
PHYSICAL REVIEW A 69, 013816 ~2004!
Theory of a one-atom laser in a photonic band-gap microchip

Lucia Florescu, Sajeev John, Tran Quang, and Rongzhou Wang
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 28 September 2003; published 26 January 2004!

We present a quantum theory of a coherently pumped two-level atom in a photonic band gap~PBG!, coupled
to both a multimode waveguide channel and a high-quality microcavity embedded within a photonic crystal.
One mode is engineered to exhibit a sharp cutoff within the PBG, leading to a large discontinuity in the local
photon density of states near the atom, and the cavity field mode is resonant with the central component of the
Mollow spectrum of atomic resonance fluorescence. Another mode of the waveguide channel is used to
propagate the pump beam. We derive analytical expressions for the optical amplitude, intensity, second-order
correlation functions, and conjugate quadrature variances for the light emitted by the atom into the microcavity.
The quantum degree of second-order coherence in the cavity field reveals enhanced, inversionless, nearly
coherent light generation when the photon density of states jump between the Mollow spectral components is
large. The cavity field characteristics are highly distinct from that of a corresponding high-Q cavity in ordinary
vacuum. In the case of a vanishing photon density of states on the lower Mollow sideband and no dipolar
dephasing, the emitted photon statistics is Poissonian, and the cavity field exhibits quadrature coherence.

DOI: 10.1103/PhysRevA.69.013816 PACS number~s!: 42.55.Tv, 42.50.2p
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I. INTRODUCTION

Photonic crystals~PCs! are periodic dielectric structure
which can prohibit light propagation over a continuous ran
of frequencies, irrespective of the direction of propagati
The possibility of achieving photon localization@1# and pho-
tonic band gaps~PBGs! @2,3# has been a driving force behin
the synthesis of these microstructures. This, in turn, has
vided a compelling starting point for research of both fund
mental and technological importance.

One of the key features that distinguishes the photo
radiation reservoir associated with a PBG material from
free space counterpart is that the photonic density of st
~DOS! within or near the PBG can nearly vanish or exhi
discontinuous changes as a function of frequency with
propriate engineering. This leads to interesting optical p
nomena, such as photon-atom bound states@4#, fractionalized
single-atom inversion@5#, optical bistability and switching in
multiatom systems@6#, possible modification of Plank black
body radiation in microstructured metals@7#, and coherent
control of spontaneous emission through quantum inter
ence@8#.

Recent advances in the fabrication of photonic crystals@9#
have been accompanied by studies of lasing in these ma
als @10#. On the other hand, a microlaser with a single at
or a quantum dot interacting with the quantized field o
high-Q microcavity represents a unique tool for the inves
gation of quantum electrodynamic effects. In free space
the optical domain, high-Q optical cavities have allowed in
vestigations of the vacuum Rabi splitting@11#, photon anti-
bunching @12#, and conditional phase shifts for quantu
logic gates@13#. In addition, the realization of an optica
laser containing only a single active atom has been repo
@14#. In such a system, it is possible to study the las
process at the quantum level and identify features not rea
distinguished in conventional laser systems. The one-a
laser theory in free space@15,16# has been developed for th
case of weak coupling, in which the loss rateg associated
1050-2947/2004/69~1!/013816~13!/$22.50 69 0138
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with the spontaneous emission and cavity decay ratek are
much larger than the atom-cavity~coupling! frequency scale
g, describing reversible evolution in the interaction of t
atom with the cavity mode. The theory of the free spa
one-atom laser with strong coupling has been develo
@17–19# mainly by numerical means.

In this paper we present a detailed quantum theory of
unique features of a one-atom laser in an engineered P
microchip. We study the effect of coherent pumping nea
discontinuous photonic DOS on the quantum features of
ser emission. Using a secular approximation@20#, our model
yields an analytical solution for the emission intensity a
coherence properties. In particular, we demonstrate str
enhancement of the cavity field~relative to free space! and
enhanced coherence, resulting from the radiation reservo
the PBG microchip. We also present a specific photonic cr
tal architecture for the practical realization of this syste
This consists of a quantum dot embedded in a dielectric
crocavity placed within a multimode waveguide channel in
PBG microchip.

The outline of this paper is as follows. In Sec. II, w
present the photonic crystal architecture relevant for the s
tem we study. In Sec. III, we present the model Hamilton
and derive the master equation for the atom-cavity sys
within coherent pumping. In Sec. IV, we investigate the
fect of the magnitude of the photonic DOS discontinuity a
microcavity quality factor on the emission amplitude a
intensity. The coherence properties of the emission are
rived in Sec. V. Finally, in Sec. VI, we discuss the results a
possible generalizations of the model developed here.

II. PHOTONIC CRYSTAL ARCHITECTURE
FOR A ONE-ATOM MICROLASER

We begin by demonstrating how photonic crystal~defect
mode! engineering can be used to physically realize
model Hamiltonian we present in this paper for the one-at
laser. The fundamental challenge is to obtain strong coup
©2004 The American Physical Society16-1
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within the PBG of the atom with an external pump laserand
a high-quality-factor microcavity. While the first conditio
can be satisfied by replacing the atom (Q dot! within the
waveguide channel of a three-dimensional~3D! PBG mate-
rial, strong coupling of the atom to a microcavity requir
that the microcavity is also in close proximity to the wav
guide. In general, this may lead also to direct, strong c
pling between the microcavity and the waveguide, with
concomitant degradation of theQ factor of the microcavity.
In our photonic crystal architecture, we overcome this pr
lem by designing the symmetry of the electromagne
modes of the waveguide and the microcavity, so that
direct coupling is eliminated by orthogonality. In this wa
both the atom-microcavity coupling and the atom-wavegu
coupling can be strong, whereas the direct microcav
waveguide coupling is suppressed. In order to achieve a
tor of 100 jump in the reservoir density of states, a thr
dimensional PBG architecture is useful. A general techni
for embedding the waveguides and microcavity in a 3D P
material using an intercalated two-dimensional microc
layer has been presented elsewhere@21#. For simplicity of
illustration, we consider below a purely 2D photonic crys
with the understanding that the 2D architecture is embed
in a 2D-3D heterostructure@21#.

