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Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium
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We derive the photon-number probability distribution and the resulting degree of second-order optical
coherence for light emission from a uniformly distributed active species within a multiple-light-scattering
medium. This is obtained from a master equation describing the probability distribution for photons in the
vicinity of positionr, traveling with a wave vectdt, related, in turn, to a coarse-grained average of the optical
Wigner coherence function. Using a simple model for isotropic, spatially uncorrelated scatterers, this reduces
to a generalization of the master equation of a conventional laser in which the medium behaves like a random
collection of low-quality factor cavities that are coupled by photon diffusion between a given cavity and its
neighbors. Laserlike coherence, on average, is obtained in the random laser above a specific pumping thresh-
old. Photon-number statistics above and below the lasing threshold are computed by first assuming that the
atomic response to the local electromagnetic fields is nearly instantaneous. Corrections to this simple model,
arising from nonadiabatic atomic dynamics, are then estimated. The dependence of the photon statistics on
scatterer density, gain concentration, and position within a sample reveal that, on average, increase of the
scattering strengtfdecrease of the photon transport mean free)patthe medium leads to a sharper peak in
the local photon-number distribution, characteristic of increased local coherence in the optical field. We also
evaluate the coherence of the output field at points outside the random-laser medium. This is a weighted
average of radiation emitted at different positions in the sample, exhibiting varying degrees of coherence due
to variations in the local pumping intensity.
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[. INTRODUCTION ical models[15,16 developed to investigate the radiation
statistics of a random laser applied the Langevin approach
The prediction[1] and observatioh2] of laserlike emis-  (Boltzmann-Langevin equation for photonsdapted to the
sion from multiple-light-scattering media with gain have pro- case of a random amplifying medium. However, the presence
vided a compelling starting point for the investigation of of a diffusion term in the equation describing the fluctuations
disordered dielectric microstructures as alternative sources aff the photon number made it difficult to apply this approach
coherent light emission. Numerous experimental studies afo nonlinear systems. Due to the presence of the nonlinear
the emission carried out in colloidal samp[&s-6] and op-  coupling between the atomic and radiation variables, an ana-
tically [7] and electrically{8] pumped semiconductor pow- lytical solution was not obtained. On the other hand, a direct
ders have confirmed that the emission from these multiplenumerical solution is complicated due to the presence of
light-scattering dielectric microstructures exhibits spectralLangevin noise operators. As a result, the photon statistics
and temporal properties characteristic of a multimode lasewas investigated only for a system approaching the laser
oscillator. These observations include the existence of a welkhreshold from below. Recentlyl7], some moments of the
defined threshold pump intensity above which the emissiomphoton distribution of a random laser were evaluated, using a
at particular frequencies increases more rapidly with pumpnodel for the “chaotic” nature of the cavity modesle-
intensity than below threshold and the concomitant collapsscribed by a random cavity escape jateombined with a
of the emission linewidth and pulse duration shorteningmaster equation formalism. However, this study did not
More recent experimen{®,10] have demonstrated, for the evaluate higher order factorial moments of the photon-
first time, that light emitted from random amplifying media, number distribution, essential to understanding the emission
above this threshold, exhibits coherence properties charactezeherence properties. The fluctuation properties of the radia-
istic of true laser light. tion of a random laser, modeled as a chaotic cavity, have also
A number of theoretical models have been developed tdeen considered 8] using a noise-operator formalism and a
describe lasing in random media. Specific experimental feafull nonadiabatic treatment of the nonlinear response of the
tures of the spectral and temporal properties of the emissioatomic system.
can be explained by the ring laser mof&), diffusion mod- In this paper, we derive the coherence properties of the
els [11] describing the random walk of photof$2], and random laser using a simple approach, based on the master
one-dimensional modelgl3] based on the time-dependent equation formalism, generalized to describe ensemble-
Maxwell-Bloch equations. None of these models, howeveraveraged transport properties of light in a multiple-light-
has treated the coherence properties of the emitted light. Tracattering medium. This makes use of a rate equation model
ditionally, the photon statistics of a laser has been investifor the light emitting atoms in the medium, known to provide
gated using two distinct but equivalent meth¢#ld]. One is  an accurate picture of the laser operation for both conven-
based on the Langevin noise operator formalism and th&onal and random lasers. In previous wti], the emission
other is based on a master equation approach. Early theoreif radiation in random amplifying media is described by a
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set of position-dependent generalized laser equations for tregomic system is incoherently pumped by a monochromatic
optical energy density and the atomic populations. Here, theptical beam. For intense optical pulses containing many
multiple-scattering character of the transport is described byphotons, the quantum mechanical nati#] of the electro-

a diffusion term that replaces the cavity-loss term in a conimagnetic field is neglected, and a semiclassical treatment of
ventional laser. The rate equations include a spontaneoubke radiation is adequate. In this case, the coupled atom-field
emission term that partially accounts for the quantum flucsystem is described by the Maxwell-Bloch equati¢Bg].
tuations. However, this formalism does not describe the coFor simplicity, we consider a scalar fiekl(r,t) which we
herence properties of the emission, since it does not incorp@ssociate with the electric field of light. It is expecte8]

rate the probabilistic character of the photon emission anthat in the multiple-scattering regime the vector nature of the
absorption processes. Photon statistics and probability can ledectromagnetic field becomes unimportant, as the scattered
described using a birth-deatmastej equation for photon light becomes depolarized. The propagation of the electro-
distribution function[19]. Such an equation should repro- magnetic radiation through the nonlinear optical medium is
duce, at least in some order of approximation, the rate equalescribed by the scalar wave equation

tions for average optical energy density and atomic popula-

tion. In our study, we generalize the master equation for ) €1(r) PE(r,t) 4w *PaP™r )
photon statistics in a conventional laser to the case of aran- vV E(L)—— 2 2 e :
dom laser by replacing the cavity-loss terms by terms that ¢ ¢

describe radiative transfer and multiple light scattering. ThiSHere,el(r) is a randomly varyindinear dielectric function,

is obtained 'from a microscopic {;maIyS|s of the I’]O'I’1|Inearwherea33ﬁtloms(r,t) describes th@onlinearmacroscopic po-
wave equation for electromagnetic transport, in which th

