This suggests

that only the even off-diagonal density matrix elements d

p'& ., are nonzero. —(@am=-n
Our study corresponds to the case when the atomic sys- dt

tem is pumped by a strong coherent laser field. In the context

of a submicrometer scale waveguide channel in a PBGd K " 1 .

strong fields can be realized with very low pump power ong;(8"Rs)=—| y1+m| 5 ||(a"Rs)+mg(a™ )~ y,(a").

the scale of nanowatts. By using a strong laser field, it is (A2)

possible to drive the Mollow spectral components of reso-

nance fluorescence away from the singularity of the photo

density of states, such that over the width of the individua:'&t. the bare atomic population inversion threshojg=0. In

: - : is case, the relation between steady-state vala®s and
sidebands the density of states is smooth. It would be o’f_‘an2>s is found from Egs(A1) and (A2) as

considerable interest to extend this model to include bot
weak and strong pumping fields. For weaker fields, the sin-

gularity in the photonic density of states at the photonic band . 292 (n— 1)(a" ?)g

edge may lead to non-Markovian effects in the atom-— (a >s=T 2y, +(n—1)x° (A3)
radiation reservoir interaction. In this case, the temporal evo-

lution of the atom—photonic reservoir system requires that N . .

we generalize the equations of motion for the atomic vari-1€re, for simplicity, we have considered the cavity frequency
ables to a set of integro-differential equations, appropriatdUned to resonance with the diving field frtnaquency.

for a photonic band-gap material. Given these clear distin- USiNg Eqs.(A2) and(3.6), we can find(a")s as

guishable features resulting from photonic crystal architec-

ture on one-atom properties, it is likely that even more dra- gan ” om—1

matic effects will be observed for a large collection Mf (a®M=(a’n)=—"|] —————, (A%
atoms(quantum dotsplaced within the dielectric defect. Our k"m=1 vt (2m=1)k

results clearly illustrate the ability to “engineer” quantum

optical characteristics in coherent atom-radiation interactions (a2l =(a*2n+ly 0. (A5)
through suitable photonic crystal architectures.

(a"+g;n(a" 'Ry), (A1)

K
2

Clearly, only the even momenta®"); are nonzero, while
the odd momentga"*1) vanish. This suggests that the

In Sec. lll we derived the expression for the steady-statelensity matrix of the cavity fielp® has only nonzero ele-
amplitude of the cavity fielda)s. We note that in certain mentspﬁf,)mi2n (2n<m).
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