In Fig. 1, we depict the top view of a 2D microchip lay
that is sandwiched between suitable 3D PBG cladding lay
above and below. The 2D microchip consists of a squ
lattice of cylindrical dielectric rods in an air backgroun
Two missing rows of these rods represent a two-mode wa
guide channel. The rods with elliptical cross section with
this waveguide channel represent a microcavity resona
We consider a quantum dot embedded within one of th
elliptical defect rods. There are two kinds of electromagne
modes in 2D photonic crystals. One is theE-polarization
mode, i.e., the electric field is parallel to the rods. The ot

FIG. 1. The configuration of the hybrid structure. Two lines
rods ~parallel to they axis! are removed from the 2D photoni
crystal to form a two-mode waveguide. In the center of the wa
guide, two identical elliptic rods are introduced as defect rods.
major axes of these two elliptic rods are parallel to the wavegu
direction. The semimajor axis isr y50.4a and the semiminor axis is
r x50.2a. The distance between two elliptic rods~from center to
center! is 0.5a.
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is theH-polarization mode, where the magnetic field is p
allel to the rods. For simplicity, only theE-polarization mode
is considered here. Both the plane wave expansion me
@22# and the supercell method@23# are used to calculate th
band structure and the electric field pattern of the relev
modes. A 2D photonic crystal with a square lattice~lattice
constanta) and circular dielectric rods~radiusr 050.17a) is
used. The dielectric constant of the rods is 11.9. This str
ture has a band gap in the range~0.308–0.453! 2pc/a. In
our expansion, plane wave wave vectors are chosen by
condition uGu<4.0(2p/a), whereuGu is a reciprocal lattice
vector.

When one line of rods is removed from the 2D photon
crystal, a waveguide is formed with its mode frequency
side the photonic band gap@24#. Usually, this waveguide
mode is a symmetric mode, i.e., the electric field pattern
a mirror symmetry about the axis~center line! of propaga-
tion. If two lines of rods are removed, there are two wav
guide modes inside the band gap. One mode is symme
and the other is antisymmetric with respect to the wavegu
axis ~see Fig. 2!. The antisymmetric mode usually has high
energy than the symmetric one because the antisymm
mode has one node in the field pattern while the symme
one has none. The field pattern of symmetric and antisy
metric waveguide modes~for the E-polarized modes of the
2D photonic crystal depicted in Fig. 1! is plotted in Fig. 3. In

-
e
e

FIG. 2. The band structure of the waveguide structure formed
removing two line of rods from the 2D photonic crystal, which h
a band gap in the range~0.308–0.453! 2pc/a. Inside the band gap
the lower waveguide mode is symmetric about the center line of
waveguide, while the higher waveguide mode is antisymmetric

FIG. 3. The field patterns of waveguide modes. Thex andy axes
are in units of lattice constanta. The solid lines are dielectric rods
~a! The real part of the electric field of the symmetric wavegui
mode whenky50.3(2p/a); ~b! the imaginary part of the electric
field of the antisymmetric waveguide mode whenky50. The direc-
tion of propagation is along they axis.
6-2
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THEORY OF A ONE-ATOM LASER IN A PHOTONIC . . . PHYSICAL REVIEW A 69, 013816 ~2004!
the calculations of the waveguide modes, the supercell c
tains 1031 unit cells of the square lattice, where thex axis is
normal to the waveguide direction and they axis is in the
waveguide direction.

Near the cutoff frequency of the antisymmetric mode,
local electromagnetic density of states~LDOS! in the vicin-
ity of the waveguide channel exhibits a peak whose heigh
limited by the overall length~in the y direction! of the
sample. For an infinite system, this LDOS becomes a squ
root singularity. In addition to this peak, the LDOS has
small background contribution from the symmetric mod
which has a large group velocity and nearly linear dispers
near the cutoff frequency of the antisymmetric mode.
now describe the introduction of an additional microcav
defect near the waveguide, with an isolated, localized m
of frequency near the waveguide cutoff.

If only one single rod~instead of one line of rods! is
removed or changed, a localized defect mode~microcavity
mode! can be created within the PBG@25#. When the rod is
replaced by a rod larger than the original ones~dielectric
defect!, two degenerate modes can be created. The local
electric field pattern has a dipolar character, and these
degenerate modes correspond to dipoles along two per
dicular directions~denoted↑ and →). These defect mode
form sharp peaks~of width inversely proportional to theirQ
factor! in the LDOS. However, the naive introduction of
defect near our waveguide structure will, in general, disr
the band structure of the waveguide mode, due to direct c
pling between modes with the same symmetry. Since
dipole mode↑ is symmetric, it will strongly couple to the
symmetric waveguide mode, leading to rapid decay of rad
tion ~low Q) from the microcavity. To avoid direct couplin
between the waveguide mode and the microcavity mode
can engineer the defect rods to support only one antisymm
ric localized mode inside the band gap. This is realized
low by introducing two defect rods of suitable shape.

In general, if two neighboring rods are replaced by larg
defect rods in a 2D photonic crystal, four defect modes w
be formed in the band gap~Fig. 4!. These two defect rods
have the same radiusr 50.3a; and the supercell has 1034
unit cells of the square lattice. The electric field pattern
these defect modes is plotted in Fig. 5. These modes

FIG. 4. The band structure of the defect structure formed
changing two nearby rods of the 2D photonic crystal into lar
rods. The radius of the defect rods is 0.3a, wherea is the square
lattice constant. The solid lines with various symbols are de
modes.
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composed of two dipole patterns arranged in the follow
way ~frequencies from low to high!: →←, ↑↑, ↑↓, and
←←. Among these four defect modes, the mode with fie
pattern↑↓ can provide a high-Q cavity mode if centered on
the waveguide axis. This mode is antisymmetric about
axis of the waveguide, so it will not couple to the symmet
waveguide mode. Moreover, this mode is antisymme
about the line connecting the rod centers. Therefore, it als
orthogonal to the antisymmetric waveguide mode~at ky
50) if the line connecting the rod centers is perpendicula
the waveguide direction. As a result, this mode can
brought to the vicinity of the cutoff frequency of the ant
symmetric waveguide mode~which occurs atky50) without
disturbing the LDOS discontinuity.