; " : . . _""Qarization density of the medium due to presence of resonant
nonlinearities are treated in a simple mean-field approximag; ;-

tion and transport is described in an ensemble-averaged wave . ; ; ;
diffusion approximation. This description attributes feedback The finear dielectric function
and laser activity to wave transport mediated by highly prob- €1(r) = €g+ €queT) (2.2
able realizations of the scattering potential represented by the
ensemble-averaged diffusion coefficient. In reality, there mayas an average value, and a randomly fluctuating part
be large local fluctuations about the average which also cone,.(r), which satisfies(enuc(r))ens=0. Here, { )ens de-
tribute to lasing at a local pump threshold that is considernotes a statistical averaging over all possible realizations of
ably less than average pump threshold for the entire mediumhe dielectric microstructure. We note thgg,.(r) is linear
These highly improbable configurations of the random meand in general complex, and may account for inhomoge-
dium may cause isolated regions of a large sample to exhibiteous linear absorption effects.
lasing prior to the entire mediurf20]. In our mean-field The nonlinear polarization due to the amplifying medium
theory, we neglect these highly improbable, “localized” con- can be expresse@fter an adiabatic treatment of the atomic
tribution. Our model leads to a set of generalized mastegystem as[22]
equations for photons at different positions within the
sample, and allows evaluation of the average emission co- PaI°™r) = x(r)E(r). 2.3
herence. This model enables direct description of the system
in terms of the experimentally defined parameters, such agere, the complex optical susceptibilig(r) is given by
scatterer density and gain concentration.

The paper is organized as follows. In Sec. I, we review x(1)=XxoAN(N)/V. 2.4

the multiple-light-scattering theory of light in random ampli-

fying media. In Sec. Ill, we derive the master equation for aX® is a complex quantity which depends on the detailed mi-

random laser. The master equation is solved in the stead roscopic characteristics of the gain medil@d]. AN(r) is

state limit by adiabatically eliminating the atomic degrees of he local atomic population inversidlifference in popula-

freedom in Sec. IV. Here, we calculate the photon distriby ion of atoms in the excited state and ground state of the laser

tion function for spatial modes inside the sample. The photoﬁransitior). AN(r) depends on the pumping ragr) (which

statistics for light emitted inside the sample as well as fordetermlnes the excitation rate and which decreases with

light measured by a detector outside the sample is then corﬁj—epth from the samplg s_urfage dge to t.)Oth agsorp‘."’” and
puted in Sec. V. In Sec. VI, we present a qualitative physicaF‘C""tte”ng‘tffjmdI Ted em|_SS|_orr1Hf|eId |ntensngE§rt)h| (W.h'Ch
interpretation of the numerical resuilts obtained. In Sec, Vi1 90Verns stimulated emissiprHere, we model the gain me-

we discuss the effects of nonadiabaticity of the atomic re;?'um.?s atfcIJ(ur-IevleI sy;te:[nixee Fl'g' ¢31i;m ngh||20)h 3\1/6 Ialser
sponse in the “bad cavity” regime, and in Sec. VIII we ransi Ionthat les pgace deihwelen e\I/ Iar} th .I N ?SO_
present concluding remarks. assume that leveld) and the lower level of the laser transi-

tion, |2), are unpopulated due to rapid decay to lower levels.
In this case, the population inversion is given[22]

(2.9

Il. MEAN-FIELD THEORY FOR WAVE PROPAGATION

IN RANDOM AMPLIFYING MEDIA P(r)
AN(r)= ED (2.5
The physical system we study consists of a random di- 1+
electric medium uniformly doped with resonant atoms. The I sat
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4 I(R,T;k,w) defined in Eq.(2.6) is not necessarily positive
definite and differs from the specific light intensity of radia-
tive transfer theory, which is always positive definite. How-
ever, it can be demonstratg2b] that a suitable coarse grain-
ing of the Wigner distribution leads to a positive distribution

3 which can be identified with the specific light intensity.

Consider an extended sour@rresponding, in this case,
to spontaneous emission of the excited atpmshe vicinity

of point R’ containing the pointsr; and r, [R'=(r;

+r5)/2], and at timeT’ = (t; +15)/2. The electric field gen-

erated by the source at point and timet’ is denoted by

Eq(r';t"). The resulting field is measured by an extended

detector in the vicinity of poinR=(r,+r,)/2 and at time

T=(t;+1,)/2. The resulting field autocorrelation function is

given by

1 (E*(ry;t)E(r2;t2))ens

FIG. 1. Laser scheme for random laser. The transitiendl w?
represents the pumping process;3(continuous ling corresponds - (GT(ry, 115t tDG (ra,rhit,t5) Y ens
to laser emission, the dashed line represents the relaxation process, ¢t

1oty
and the wiggly arrows represent the rapid nonradiative decay pro- o o
cesses. X Eo(ry;t1)Eo(ra;ts). 2.7

Here, the pumping raté?(r) is in units of spontaneous
emission rate of the laser transition, ang; is the saturation Here, we use the notatiofidr=[,, fdt=[,, [dk/(27)3
intensity[24]. In what follows, we will make use of asimple =[,, and [dw/27=[,. The Green’s functions
mean-field theory, in which|E(r)|* is replaced by G*(r,r’;t,t') in Eq.(2.7) are the advancetwith respect to
(|E(r)[*)ens- In @ homogeneous medium with a homoge-t=0) and retarded solutions of the wave equation
neous pumping, this is independent of the position
In a multiple-scattering medium, the propagation direc-
tion of light is continuously changed. In this case, one de-
fines the transport mean free pathas the average distance Vf— —
the light travels in the random medium before its direction is ¢t dt
randomized. For length scales larger than the transport mean (2.8
free path, the phase correlation of waves can be ignored, and
the wave equatiof2.1) describing light transport in the ran- ) )
dom medium is replaced by a diffusion equation for the waven @ uniform medium, the advanced and retarded Green's
field intensity, as we will show below. functions corresppnd to Fhe outg_on(ng) and th_e incoming
The coherence properties of the electromagnetic field are~) Waves associated with a point source. Siegs is as-
described by the Wigner coherence function, which represumed to be time independent, it follows that depend
sents the wave analogous of the specific intensity in radiativénly on the difference between its two time arguments. The
transfer theory. The specific intensity,{R,k) describes coriespondlpg ens_emble-averag_ed Green's  functions
the number of photons in the vicinity of the poRt travel- (G~ )ens=Gens descr|b+e an “effect|ve”+ homogeneous me-
ing in the directionk. The uncertainty principle places a dium. It follows thatGe,(r,r';t,t") =Gg,{r—r’;t—t’).
fundamental limit of how accurately botR andk can be It follows from Egs.(2.6) and(2.7) that the Wigner func-
simultaneously defined and this requires that we interret tion can be expressed as
andk as “coarse-grained” variables. In contrast, the Wigner
function is defined as the Fourier transform of the electric

e(r) 92
G(r,r';t,t")y=8(r—r")o(t—t").

field autocorrelation function, I(R,T:k w):J' I(R-R', T-T" kK 0,0
7 L L R,YT’Yk,'w, L L L} L L
I(R,T;k,w)zf drdte " e TWE* (R+r/2;T+1/2) X1o(R", Tk 0"). (2.9
XE(R=Tr12;T—1/2))ens- (2.6

Here,lo(R',T";k",0") is the source field Wigner coherence
Here, E(r;t) is the complex electric-field amplitude of the function, and the transport kernelI'(R—R’,T
propagating radiation field. We note that the Wigner function—T';k,k’,w,w") is given by
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F(R—R’,T—T’;k,k’,w,w’)EJ exd —ik-r+ik’-r'lexdiot—io't' Gl ,{R+T/2R +r"/2;T+t/2,T' +1'/2)

rr’ ot

XGond R=T112R"—r"12;T=1/2,T" —1'/2)) s (2.10

In the case of a random amplifying medium, andB(k) is the Fourier transform of the complex dielectric
Io(R",T";k", ") is proportional to the excited atomic popu- gutocorrelation function

lation at positionR’ and timeT’. The total dielectric func-
tion

4
w
e(r)=ey(r)+4mx(r) (2.11) B(r—r )Z(E) <6fluct(r)6fluct(r ))ens: (2.19

contains both the nonlinear, intensity-dependent complex This is a generalization of the “ladder approximation” for
part x, and the linear part, with random spatial fluctua- the summation of the scattering processes, well known in
tions. As a consequence, applying the usual perturbativg|ectronic transporf27,28, to include the effects of spatial
multiple-scattering theory23,25,26, with €(r)— € as the  correlations in the random potential and intensity-dependent
perturbation, becomes cumbersome. In what follows, Wemean-fieldl imaginary part of the dielectric function. In the
simplify the problem by using a mean-field approximation, yresence of absorption and gain, the mean-field single-

in which we assume a nearly homogeneous population invelhoton Green’s functions in E¢2.13 are given by
sion. More precisely, we assume that the spatial variations in

P(r) occur slowly over length scales much longer than the

transport mean free path. In this case, we can rep&gg |? N 1

in Eq. (2.5 by a corresponding “coarse-grained” average Gendk,0)= w2 ' (2.16a
value Iaug:<|E(r)|2>coarse where < >coarseE(1/Q)fdri and —;—?0— k2—2+(k,w)

the sampling volumé) corresponds to the scale over which o

P(r)="P is considered constant. This mean-field approxima-

tion for the nonlinear part of the wave equation allows us to

perform perturbation theorin the fluctuating linear part of G- (K )= 1

the dielectric constang;,(r)] about the uniform park, end K@) = w2 '

=€o+ xoP/(1+1,,4/1sa). The resulting perturbation theory —2_?0‘ -k*-3 7 (k,w)

is the standard multiple-scattering theory for an effective lin- c

ear mediun{26,25 with absorption and gain.
We define

(2.16h

wherew.=w+i0", € is the complex homogeneous part of
the dielectric function, and the self-energies

4
rQokk.w=2| [ ex-io-R)
R,T
+ _ Bl _L" + ’
XexgiOTIN(R Tk K ,w). 2= | BkoK)GIK 0, 2178
(2.12
Neglecting interference of different radiative transfer paths, 3 (kw)= jklé'*(k—k')ngs(k’,w) (2.179

perturbation theory[23,27] leads to an integral equation
(Bethe-Salpeter equatipfior the transport kernel:
describe the effect of the scattering. HeB&(k) is the Fou-
IrQ,0;k,k",w) rier transform of the dielectric autocorrelation function

=G/ d Q2+ Kk, Q2+ 0) G d Q12— Kk, Q0/2— w)

® 4
B'(I’-I")E(E) (€ftuct(N) €riuct(r))ens:  (2.18

X 5k,k,+f B(k—k"I'(Q,Q;k" k", w)|. (2.13
kH

We note that, in the general case, whgp.(r) is a complex
quantity, the dielectric function autocorrelation functidBs
andB’ are distinct. For uniform absorptioB=B’. Using

G (k, Ef exp—ik -r)expiot) GE (r.t), (2.1 the expressions, Eq2.16), for the Green’s functions, Eq.
end ko) rt X ) expliot) Gendr.t) 219 (2.13 can be further transformed to the general form

Here,
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Qw 2(0\2 AGend Q.Q,k)=G Q2+ k,Q/2+ w) — G, { Q/2
—2;3(60+eo*)F(Q,Q;k,k’)—g(;) (€0~ €o)

-k, Q/2— w), (2.2
xXI'(Q,0Q;k,k")=—-2k-QI'(Q,Q;k,k")
+ 0T (Q, 0K,k )+ AGend Q.0Q,k) and
x| o(k—k")+ fk,,ﬁ(k—k”)F(Q,Q;k’.k”) AS(Q,Q,k)=3"(Q/2+k,Q/2+ w)

=27 (Q2—k, 02— w). (2.22

—AS(Q,0Q,KT(Q,Q:k,k" |. (2.19

dth h h inder of th , thuation(2.19) describes wave propagation in a disordered
Here and throughout the remainder of the paper, we omit thg ;e medium. It represents the generalization of the wave

@ depe.ndence of t.he propaga_iband s_pgcific. intensity for propagation equation for a passive random medium, studied
simplicity of notation. The gain coefficier§ in Eq. (219 ;e literaturel 25].

corresponding to the presence of the amplifying medium is The transport equation obeyed by the Wigner coherence

defined by functionl (R, T;k) is derived from Eq(2.19 by performing
2 2 2 an inverse Fourier transform with respectQoand 2, mul-
G= &?o— &?0* —gmi e XA, (2.20  tiplying the resulting equation bye(R’,T';k’), and then

c? c? c’v integrating oveR’, T’, andk’. We obtain

2
2%5TI(R,T;k)=— i—k.VRl(R,T;k)+QI(R,T;k)+f AGend R—R', T—=T":K)Io(R’,T":K)
ic o1
+f AGend R, T/ K)B(k—k)I(R-R',T=T";k’)
R’,T’,k’

—f AS(R',T:K)I(R=R/, T—T":k"). (2.23
R/’T/’k/

Here, we have considered the long time behavior, and used 4.1 (R,T:k)
Q< w. Also, without loss of generality, we have set the real
constant part of the dielectric function equal to 1. For a ran-
dom dielectric medium witthomogeneous linear absorption

c?i

=—ck-VI(R,T;k)+ Zgl(R,T;k)

B(r)=B'(r) are real quantities, and one can replace the final 2
term in Eqg.(2.23 with + ZAGens(O,Okﬂo(R'T,k)
il A K)B(k—k’ k'
_f AGens(R,,T,;k/)E(k_k,)l(R_RI,T_TI;k,). +ka' Gens(o!ol )B( - )l(R,T, )
R, T’ k’

(2.29 c2i

20

( jk,AGens(0,0k’)B(k—k’) (R, T;k).