In order to remove spurious defect modes from the ba
gap, both the shape and the position of the defect rods ca
engineered. Using elliptic defect rods, in place of circu
defect rods, selects modes with dipole along the major a
of the ellipse. For sufficient ellipticity, two modes with d
pole along the minor axis can be removed from the band g
In this case, only two modes with electric field pattern↑↑
and↑↓ remain in the PBG. To further separate these rema
ing defect modes, the distance between the elliptic rods
be reduced. At an appropriate separation, only the desired↑↓
defect mode remains inside the bandgap.

The desired microlaser architecture is shown in Fig.
Two columns of rods are removed from the 2D photon
crystal to form a waveguide and two identical elliptic ro
are placed on either side of the waveguide axis~within the
waveguide!. The major axes of these two elliptic rods a
parallel to each other, as well as parallel to the wavegu
direction. The semimajor axis isr y and the semiminor axis is
r x , with r y :r x52:1. Thedistance between the centers of t
two defect rods is chosen to be 0.1a12r x . When the
semiminor axisr x is around 0.2a, only one defect mode is
inside the band gap, and this mode is near the cutoff
quency of the antisymmetric waveguide mode.

In Fig. 6, the band structure of the system containing b
waveguide and microcavity is plotted. The size of the def
rods decreases in Fig. 6~a! to Fig. 6~c! from r x50.199a to

y
r

t
FIG. 5. The electric field pattern of the defect modes whenk

50. The solid lines are dielectric rods.~a! The→← mode;~b! the
↑↑ mode;~c! the ↑↓ mode; and~d! the ←← mode.
6-3



ro

es

y
fe
s
et

o
he

the
-

he
me

it
vity
–

e-
ff.

ting
mic
f the

has

nd

y
-
nal

ot
nc
ic
av

FLORESCUet al. PHYSICAL REVIEW A 69, 013816 ~2004!
r x50.197a. The supercell contains 10315 unit cells of the
square lattice. The symmetric waveguide mode goes f
0.356(2pc/a) ~at ky50) to 0.368(2pc/a) @at ky
50.033(2p/a)]. The antisymmetric waveguide mode go
from 0.363(2pc/a) ~at ky50) to 0.3642(2pc/a) @at ky
50.033(2p/a)]. The remaining mode is the microcavit
mode whose frequency varies with the size of the de
rods. Whenr x50.197a, the microcavity mode frequency i
very close to that of the cutoff frequency of the antisymm
ric waveguide mode. However, as a result of symmetries
each mode, the microcavity does not couple directly to eit

FIG. 6. The band structure of the one-atom, PBG laser with b
waveguide and microcavity. The solid lines indicate the freque
of the cavity modes whenk50. The dashed lines are symmetr
waveguide modes, and the dotted lines are antisymmetric w
guide modes.~a! The semiminor axisr x50.199a; ~b! the semimi-
nor axisr x50.198a; and ~c! the semiminor axisr x50.197a.
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waveguide mode and retains a highQ factor.
The electric field patterns of both the cavity mode and

antisymmetric waveguide mode@with parameters corre
sponding to Fig. 6~c!# are plotted in Fig. 7. The electric field
of the cavity mode is localized around the defect; while t
waveguide mode spreads over the waveguide with so
fields concentrated on the center of defect rods. TheQ dot
can be placed in one of the elliptic defect rods, where
couples strongly to both the waveguide mode and the ca
mode. We now consider a model Hamiltonian for atom
radiation field interactions near this microcavity in the fr
quency range of the antisymmetric waveguide mode cuto

III. DRESSED-STATE MASTER EQUATION

We consider a single two-level atom~quantum dot!
strongly coupled to a high-Q microcavity described above
and driven by a coherent external laser field propaga
through the symmetric waveguide mode. The excited ato
system decays by spontaneous emission to the modes o
radiation reservoir~in our case, the waveguide modes! asso-
ciated with the engineered photonic crystal. The atom
excited stateu2&, ground stateu1&, and transition frequency
va . The coupling constant between the atomic transition a
the microcavity mode is denoted byg. The atom is driven
near resonance by a coherent external field at a frequencvL
and Rabi frequency~intensity! «. The Rabi frequency char
acterizes the strength of the driving field, and is proportio
to the product of the transition dipole momentd12 and the

h
y

e-
r
-
e

FIG. 7. The electric field pat-
tern of the one-atom, PBG lase
with both waveguide and micro
cavity. The parameters are th
same as those in Fig. 6~c!. The
wave vectork50. ~a! The cavity
mode and ~b! the waveguide
mode.
6-4
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THEORY OF A ONE-ATOM LASER IN A PHOTONIC . . . PHYSICAL REVIEW A 69, 013816 ~2004!
driving field amplitudeE («5d12uEu/\). For simplicity, we
treat the driving external field classically. The Hamiltoni
of the system in the interaction picture is@26#

H5H01H11Hdephase1Hdamping. ~3.1!

Here,

H05\Dca
†a1

1

2
\Das31\e~s121s21!1\(

l
Dlal

†al ,

~3.2!

and the individual terms~in the order they appear! describe
the unperturbed microcavity field, the atomic system, the
teraction between the atomic system and the monochrom
pump laser field, and the remainder of the radiation reser
of the photonic crystal~responsible for the radiative decay
the atom!. In our case, this reservoir consists of the wav
guide modes within the PBG. The interaction Hamiltonian

H15 i\g~a†s122s21a!1 i\(
l

gl~al
†s122s21al!.

~3.3!

The individual terms~in the order they appear! describe the
interaction between the atomic system and the microca
field, and the interaction between the atomic system and
remainder of the photonic crystal radiation reservoir. Herea
anda† are the cavity-mode annihilation and creation ope
tors. s i j are the bare atomic operators,s i j 5u i &^ j u ( i , j
51,2), ands35s222s11 describes the bare atomic inve
sion. The coupling constant between the atom and the ca
mode is given byg5(vad21/\)(\/2e0vcV)1/2e•ud , where
d12 andud are the absolute value and the unit vector of
atomic dipole moment,V is the volume of the cavity mode,e
is the polarization mode of the cavity radiation field, ande0
is the dielectric constant. In the optical regime, dipole m
ments of@27# d21'10229 C m, and a microcavity mode vol
ume of V'(1 mm)3 yield g'1025va . al and al

† are the
photonic crystal radiation reservoir annihilation and creat
operators.Da5va2vL , Dc5vc2vL , and Dl5vl2vL ,
are the detuning of the atomic resonance frequencyva , of
the cavity-mode frequencyvc , and of the frequencyvl of a
model of the photonic crystal radiation reservoir.gl is the
coupling constant between the atom and the model of the
radiation field of the photonic reservoir. The relevant fr
quencies for our study, and their relative position are p
sented in Fig. 8.