We note that the generalized transport equati@r2d (2.25
is formally analogous to the classical Boltzmann equation
[29]. The conventional radiative transport equation can
be obtained from Eq(2.23 by neglecting the nonlocal We now make the identification between the coarse-
spatial and temporal effects, arising from the phase correlegrained Wigner coherence functiol(R,T,k) and mean
tions in the wave field25]. Formally, this corresponds to number of photong)i(R,T), in the vicinity of a pointR and
neglecting theQ and() dependence ahG,.,{Q,,k), i.e.,  attimeT and traveling in the direction of the wave vecfqr
AGcndQ,0Q,k)—=AG.,{0,0k) [25]. Within this approxi- and the notational chande«—r and T«t. Using this inter-
mation, Egqs(2.23 and(2.24) lead to pretation, Eq.(2.25 leads to Boltzmann transport equation
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[29] with gain, in which the source term is identified with threshold. This is in contrast with other stud{@®], which
spontaneous emission from the excited dye molecules: claim that lasing comes from isolated and highly improbable,
spatially localized, fluctuations away from the average.
= I p— e e — While such effects may occur in the real physical system, our
M- ()= ck-Vnk(r)+§ Wi k[ (1) =Ni(r)] mean-field theory description leading to a simple diffusion
. equation(2.29 neglects these isolated, fluctuation contribu-
+ k[NR(r)+1]AN(r). (2.26  tions to lasing. We also note that in the general case of a
random, nonuniform, distribution of active material within
Here, the scattering rates; i andwg, i are related to the the sample, the scattering rates may depend on the statistical
statistical properties of the dielectric background accordingiistribution of both the dielectric background and gain me-
to dium. This appears formally as a dependence of the transport
mean free path and associated diffusion coefficient on the

1 ¢? _ : .
Wi o = Wi = 51 ;AGens(0,0JkI)B(k—k’). absorption and gaif30].
(2.2

In our model, the scattering is assumed elastic and isotropic. o

As a result, the Green's functions only depend on the mag- W& now construct a probabilistic model for photon-
nitude of the photon wave vector. The role of anisotropicnUmber distribution function associated with Eqs26 and
scattering and nonlocal wave correlations will be the sub!{2-29. In particular, we demonstrate that both these equa-
ject of a future study. In Eq2.26, k=coo/V=4mwyV tions can be recaptured within a suitable factorization ap-
is the radiative transition rateo(, is the stimulated emis- _proxmat_lon_for the master equation for the photon proba}bn—
sion cross section and we make the identifica- ity distribution. Moreover, we demonstrate that lasing

i 5 . — occurs, on average, throughout the illuminated random me-
tion (C%/2w)iAGend0,0]k|)Io(r,|k|])=xAN(r) [note that

] h : - ) dium when local pumping exceeds a specific threshold. The
AGend0,0/k[)=2i Im7(|k[) is purely imaginary. In the i gter equation describes the coherence properties of the
transport equatiof2.26), we have restored the possibility of gmitted light below and above threshold. This is inferred

slow spatial variations in the gain coefficient by identifying it ¢om the degree of second-order coheregé®(0) of the

with the position-dependent average atomic population iNjoca| photon distribution. Our model predicts that light emis-
version,AN(r). This population inversion is obtained from sjon above threshold not only exhibits a laserlike input-
the Einstein rate equation for the atomic system. In the fouroutput intensity characteristic, but that the emission exhibits

level system described aboysee Fig. 1 (we assume that coherence properties similar to a traditional laser.
the lower laser level is not populated due to rapid decay to

lower levelg, the average atomic population inversion is
equal to the average atomic populatiNiir) in the excited
state of the laser transition. This population obeys the equa- We partition the sample into a collection of hypothetical
tion cubic cells of side length* centered on the points of a cubic
L - . lattice with lattice constarda=1*. These cells exchange pho-
N(r)=P(r) =y, N(r)—«[n(r)+1]N(r). (2.28 tons with the neighboring cells, and the number of photons
within each cell fluctuates in time due to atomic emission
Here, we have assumed isotropic atomic emission, angnd absorption events. Each cell is labeled by a coarse-
n(r)=2gni(r) is the average number of photons emitted ingrained position vectar. Assuming that* >\, it is possible
all directions. y,, in Eqg. (2.28 is the rate of nonradiative to simultaneously associate this approximate positiamd
decay of the laser transition. arbitrary wave vectok with photons in the medium. Each

For physical length scales larger than the transport meagell labeled byr is characterized by the joint distribution
free path, one can further make tifusion approximation  fynctionp -~ "™ -~ describing the probability of having a
r

[29]. .Fom?a”y’ this consists in ‘?Xpa”d"ﬁg tlkede_pendent state withni photons of wave vectors/c)k andN atoms in
functions in the transport equatigq2.26) in spherical har- the excited statep "' N chan with time due to ab
monics, and keeping only the first two terms of the expan- € excited stater, changes € due 1o ab-

sion. This leads to the diffusion equation for the photons>0rPtion and emission of photons by atoms within the cell,

ropagating in all directiong(r)=3:n:(r) (see Appendix Nonradiative decay of the excited atoms, populating the ex-
2):p gating ) =Zeni(r) ( PP cited state of the laser transitions by a pumping mechanism,

as well as transport of photons to and from neighboring cells.
(2.29 Here, we assume that the ground state of the laser transition
' is not populated, and neglect reabsorption of the emitted
Here, D=cl*/3 is the classical diffusion coefficient*( is photons. Asina conventional laser master equation descrip-
the transport mean free path for photprEquation(2.29 tlpn_, the ra_lte_at which photons are added_ to f[he ceII_by ra-
describes the average properties of the random amplifyingi@tive emission whemj photons propagating in the direc-
medium, and leads to a physical picture in which the entirdion k are already present in the cell is given yn;
medium, on average, is either below or above a lasingt+1)N Pr""nk “““ N wherex is the single-atom spontaneous

IIl. MASTER EQUATION FOR A RANDOM LASER

A. Master equation for the radiative transfer model with gain

n(r)=DV2n(r)+ «[N(r)+1]N(r).
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emission rate. This leads to a state withg¢ 1) photons The actual lasing efficiency of excited atoms, however, is

diminished, in our model, by nonradiative relaxation de-
propagatmg in the directiok and a corresponding decay of ) ' ' . g
P N With time. The factor of fiz+ 1) in the overall scribed by a ratey,,, and we define an efficiency fact@
r k =y1as/ (k+ v,). Moreover, the efficiency is severely offset

emission rate is the usual enhancement factor wipehl by the fact that the cavity decay rateis typically greater
|nd|st|ngU|shabIe bOSOHS appear in the final stafd. Onthe  than the spontaneous emission rE8&]. In the language of

other handp /= "% " N can increase with time if there are conventional lasers, the cells of the random laser act as “bad

initially (ng— 1) photons of wave vectd in the background —cavities.”
andN+1 excited atoms, and a single photon is emitted by  The inflow of photons to the cell atfrom the neighbor-

one of N+1 atoms. The rate of increase Bf """ Nin  ing cell atr— & containingn; photons occurs at a raten; .
this case is given by nlz(N_}_l)P...,nI;fl ..... N*1  This This rate must be welghted by the conditional probabllity
; :

~ ns.n’,N’ . . ~
must then be summed over all possible choikesf the P,f,;& that there are in fach; photons in the stat,

photon propagation directions. when there ar@’ photons in all states arld’ excited atoms
Similarly, the nonradiative relaxatlon process of thejn the ceII at r—g;. This leads to an increase in
atomic system will cause a decay Bf ="' N at a rate P Mk , prowded that there are initially;— 1 photons

YarN P""nQ """ N if there are initialN atoms in the excited in the cell atr, and to a decrease iﬁ""n‘ """ N if there
state and one of them nonrad|at|vely decays to the lasedre initially n; photons |n the cell at Overall, the rate
ground state, and an increaseRf "< N, if there are  of increase ofp, "k N due to the nelghbonng cell at
initially N+1 excited atoms in the cell. The rate of this L n-.n’',N’ ~1,. N
increase is W+ 1)P, M N*1 On the other hand, the r_‘iz 1S g|ven by Zn; W Py k (P

number of atoms in the excited state in the cell increases as-aP, "% " N), summed over all pOSSIble choickof the
result of the pumping process, at thﬁn purrlt\lplng rate). photon propagation directions. Her&=1*k, and the con-
This, in turn, leads to a decay & =" " catarate  gitonal  probability P™™' is  defined  from

CNR N N . A ) ;
P(r)P, "k , If there are initiallyN atoms in the ex- P---,nk ----- UDI N as a sum(denoted by{n;.}) over all

cited Sti‘:e,f‘nld o an increase, at a rate O‘states{ . Nir, ...} with fixed value ofng, such
P(r)P, if there are initiallyN—1 atoms in the thatEknk—
excited state.

The new dynamics of the photon probability distribution pnicnN_ E SERREUTRIY nery . N (3.1)

in a random medium arise from the inflow and outflow of r
photons from a given cell. In a simple model of isotropic

random scattering, the photon of wave vector€) (k) trav-

els ballistically in the directiofk at the speed of light;, over Finally, the number of photons in the stditenay vary due
the lengthl* after which its direction is randomized by scat- to the change of the direction of propagation of the photon
tering into a neighboring cell. The rate for this proceswis 5,sed by scattering. The scattering of photons from &tate

=c/I*. If there are initiallyn; photons in the statk in the containingn; photons to stat&’ occurs at a ratevii.n;,
cell atr, then the outflow of a photon would cause decay ofgjnce alin; photons may scatter at a ratgy. . This process

nk .....
P - Since each of thei; photons s Ieavmg the  results in the transfer of a photon from st&tdo statek’,

{ n@}ﬁ'#k

cavity at the ratev, the overall decay rate &t IS and Ieads to a decay of t® =~k N at a rate

given by —wniP Sl . On the other hand if there are .. ,nep M- "N Oon the other handp " Nin-
r

initially (ng+1) photons |n the cell, the outflow of a single

creases in time, if there are initialhy+ 1 photons in statk,
and one of them is scattered to stéte provided that there
are ng;—1 photons in statd’. The corresponding rate of
oMesNCin this case s

. This must then be summed

photon will enhanceP, = "% " . This enhancement could
arise from any of the r(k+ 1) photons initially present and

he r f incr e is given by w(n; .
the rate no+1 ciase oP, s given by w(ny increase  of P
+1)P K teeees . r

Wi NP,
In a conventional high-quality factor laser cavity, consist-

ing of a pair of mirrorsw is the analog of the leakage rate of OVer all possible choices of photon propagation directions
light from the laser. While a conventional laser has a largeand k’. We note that we neglect here the nonlocal wave
number of extraneous nonlasing modes, in the random lasesprrelations which could in principle arise in EQ.23. In

all modes can contribute equally on average to the overalhe case of very strong scattering such that=\ (the
lasing process. Light scattered in a random direction simplywacuum wavelength of photopsthe rate of change of
enters a neighboring cell which participates with comparablé (R,k) is influenced byl(R’,k’) even for |[R—R’|=1*.
probability to the buildup of laser radiation. In other words, Moreover, in the incipient photon localization regirf&3],

the ratey,,s of photons emitted by atoms into a lasing modestrong wave-interference and correlation effects become im-
is equal to the total rate of photons spontaneously emitted. portant on scaleR—R’[>1*. In this case, even the “ladder

=z
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approximation” [23] leading to Eq.(2.23 becomes inad- given cell, nor is the photon distribution in a given cell in-
equate. However, for present considerations we assume thiiienced nonlocally by neighboring cells.

[*>N\. Consequently the scattering process does not affect Putting all the above processes together, we arrive at the
the total number of photons propagating in all directions in anaster equation

_ym[NPr...,ni; ..... N_(N+1)Pr...,ng ..... N+1]+P(r)[Pr""n‘2 ..... _Pr...,n,; ..... N]

Kk’
(3.2

In writing the master equatiof8.2), we have used the weak scatterih§s\) assumption that different cells are uncorrelated.
This assumption is needed to factorize the joint probabilities involving photons in neighboring cells into products of prob-
abilities involving individual cells. Such factorization has been made in terms describing the inflow of photons. Thus, each cell
can be regarded as an independent laser mode, in which the nonlir{eatitsation effectsmay stabilize the total intensity of
the radiation above threshold.