One of the unique features of the quantum electrodyn
ics ~QED! in a photonic crystal is the possibility to simulta
neously realize extremely small microcavity mode volum
and maintain very high cavityQ factors. For instance, in a
2D photonic crystal, a microlaser with a cavity volume
0.03mm3 has already been demonstrated@28#. Within a 3D
PBG, with complete light localization@1,3#, there is no fun-
damental upper bound to the microcavityQ factor. In our
case, theQ factor is determined by the degree of coupling
the engineered waveguide modes within the PBG and p
sible leakage of light from the microcavity in the vertic
direction ~surface emitting laser!.
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The HamiltonianHdephasedescribes additional dephasin
interactions, which may arise from atomic collisions a
scattering of phonons from the impurity atoms, if the atom
embedded in the solid part of the dielectric material. W
assume for simplicity that the phonon DOS is broad a
displays no sharp features. In this case, the dephasing pa
the master equation for the density operatorx of the atom-
cavity–reservoir system can be written as@29#

S ]x

]t D
dephase

5gp~s3xs32x!, ~3.4!

wheregp is a phenomenological dephasing rate.
The HamiltonianHdamping describes the damping of th

cavity field. In our case, this may arise from infinitesim
asymmetry of the defect architecture or disorder in the wa
guide channel~caused by the manufacturing process! that
allow weak direct coupling between the waveguide mo
and the microcavity mode within the PBG. Also, a sm
amount of light can be emitted in the vertical (z direction! by
making the thickness of the 3D PBG cladding layers sma
in the vicinity of the microcavity. The contribution of thi
type of damping to the master equation is expressed as

S ]x

]t D
damping

5
k

2
@2ara†2a†ax2ra†a#. ~3.5!

Here,k is the phenomenological cavity decay rate. The c
ity quality factor is then defined asQ[v/k.

The radiative part of the master equation for the dens
operatorx of the system has the form

S ]x

]t D
rad

5
i

\
@H,x#. ~3.6!

FIG. 8. The relative positions of the relevant frequencies c
sidered in our study.va , vL , and vc are the atomic transition
frequency, the frequency of the coherent pump field, and the mi
cavity field frequency, respectively.v62V describe the sideband
components of the Mollow spectrum (V is the generalized Rab
frequency!, andvb is the photonic DOS band edge frequency.
6-5
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FLORESCUet al. PHYSICAL REVIEW A 69, 013816 ~2004!
Equation~3.4! is written in the basis$u i &% i 51,2, of bare
atomic states. It is useful to use the dressed-state picture
introducing the states$u ĩ &% i 51,2 @6,18# of the atomic system
dressed by the driving field,

u1&̃5cu1&2su2&, ~3.7!

u2&̃5su1&2cu2&. ~3.8!

Here, c[cos(f), s[sin(f), and f is the rotation angle,
which belongs in the interval@0, p# and is defined by

cos2f5
1

2 S 11
Da

V D , ~3.9!

and

V5~4e21Da
2!1/2, ~3.10!

is the generalized Rabi frequency.
The atom–applied field part of the HamiltonianH0 can be

diagonalized using the transformation

s125
1

2
sin~2f!R32sin2fR211cos2fR12, ~3.11a!

s222s115cos~2f!R32sin~2f!~R121R21!,
~3.11b!

R35R222R11, ~3.11c!

where Ri j 5u i &̃^ j ũ are the dressed-state atomic operato
This leads to the dressed-state Hamiltonian

H05\VR31\Dca
†a1\(

l
Dlal

†al . ~3.12!

In the dressed-state basis, the bare atomic operatorss12,
s21, and s3 in the interaction Hamiltonian,H1, and
(]x/]t)dephaseare replaced by the expressions~3.11a! and
~3.11b!. Further, we define the time-dependent interact
picture Hamiltonian H̃1(t)5U1(t)H1U(t), where U(t)
5exp(2iH0t/\). In this interaction picture, the interactio
Hamiltonian takes the form
01381
by

.

n

H15 i\g~sca†R3eiDct1c2a†R12e
i (Dc22V)t

2s2a†R21e
i (Dc12V)t!1 i\(

l
gl~scal

†R3eiDlt

1c2al
†R12e

i (Dl22V)2s2al
1R21e

i (Dl12V)!1H.c.

~3.13!

Here and below, we drop the tilde on the interaction pictu
operators, for the sake of notational simplicity.

The interaction-picture density operatorx obeys a master
equation whose radiative part is similar to Eq.~3.6!, where
the total HamiltonianH is replaced by the interaction-pictur
Hamiltonian H1. This equation is formally integrated, an
the solution is replaced into the right-hand side of the eq
tion. Further, the master equation for the reduced den
operator of the system of atom plus cavity,r5TrRx ~here,
TrR denotes a trace over the reservoir variables!, is obtained
from the resulting master equation by tracing over the p
tonic crystal radiation reservoir variables@29#:

S ]r

]t D
rad

52
1

\2E0

t

dt8TrR$@H1~ t !,@H1~ t8!,x~ t8!##%.

~3.14!