Summing over all states witrN1 fixed value of such that¥ing=n in master equatiofi3.2) yields the master equation for
ng,n,N |

the conditional probabilityP,

Pl = — e IN(n+ 1) PN — (N+ 1) [P N g (npp— 1) PR N IR N (N 1) PN

r

ntLn+1N

ng,n+1N
r r ]

+P(r)[ PPN PNy LW —n PNy (np+1)P +(n+1-npP

+w|Mg(r—ag PN S m,(r—@,)) Pfﬁ*”‘l“—(z m,(r—@,)) P?‘;’”‘N}
K%k K’
+ E Wi [(ng+ 1)P?‘2+1’”‘N— nQP:& PN g P?ﬁ_l’”’N— P:& Mg, (3.3

k" #k

Here, we have used the expressiomy(r— &) By summing oveny in Eq. (3.3), we derive the master equa-

LN tion for PN
=X, ,N,néP?k’;& for the average number of photons propa- '
. z

~ HN,N_ n,N__ n—1N+1
gating in thek direction in the cell ar — &. P = —«l(n+ NP =n(N+1)P; ]

It is demonstrated in Appendix B that E(B.3) repro- — oy INPMNZ (N4 1) PN+
duces the transport equatiq@.26) within mean-field ap- ' '

proximation=,, N PPN AE(NN(T). +P([PPN T =P

+w[—n PPN+ (n+1) PPN

B. Master equation for the diffusion model with gain 1N nN —
_ +WPPTHN PPN Y Ti(r— &). (35
For each cell centered at we define the photon prob- k
ability distributionP[‘*N describing the probAabiIity that a total For length scales much larger than the transport mean free
number ofn photons are propagating in &ldirections and  path, one can use the approximation
N atoms are in their excited state,

Ni(r— &) =ni(r) — &- Vin(r). (3.9
prN=" p:‘ﬁ'“'N_ (3.4  Further, we employ thaliffusion approximation(A2) for
Nk ni(r) to obtain
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N+1 |- . . is the ground-state atomic population, assumed to be equal
to the total atomic populationand normalized excited state
5 population N(r)=N(r)/Ny, as —(oe/o,)(c/1)N(r)[n(r)
Pl Y (NHD) +1)]~—(c/l)n(r). On the other hand, the termn(z) is
; of the order of €¢/1*)n(r). This is greater than the absolute
wn V w (n+1) value of the diffusion term, for values of the transport mean
\

K(N+1)n

4

DV, +w h free path and absorption length,#1*), within the range of
validity of a diffusion model.
The master equatio3.8) determines the equations of

P _ _
=N kN(@n+1) evolution for the average number of photons in the laser
; mode and excited atomsﬁ(r)=2n,NnP?'N and N(r)
N=lp= ==, NP, respectively:
| | | - —_— =
n-1 n n+l n(r)=DV?Zn(r)+ «N(r)[n(r)+1], (3.93

FIG. 2. Various transition processes described by the master . — _
equation of a random laser. The vertical arrows represent the N(r)="P(r) = ynN(r)—«N(r)[n(r)+1].  (3.99
photon-number conserving pumpifgpntinuous ling and nonradi- . . . L —
ative relaxation(dashed lingprocesses. The horizontal arrows rep- ~_Clearly, in the mean-field approximatiomN(r)n(r)
resent the excited atom-number conserving inflgight arrowg ~ =N(r)n(r), Egs.(3.93 and(3.9b reproduce the diffusion-
and outflow(left arrows of photons. The diagonal arrows corre- rate equation§2.28 and(2.29 used to describe the emission
spond to spontaneous and stimulated emission, which increase tispectral and temporal properties of a random |a&&}.
number of photons in a cell, and decrease the number of excited

atoms. IV. STEADY-STATE PHOTON DISTRIBUTION FUNCTION
o o * o 1, Laser photon statistics are obtained from the photon dis-
> Mi(r=&)=n(r) —< Vi(m=n(n)+=DVin(r). (3.7 tribution functionPy'= >\ PN which describes the probabil-
k ity that n photons occupy the cell centeredratin order to

obtain the master equation fé&;', we sum ovem in Eqg.
(3.9). The terms corresponding to pump and relaxation pro-
cesses sum to zero, and we obtain

For the second part of E43.7), we have used the steady-
state currenf obtained from Eq(A7), where we have ne-
glected terms of the ordéf /I, (14 is the gain length defined
in Appendix A). In Eg. (3.7, D=cl*/3 is the classical dif-

N __ n 2~ — n
fusion coefficient. This leads to thiffusion master equation Pr=—{x(n+1)Mn,r)P/+[D Vin(r)+wn(r)]P;

N
for P —w(n+1)PM Y +{knMn—1r)PP !
PMN=— k[ (n+1)NPMN—n(N+1)PI~1N+1] +[D VZ(r)+wn(r)]P} ~*—wnPf}, 4.1

— Yl NPPN = (N+ 1) PPN+ PPN — PN Here, V(n,r)=3yN P"N/P! is the number of excited atoms
_ in th I h iselyn ph h
Fw[(n+1)PMIN PN [D Vfﬁ(r)+wn(r)] |Cne|tI e cell centered atwhen preciselyn photons occupy the
X[PPfl,N_ Pp,N]_ (3.8 For_ conti_nuo_us wave pumping, we obtain t_h_at the steady
state is maintained by the balancing of transitions between

Thus, we obtain a set of master equations for the lasgpeighboring photon states. This corresponds to setting the
erms in curly brackets in Ed4.1) to zero, individually:

modes at different positions within the sample. Each equat-
tion for a givenr (depicted schematically in Fig.) 2s simi- > — n_ n+1

lar, at any given position, to the master equation for a single—[K(nJr DAn.r)+D Vin(r) +wn(r)JPr=w(n+ l)Pf(4 é)
mode conventional lasef19]. In addition, the master '

equation for the random laser contains tefithe last group  The factor by which the photon-number distribution func-

of terms in Eq(3.8)] that correspond to the increasing of the (jons corresponding to two neighboring photon states differ
photon number in a given cell due to the arrival of the pho-fom each other,

tons through diffusion from the neighboring cells. We note

that the rate of this process is always positive. The negative kMn,r) D Vrzﬁ(r)+wﬁ(r)
diffusion term D V2n(r) can be expressed in steady-state f(n,r)= win+1) : 4.9

limit from the diffusion equation(2.29 as — «N(r)[n(r)
+1]. Using then thak=co./V (Whereo, is the emission is always positive. As argued in Sec. lll, the second term in
cross section, an¥l is the volume of the samplethis term  Eq. (4.3) is always positive.

can be further expressed in terms of the absorption cross The detailed balance equation for the random laser, Eq.
section o, absorption length ;= (o3No/V) ™! (where N, (4.2, has the solution
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On—l kN(k,r) D Vfﬁ(r) +wn(r) given by the rate equation and the peak photon number in the
P/=P; + (4.9 master equation for a random laser are the same above
k=0 w w(k+1) threshold.