In the Born approximation@29#, the operatorx(t8) in Eq.
~3.14! is replaced byr(t8)R0, whereR0 is an initial reser-
voir density operator. This corresponds to the second-o
perturbation theory in the interaction between the atom
reservoir. It assumes that changes in the reservoir as a r
of atom-reservoir interaction are negligible. Further, we
sume that the photonic density of states at the atomic
quency exhibits a step discontinuity, so that the Mollow co
ponents of the fluorescent scattering spectrum@29,5# at
frequenciesvL , vL22V, andvL12V experience strongly
different mode densities. For simplicity, we assume th
while singular at one frequency, the photonic density
modes is constant over the spectral regions surrounding
dressed-state resonant frequenciesvL , vL22V, and vL
12V. This allows @29# for a Markovian treatment of the
atom-radiation reservoir system. The Markovian approxim
tion neglects memory effects and replacesr(t8) by r(t). In
the Born-Markov approximation, the master equation for
system atom–cavity field, obtained from Eqs.~3.14!, ~3.4!,
and ~3.5!, is
and
des of the

cavity
]r

]t
5g$sc@a†R3eiDct2R3ae2 iDct,r#1c2@a†R12e

i (Dc22V)t2R21ae2 i (Dc22V)t,r#

2s2@a†R21e
i (Dc12V)t2R12ae2 i (Dc12V)t,r#%1H A0

2
@R3rR32r#1

A2

2
@R21rR122R12R21r#

1
A1

2
@R12rR212R21R12r#1H.c.J 1

k

2
@2ara†2a†ar2ra†a#. ~3.15!

The first group of terms in the master equation~3.15! correspond to the interaction between the dressed atomic system
the cavity mode, the second group of terms describes the spontaneous emission of the dressed atom into the mo
photonic crystal radiation reservoir, and the last group of terms describes the damping of the cavity mode via
6-6
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THEORY OF A ONE-ATOM LASER IN A PHOTONIC . . . PHYSICAL REVIEW A 69, 013816 ~2004!
decay. Here, we assume that the cavity and the phot
reservoirs are independent@29#. In this case, the spontaneou
emission is described by the same type of terms as in
case when no cavity is present in the system, derived in
@6#. In Eq. ~3.15!, A05g0s2c21gp(c22s2), A25g2s4

14gps2c2, and A15g1c414gps2c2, and spontaneou
emission decay rates g052p(lgl

2d(vl2vL), g2

52p(lgl
2d(vl2vL12V), and g152p(lgl

2d(vl2vL

22V) are proportional to the density of modes at t
dressed-state transition frequencies. In deriving the spo
neous emission terms in Eq.~3.15!, we have used a secula
approximation@20,6# valid for strong applied laser field o
large detunings between the atomic and the laser frequen
This approximation is based on the assumption that the g
eralized Rabi frequencyV is much larger than the deca
rates g0 , g1 , and g2 (V@g0 ,g1 ,g2), and consists in
neglecting rapidly oscillating terms at frequencies 2V and
4V.

We focus our study on the case when the cavity field
tuned on resonance with the central component of the M
low spectrum. AssumingV@k, we can use the secular ap
proximation to ignore the rapidly oscillating terms at fr
quencies 2V and 4V in master equation~3.15!. The master
equation~3.15! reduces in this case to

]r

]t
5g1@~a†2a!R3 ,r#1H A0

2
@R3rR32r#1

A2

2
@R21rR12

2R12R21r#1
A1

2
@R12rR212R21R12r#1H.c.J

1
k

2
@2ara†2a†ar2ra†a#. ~3.16!

Here,g1[gcs is the ‘‘effective’’ coupling constant.
In what follows, we employ the master equation~3.16! to

derive the properties of the one-atom laser emission in
engineered vacuum of a PBG material.

IV. MICROCAVITY FIELD AMPLITUDE AND INTENSITY

In this section we investigate the influence of the prop
ties of the engineered radiation reservoir on the emitted c
ity field. The master equation~3.16! enables the derivation o
equations of motion for expectation values of atomic a
cavity field operators. These expectation values are defi
as^•••&5Tr(r•••). Using the fact thata, a†, R12, R21, and
R3 are time-independent Schro¨dinger operators, the equa
tions of motion for their expectation values follow from
]r/]t in the master equation~3.16!. The following closed set
of equations of motion for the expectation values of vario
operators is obtained:

d

dt
^a&52

k

2
^a&1g1^R3&, ~4.1a!

d

dt
^R3&52g22g1^R3&, ~4.1b!
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d

dt
^a†a&52k^a†a&1g1^R3a†&1g1^R3a&, ~4.1c!

d

dt
^R3a&52~g11k/2!^R3a&1g12g2^a&, ~4.1d!

whereg1,2 are defined by

g15
g1c41g2s4

2
14gps2c2, ~4.2a!

g25
g1c42g2s4

2
. ~4.2b!

In the steady-state regime, the dressed-state atomic pop
tion inversion̂ R3&s , the cavity field amplitudêa&s , and the
mean number of photonŝa†a&s are obtained as

^R3&s52
g2

g1
, ~4.3!

^a&s5^a†&s* 52
2g1

k

g2

g1
, ~4.4!

^a†a&s5
4g1

2

k2

~kg112g2
2!

g1~k12g1!
. ~4.5!

The properties of the cavity field can be studied using
expressions~4.4! and~4.5! for the cavity field amplitudêa&s
and the mean photon number^a†a&s . We note that light
generation into the defect mode does not require posi
bare atomic population inversion. In our model, the stea
state mean number of photons in the cavity field,^a†a&s ,
can be expressed in terms of the square of the bare ato
population inversion̂ s3&s , rather than as a linear functio
of ^s3&s :

^a†a&s5
4g1

2

k2~k12g1!
Fk1

g2g1

2g2,0
2 ^s3&s

2G . ~4.6!

Here, we have used Eqs.~3.11b!, and ~4.1!–~4.5!. g is the
spontaneous emission rate in free space, andg2,05(g/2)(c4

2s4) is the free-space value ofg2. Clearly, strong intensity
of the cavity field may be achieved for negative bare atom
population inversion, suggestive of inversionless light ge
eration. We also note from expression~4.5! that the intensity
of the cavity field increases with increasingg1 /k and de-
pends on the size of the discontinuity on the photonic den
of statesg2 /g1 @see also Eq.~4.2!#.