We note that calculating the photon distribution function
P; requires knowledge of the mean number of photons, V. STATISTICAL PROPERTIES OF THE EMITTED
n(r), which, in turn, is determined bl . The necessity of LASER LIGHT

knowing the average photon number in order to determine Thg giatistical properties and coherence of the emitted ra-

the emission statistics is in our model a consequence of th§istion can be studied using the Fano-Mandel parani@gr
assumption that optical modes in different cells are UNCOIeE = m2_12_7)/n, describing photon-number fluctuations.

lated. By factorizing the probability distributions at different 2y 200 @)Y — (=2 2_
positions, we obtain that the probability of photon arrival +ere, m (1) ==,n"P%" and g=(0)=( n/(n)==F/n
into a spatial mode only depends on the average number 5
photons in the neighboring spatial modes. Here, we deriv
the statistics of the random laser by solving self-consistentl
the rate equations obtained from E¢%.99 and(3.9b in the
mean-field approximation together with Ed.4).

The photon distribution function defined in E@.4) ex-

1 is the well-known degree of second-order coherence
6]. For chaotic(incoherenk light g(?(0)=2, whereas for
oissoniar(coherent light g (0)=1. For a laser operating
Yvell below threshold, in a weakly excited thermal state, as
well as for a laser operating well above threshold, in a co-
herent stateF—0. In a conventional laser witg~10"">,

- . . . the Fano parameter exhibits a sharp peak as a function of
hibits two types of behavior, depending on wheth@r) is pump intensity at the lasing threshdlti9]. The large fluc-

less than unity or exceeds unity. In the former cadde- tuations in the threshold region are indicative of a phase

creases withn. In the latter caseR[’ increases witm until it ansition. As the spontaneous emission fagoincreases
reaches a maximum and then decreases with further increaﬁfIS peak becomes smaller and wider

ing of n. The transition between the two regimes determines e ohtain photon statistics and optical coherence defined
the threshold for the crossover in the statistical behavior o[)y F at various positions within the random-laser sample
laser radiation. This transition is defined by the conditionby evaluatingP". To this end, Eq(4.4) and the diffusion

" , .

f(0r)=1, which takes the form equation(2.29 are solved self-consistently. Here, we use the
I P R —Tn. ' steady-state atomic excitation numbey{n,r), obtained

«MOr)+D Ven(r=wl1-n(n)] 4.5 from the rate equation for the atom number, similar to Eq.
On the other hand, it is straightforward to shésee Appen- (2.28. In the presence of a stationary photon distributRjh
dix C) that the conditiorf (0,r)=1 impliesn(r)=1. Conse- (consistent with a four-level laser scheme described ghove
quently, the threshold conditiof#.5) for the change in sta- this takes the fornj34]
tistics becomes

2 Ny = —0) 5.1
KN(0F)+DV2n(r)=0. (4.6 = e DT’ (5.9)

Equation(4.6) expresses the condition that the unsaturatequ then calculate the average number of excited atoms as
gain «kMN(Or) equals the diffusion “cavity loss”

—D V?Zn(r). This is the analog of the Schalow-Townes N(r) ==, P} /\/(n’,r)_. Equation (5.1) together with Eg.
threshold condition for random-laser action. Therefore, in4-4 and the mean-field factorization of EG.9a provides

) N _ :
our model of a random laser, the laser oscillation threshol@ closed set of equations fét, andn(r). The expression

coincides with the photon statistics crossover point. This re(5-1 for the atomic excitation number corresponds to an
sult is in good agreement with the experimental findings adiabatic elimination” of the atomic variables. We note that

[9,10]. the typical “cavity decay rateW for a random laser is much
As discussed above, if the laser is operating above thresfi@ster than the atomic transition ratesFor example, for a
old, the photon distribution function has a peaknatfi(r)  transport mean free paiff =100\, w corresponds to a pi-

defined by the condition cosecond time scale, while corresponds to a nanosecond
time scale. As such, the adiabatic approximation is not rig-
p?“:pﬁ_ 4.7 orously justified. However, this leads to a much simpler
analysis, which qualitatively agrees with the more compli-
This is equivalent to cated numerical analysis of the nonadiabatic atomic re-

sponse. The difference between the results for the photon
statistics obtained using a full master equation treatment,
based on Eq(3.9), and those obtained within the adiabatic
approximation(Scully-Lamb theory is illustrated for a few
Here we have used that, above thresh@i()+1=Ti(r).  sets of parameters in Sec. VII.

The only positive solutiomi of Eq. (4.8) is Ti(r)=n(r), For concreteness, we consider a slab inxkiglane, be-
wheren(r) is the mean-field solution of the steady-state ratetween the two planez=0 andz=L. We definez<0 as the
diffusion equation(3.93. This shows that, similar to the case left region andz>0 as the right region. A pumping beam is
of a conventional las€g34], the average numbers of photons collimated perpendicular ta=0 plane from the left. The

1, _
W{D ven(r)+ k N(R,r)[R(r)+1]}=0(r)—n(r). (4.9

046603-10



THEORY OF PHOTON STATISTICS AND OPTICHA. .. PHYSICAL REVIEW E 69, 046603 (2004

300

L2F 7 T LI

N
|
N
W
S
—

4
3

=}
o
T
|
pun
wn
S
Mean Photon Number
=4
n

10° (Fano Parameter)

10° (Fano Parameter)
\.

|
3
Mean Photon Number

W
(=]

, ’,:,(9 0.