In Fig. 9, the steady-state cavity photon number^a†a&s is
plotted as a function of Rabi driving field frequency« for
various values of the magnitude of the discontinuity in t
photonic density of statesg2 /g1 , ranging from the case o
a full PBG with no waveguide mode for the lower Mollow
sideband,g2 /g150, to the free-space case,g2 /g151,
and no dipolar dephasing. We consider negative detun
between the atomic resonant frequency and the driving fi
6-7
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frequencyDa,0, a strong coupling regimeg/k510, and a
cavity decay ratek given byk/g150.1. For a spontaneou
emission decay rateg15100g, this cavity decay rate corre
sponds to a quality factorQ of 106. For a frequency detuning
uDau'1027v, in the optical regime, the values of the Ra
field frequency used in the calculations correspond to elec
field amplitudes ofE'103 V/m. For a pump field passing
through a waveguide channel of cross-sectional areaA
'(1 mm)2, this corresponds to nanowatts of power@30#. We
note that the steady-state microcavity intensity as a func
of the intensity of the coherent pump does not show a thre
old behavior. It is essentially linearly amplified, as the dr
ing field intensity increases. The absence of the threshol
the emission input-output characteristic is common in
quantum theory of one-atom lasers@17#. Our model, based
on the assumption of a strong pumping field~but, actually,
very low power, as shown above!, is, strictly speaking, inap-
plicable in the threshold regime. In order to describe suc
weak pumping regime, it is necessary to include no
Markovian dynamics in the atomic response@26#. We note
from Fig. 9 that, above threshold, light generation is stron
enhanced in photonic structures presenting large jumps in
photonic density of states, relative to free space. For la
values of the driving field intensity and large jumps in t
photonic density of states, the mean number of photon
the cavity field exhibits saturation, corresponding to the sa
ration of the atomic population inversion@see Eq.~4.6!#. For
smaller jumps in the photonic density of states, as well a
free space, the mean photon number decreases with fu
increase of the intensity of the driving field. These qualitat
features can be explained by noting that the intensity emi
into the cavity mode by the dressed atomic system is de
mined by two factors: the effective coupling constantg1 be-
tween the dressed atomic system and the cavity mode,
the absolute value of dressed-state population inver

FIG. 9. The steady-state mean number of photons in the ca
^a†a&s as a function of the scaled driving field Rabi frequen
«/uDau, for negative detuning between the atomic resonant
quency and the driving field frequencyDa,0, in the absence o
dipolar dephasing (gp50), and for various values of the jump i
the photonic DOSg2 /g1 . We have setk50.1g1 andg510 k in
the calculations.
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u^R3&u @see Eq.~4.1a!#. In free space, increasingu^R3&u leads
to a decrease ofg1 @see Eqs.~4.3! and ~4.2! and the defini-
tion of g1]. On the other hand, in a photonic crystal, th
jump in the photonic density of states facilitates the incre
of u^R3&u, without affecting the coupling constant. This,
turn, leads to the enhancement of the emission in photo
crystals. In Fig. 10, we plot the steady-state dressed-state
bare-state atomic population inversion,^R3&s and ^s3&s
@given by Eq.~3.11b!#, as functions of the driving field Rab
frequency, for the same values of the jump in the photo
DOS as for Fig. 9. We note that for large values of the jum
in the photonic density of states of the radiation reservoir a
at large driving field intensities, the dressed atomic system
trapped in the dressed ground stateu1̃&, and the dressed-stat
atomic population inversion achieves values close to21.
This is accompanied by positive bare atomic population
version. For smaller jumps in the photonic density of stat
^R3&s and ^s3&s approach zero. The loss of light generatio
at large values of the driving field intensity for photon
structures with small jumps in the photonic DOS can
explained using Eq.~4.1a! for the cavity field amplitude

ty

-

FIG. 10. The steady-state~a! dressed and~b! bare atomic popu-
lation inversion̂ R3&s and^s3&s , as functions of the scaled driving
field Rabi frequency«/uDau, for negative detuning between th
atomic resonant frequency and the driving field frequencyDa,0,
and for various values of the jump in the photonic DOSg2 /g1 .
6-8
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THEORY OF A ONE-ATOM LASER IN A PHOTONIC . . . PHYSICAL REVIEW A 69, 013816 ~2004!
^a&s . For small values of̂ R3&s , the source term in Eq
~4.1a! is very small, and the field amplitude decreases in ti
and reaches a very small steady-state value~equal to zero in
the case of free space, where^R3&s50).

We now investigate the effect of additional dephasing
the emission characteristics. In Fig. 11, we plot the stea
state mean number of photons in the cavity field as a fu
tion of the pump intensity, when additional dephasing
present in the system. Clearly, the dephasing processes
press the emission process, lowering the number of pho
in the cavity mode, relative to the case when no dipo
dephasing is present~see Fig. 9!. This deleterious effect on
the light generation is more pronounced in photonic str
tures presenting large jumps in the photonic DOS. We a
obtain that, although the emission is enhanced for la
jumps in the photonic DOS at large values of the drivi
field intensity, the number of photons in the cavity field
this case is comparable to that obtained in free space
smaller values of the pumping field intensity. However, b
ter coherence of the cavity field may be achieved in photo
crystals, as we show in Sec. V.

In Fig. 12, we plot the mean number of photons in t
cavity versus the scaled cavity decay rate,k/g1

5(v/g)/(Qg1 /g), in the absence of dipolar dephasing, a
for various jumps in the photonic DOS, forDa,0, and
«/uDau52. Clearly, the light emission is enhanced for larg
jumps in the photonic density of states. Also, the mean nu
ber of photons in the cavity field increases with the cav
quality factor and the spontaneous emission decay r
g1 /g. The effect of the additional dephasing on these f
tures is investigated in Fig. 13. We note that the emiss
enhancement relative to free space for large jumps in
photonic density of states, although reduced by the dep
ing processes, is still preserved for high-Q-factor microcavi-
ties.

FIG. 11. The steady-state mean number of photons in the ca
^a†a&s in the presence of dipolar dephasing, as a function of
scaled driving field Rabi frequency«/uDau, for negative detuning
between the atomic resonant frequency and the driving field
quencyDa,0, and for various values of the jump in the photon
DOSg2 /g1 . We have setk50.1g1 , g510 k, andgp50.1g1 in
the calculations.
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V. PHOTON STATISTICS

In this section, we analyze the coherence properties of
light emitted into the cavity mode of our one-atom PB
microchip laser, using the quantum degree of second-o
coherence,g(2)(0). This one-time normalized second-ord
correlation function, defined as

g(2)~0!5
^a†2a2&s

^a†a&s
2

, ~5.1!

ity
e

-

FIG. 12. The steady-state mean number of photons in the ca
^a†a&s as a function of the scaled cavity decay ratek/g1 in the
absence of dipolar dephasing, for negative detuning between
atomic resonant frequency and the driving field frequencyDa,0,
and for various values of the magnitude of the jump in the photo
density of statesg2 /g1 . We have set«/uDau52, g5g1 , and
gp50 in the calculations.

FIG. 13. The steady-state mean number of photons in the ca
^a†a&s in the presence of dipolar dephasing, as a function of
scaled cavity decay ratek/g1 for negative detuning between th
atomic resonant frequency and the driving field frequencyDa,0,
and for various values of the magnitude of the jump in the photo
density of statesg2 /g1 . We have set«/uDau52, g5g1 , and
gp50.1g1 in the calculations.
6-9
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FLORESCUet al. PHYSICAL REVIEW A 69, 013816 ~2004!
can distinguish laser light from the chaotic light genera
from a thermal source. For chaotic lightg(2)(0)52, while
g(2)(0)51 for a source of coherent light@31,16#.

Generally, the moments in the definition~5.1! of the quan-
tum degree of second-order coherence may be calculate
numerical means, using the solution of the master equa
~3.16!, or approximately, by means of certain factorizati
schemes. However, our model enables an exact and si
analytical solution for the emitted photon statistics. The f
lowing equations of motion can be derived from the mas
equation~3.16!:

d

dt
^a12a2&522k^a12a2&12g1^a

12aR3&12g1^a
†a2R3&,

~5.2a!

d

dt
^a12aR3&52~g113k/2!^a12aR3&1g1^a

12&

12g1^a
†a&2g2^a

12a&, ~5.2b!

d

dt
^a12&52k^a12&12g1^a

†R3&, ~5.2c!

d

dt
^a12a&523~k/2!^a12a&12g1^a

†aR3&1g1^a
12R3&,

~5.2d!

d

dt
^a12R3&52~g11k!^a12R3&12g1^a

†&2g2^a
12&,

~5.2e!

d

dt
^a†aR3&52~g11k!^a†aR3&1g1~^a&1^a†&!

2g2^a
†a&. ~5.2f!

In steady state, Eqs.~5.2! together with Eqs.~4.1! constitute
a closed linear system of equations. Their solution gives
quantum degree of second-order coherence:

g(2)~0!511~g1
22g2

2!
4k~4g2

2g113g2
2k1g1k21kg1

2!

~kg112g2
2!2~k1g1!~3k12g1!

,

~5.3!

g(2)(0) depends implicitly on the pump intensity throug
g1,2. We first note that, in general, the emitted field phot
statistics is super-Poissonian,g(2)(0).1. This is a direct
consequence of the fact thatg1

2>g2
2. In the case of vanishing

mode density on the lower Mollow sideband (g250) and
no dipolar dephasing (gp50), g15g2 @see the definition
~4.2! for g1,2], and the cavity field photon statistics is Poi
sonian. Physically, the enhancement of coherence for la
jump in the photonic density of modes arises because
bare atomic system becomes inverted@26# ~see also Fig. 10!.
In this case, the system is similar to a conventional la
operating well above the threshold.

From the analytical expression~5.3!, it follows that the
quantum degree of second-order coherence of the cavity
01381
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exhibits a local maximum as a function of the intensity of t
driving field. This maximum occurs when tan4(f)
5g1 /g2 (g250) and corresponds physically to the pum
intensity that causes the bare atomic inversion@see Eqs.
~3.11b! and~4.3!#. In addition, one can show~see the Appen-
dix! that at this inversion threshold only the even mome
of the photon distribution̂a2n&s are nonzero, while all odd
momentŝ a2n11&s vanish. Physically, this local maximum i
the second-order coherence function corresponds to the
dency of emitting photons in pairs~photon bunching!.

In Fig. 14, we plot the quantum degree of second-or
coherence,g(2)(0), as afunction of Rabi driving field fre-
quency«, in the case when no dipolar dephasing is pres
in the system, and for the same values of the parame
g2 /g1 , Da , k, andg as for Fig. 9. For small values of th
driving field intensity, the quantum degree of second-or
coherence increases with the magnitude of the radiation
ervoir photonic DOS discontinuity, and, in fact, better coh
ence occurs in free space. However, we note from Fig. 9
the mean photon number in this case is small. For lar
values of the driving field intensity~when the mean numbe
of photons is large!, g(2)(0) decreases with the magnitude
the discontinuity in the photonic DOS. Moreover,g(2)(0)
tends to 1, as it does for coherent states, in the limit of z
mode density on the lower Mollow sideband. Dipol
dephasing reduces the coherence of the cavity field, as sh
in Fig. 15, where we plotg(2)(0) as a function of the pump
field intensity for gpÞ0. We find that better coherence
obtained, once again, for large values of the discontinuity
the photonic DOS.

In Fig. 16, we studyg(2)(0) as a function of the scale
cavity decay ratek/g1 for the same parametersg2 /g1 ,
Da , «/uDau, andg, as those used for Fig. 12. For all value
of the cavity decay rate, the photon statistics of the cav
field is more Poissonian~coherent light! for larger disconti-

FIG. 14. The quantum degree of second-order cohere
g2(0), as afunction of the scaled driving field Rabi frequenc
«/uDau, for the case when no dipolar dephasing is present in
system, for negative detuning between the atomic resonant
quency and the driving field frequency, and for various values of
jump in the photonic density of statesg2 /g1 . We have setk
50.1g1 , g510 k, andgp50 in the calculations.
6-10
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THEORY OF A ONE-ATOM LASER IN A PHOTONIC . . . PHYSICAL REVIEW A 69, 013816 ~2004!
nuities in the photonic DOS. Also, we note that in the lim
of large cavity decay rate, the emission becomes Poisson
irrespective of the properties of the density of states of
photonic reservoir. However, in this case, the number of p
tons in the cavity field is very small~see Fig. 12!. The influ-
ence of the dipolar dephasing on these characteristics is
sented in Fig. 17, where we plotg(2)(0), as afunction of the
scaled cavity decay ratek/g1 for the same parameter
g2 /g1 , Da , «/uDau, andg, as those used for Fig. 16 and fo
gp50.1g1 . We obtain a loss of coherence for all values
the cavity decay rate, relative to the case when no dip
dephasing is present in the system.

In the following, we investigate the quadrature coheren
of the cavity field, by analyzing the variances of the con

FIG. 15. The quantum degree of second-order cohere
g(2)(0), as afunction of the scaled driving field Rabi frequenc
«/uDau, in the presence of dipolar dephasing, for negative detun
between the atomic resonant frequency and the driving field
quency, and for various values of the jump in the photonic den
of states g2 /g1 . We have setk50.1g1 , g510 k, and gp

50.1g1 in the calculations.

FIG. 16. The quantum degree of second-order cohere
g(2)(0), as afunction of the scaled cavity decay ratek/g1 , in the
absence of dipolar dephasing, for negative detuning between
atomic resonant frequency and the driving field frequencyDa,0,
and for various values of the jump in the photonic density of sta
g2 /g1 . We have set«/uDau52 andg5g1 in the calculations.
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gate quadraturesX15@a†1a#/2 andX25@a†2a#/2i . Us-
ing the solution of Eqs.~4.1a!–~4.1c! and ~5.2!, we obtain

^~DX1!2&s5
1

4
1~g1

22g2
2!

4g1
2

kg1~k12g1!
~5.4!

and

^~DX2!2&s5
1

4
. ~5.5!

Clearly, from Eq.~5.5!, the variance of one of the quadra
tures is independent of the properties of the photonic re
voir and the cavity decay, and it reaches the level of
quantum shot noise limit. In the case of emission in a f
photonic band gap and no dipolar dephasing (g15g2), the
variances of both conjugate quadratures are characterize
the quantum shot noise limit. That is, the cavity field is ch
acterized by quadrature coherence.

VI. CONCLUSIONS

We studied the emission properties, photon statistics,
quadrature coherence properties of a one-atom laser with
herent pumping in photonic crystals. We considered the c
when the cavity frequency is tuned close to the Mollow ce
tral component. In the limit of strong pumping, we derive
analytical expressions for the amplitude, mean photon nu
ber, quantum degree of second-order coherence, and h
order moments of the cavity field. We showed that, for
photonic density of states of the photonic radiation reserv
presenting a discontinuity, the fluorescent intensity emerg
from the cavity is strongly enhanced and more coherent r
tive to the corresponding cavity in a free-space reservoir. T
variance of one of the quadratures is characterized by
quantum shot noise limit, independently of the photonic r

e,

g
-
y

e,

he

s

FIG. 17. The quantum degree of second-order cohere
g(2)(0), as afunction of the scaled cavity decay ratek/g1 , in the
presence of dipolar dephasing, for negative detuning between
atomic resonant frequency and the driving field frequencyDa,0,
and for various values of the jump in the photonic density of sta
g2 /g1 . We have set«/uDau52, g5g1 , and gp50.1g1 in the
calculations.
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FLORESCUet al. PHYSICAL REVIEW A 69, 013816 ~2004!
ervoir and the cavity decay. If the microcavity resonan
occurs in a full photonic band gap (g15g2), the variance of
both conjugate quadratures is characterized by the quan
shot noise limit. Physically, this could be realized in a sing
mode waveguide channel in a PBG. Also, under certain c
ditions, only the even moments^a2n& can be nonzero, while
the odd momentŝa2n11& are equal to zero. This sugges
that only the even off-diagonal density matrix eleme
rm,m62n

(c) are nonzero.
Our study corresponds to the case when the atomic

tem is pumped by a strong coherent laser field. In the con
of a submicrometer scale waveguide channel in a PB
strong fields can be realized with very low pump power
the scale of nanowatts. By using a strong laser field, i
possible to drive the Mollow spectral components of re
nance fluorescence away from the singularity of the pho
density of states, such that over the width of the individ
sidebands the density of states is smooth. It would be
considerable interest to extend this model to include b
weak and strong pumping fields. For weaker fields, the
gularity in the photonic density of states at the photonic ba
edge may lead to non-Markovian effects in the atom
radiation reservoir interaction. In this case, the temporal e
lution of the atom–photonic reservoir system requires t
we generalize the equations of motion for the atomic va
ables to a set of integro-differential equations, appropr
for a photonic band-gap material. Given these clear dis
guishable features resulting from photonic crystal archit
ture on one-atom properties, it is likely that even more d
matic effects will be observed for a large collection ofN
atoms~quantum dots! placed within the dielectric defect. Ou
results clearly illustrate the ability to ‘‘engineer’’ quantu
optical characteristics in coherent atom-radiation interacti
through suitable photonic crystal architectures.

APPENDIX: HIGH-ORDER MOMENTS

In Sec. III we derived the expression for the steady-st
amplitude of the cavity field̂ a&s . We note that in certain
-
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cases it vanishes, while the intensity of the cavity fie
^a†a&s may be very large for the strong coupling limit. I
this section, we discuss the high-order moments^an&s and
associated off-diagonal cavity density matrix eleme
rm,m1n

(c) for these cases. The following equations of moti
can be derived from the master equation~3.16!:

d

dt
^an&52nS k

2D ^an&1g1n^an21R3&, ~A1!

d

dt
^amR3&52Fg11mS k

2D G^amR3&1mg1^a
m21&2g2^a

m&.

~A2!

At the bare atomic population inversion threshold,g250. In
this case, the relation between steady-state values^an&s and
^an22&s is found from Eqs.~A1! and ~A2! as

^an&s5
2g1

2

k

~n21!^an22&s

2g11~n21!k
. ~A3!

Here, for simplicity, we have considered the cavity frequen
tuned to resonance with the diving field frequency.

Using Eqs.~A2! and ~3.6!, we can find̂ an&s as

^a2n&s5^a12n&s5
g1

2n

kn )
m51

n
2m21

g11~2m21!k
, ~A4!

^a2n11&s5^a12n11&s50. ~A5!

Clearly, only the even momentŝa2n&s are nonzero, while
the odd momentŝa2n11&s vanish. This suggests that th
density matrix of the cavity fieldr (c) has only nonzero ele
mentsrm,m62n

(c) (2n,m).
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