Pumping Rate Pumping Rate

FIG. 3. Fano parameter and average photon number at different FIG. 4. Fano parameter and average photon number as a func-
locations within the random laser sample, for a transport mean fretion of scaled pumping rate at the positipa 1* within the random-
path of 104 cm and absorption length of 25L0 2 cm. The po- laser sample and for different values of the transport mean free path
sition within the sample is 0.25 (dotted ling, I* (dashed ling ~ and absorption lengtH* =10"° cm andl,=1.5x10"* cm (con-
and 2.5* (continuous ling respectively, from the front of the tinuous ling, I*=10"* cm andl,=1.5x107? cm (dashed ling

sample. We seB=0.1 andL=1 cm in the calculations, and the and!*=10"°cm andl,=5.0x10"° cm (dotted ling. The other
pumping rate is in units oF =« + y,, . sample parameters are the same as for Fig. 3.

light emitted from the sample is measured by a detector Ofheren; andF; are the photon number and the Fano factor
the left[2]. This geometry is close to that of the cells used ingy, the ith cell within the sample, respectively. Generally,

some experiments37]. . : o
In Fig. 3, we plot the Fano-Mandel parameter as a func_each celli is deflne_d by both the POSItIOl and the wave
tion of incident pumping rate, at different depths within the VECtor of the emerging photonw(c)k; . The deeper the cell

random-laser sample, for fixed scatterer density and gaihiS Within the sample, the smaller the probabilityeight
concentration. As with a conventional laser, the Fano-Mandefcton that photons from this cell will emerge from the
parameter exhibits a fluctuation peak indicative of a transisample without further scattering. More specifically, in Eg.
tion from chaotic to coherent light. The magnitude of the(5.2),

fluctuation peak decreases deeper within the sample, due to

attenuation of the local pumping intensity as it penetrates 1 7
deeper into the sample. Deeper into the sample, the fluctua- 2 = 2 exp — =—=—|° (5.3
tions also decrease more rapidly with the increasing of the ' I* zk k-2l

pump above threshold. This suggests that the light emitted

from deeper inside the sample, although weaker in intensityjere, exp(-z/|k- Z|1*) represents the fraction of the radiation

is more coherent than that emitted from near the front face o4t z that emerges without being further scattefad]. In our

the sample. These modes, however, have smaller contribydiffusion) model, the wave-vector dependence of different

tion to the total laser radiation detected outside of th%hysicaj quantities is not considered. After performing the

sample, as we show below. wave-vector(angulaj integration, the mode summation in
The Fano-Mandel parameter as a function of incidentgntinuum limit becomes

pumping rate and different values of the scatterer density and

gain concentration, at a given depth within the sample, is 1 (L

presented in Fig. 4. It is apparent that optical coherence, > ...:_J dzh(z)- - -. (5.4

above threshold, is enhanced in samples with higher scatterer [ I*Jo

density and lower gain molecule concentration, within the

range of parameters studied. _ _ Here, h(2)=p(2)/[5dzp(z), and p(z)=(1/4m) dkexp
The output radiatiorfoutside of the samp)és obtained as ><[—z/(|R _2“*)] is a function that decreases rapidly with

a weighted average of the contributions from different pointsthe positfion within the sample. Clearly, only the radiation

within the sampld11]. In our model, different spatial modes emitted within a few transport mean free paths from front

are assumed uncorrelated. In this case, the Fano factor for tl?gce of the sample contributes significantly to the total output
total output radiation is P 9 y p

radiation. The Fano parameter for the total output radiation
for various values of the scatterer density and gain concen-

Z (ﬁiz_ﬁiz_ﬁi) Z niF; tration is presented in Fig. 5. Once again we observe a tran-
Foutput= = , (5.2) sition from chaotic to coherent light at specific pump thresh-
S w S w old. We also find that optical coherence, above threshold, is
1 - I
I I

enhanced in samples with shorter mean free stiftonger
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1.6 : : | . : . — m B
- 1'210% em, 1= 15x10%em .~"“_8 1+F=0%= IN >n (6.9
; —; 1'=1o“‘cm,1:=1.5x1o'2cm 1—1*N Lh
5 . 0 —
ELZ_:: <= 1'=10" em, 1=5x10%cm : é [rynr+K(n+1)] Cc
° : 3
2 N _~7| £  (note thato®=n for a Poissonian distribution
Togf el = . B The results presented in Figs. 3 and 4 can now be easily
§ """ g explained using E(6.5); namely, the amount of fluctuations
5 E in the emitted light decrease with the increasing of scatterer
= density (decreasing of*), and with the decreasing of gain
concentration ilp). Also, a sizable suppression of fluctua-
tions is obtained for positions deeper into the sample, where
N decreases andl increases.

In the mean-field analysis presented above, we have ob-
tained an average diffusion coefficient with a constant value
FIG. 5. Fano parameter and average photon number for the outhroughout the sample. More generally, the transport mean

put radiation, for various scatterer and gain parameters. The othéree path may vary randomly from region to region within
sample parameters are the same as for Fig. 3. the sample. This gives rise to additional fluctuations of the
laser emission, related to the statistics of the diffusion coef-

scattering and lower gain molecule concentration, mirroring ficient. A description of such effects requires solving the dif-
the behavior of the Fano parameter of individual cells withinfusion equation and the equation for the photon distribution

Pumping Rate

the sample. function (4.4) for an ensemble of systems characterized by a
probability distribution of transport mean free paths. A de-
VI. INTERPRETATION OF NUMERICAL RESULTS tailed microscopic analysis of this issue is beyond the scope

. o ) of this paper. Instead, we provide a qualitative discussion
We now provide a qualitative interpretation of the resultssjng Eq.(6.5) to illustrate how random spatial variations of

obtained in this paper. Suppose that the laser is operatinge giffusion coefficient translate into fluctuations of the laser
above threshold. In this regime, we have shown above thamission.
theﬁhoton distribution functioR; has a peak at the value of According to the expressiof6.5), statistical fluctuations
n=n, equal to the mean number of photons. We furtherin |* |ead to corresponding fluctuationsfn The probability
assume that fon close ton, P; can be written asomitting  distribution forF is given by
the dependence on the spatial coordirgte

B (n—T)? PF(F):JdI*P|*(I*)6(F—F(I*)). (6.6)
pPh=pP" ex;{ -

202 | (6.2

Here P« is the distribution of the transport mean free path
over an ensemble of systems, aRdl*) is given by Eqg.
(6.5. In order to facilitate an analytical investigation, we
+1 consider a regime where the laser is operating above thresh-
(6.2) old, but below the saturation regime, such tfak<1. For a
random laser, we choose= «/(x+ vy,,). In this case, the

average excited state atomic population is given Ny
where= 1 on the exponent correspondrtgreater or smaller  =p/[ y,,+ x(N+1)]=P/(y,+ k) and we rewrite the de-

On the other hand, from Eg4.4) we obtain

P“=Pﬁ{ II f(n)

thann, respectively. nominator in Eq(6.5 as 1—1* «, where
Equationg6.1) and(6.2) lead to the equation for the vari-
anceo: P,
) a=c Be. (6.7)
(n—n)? ,
T o2 == /E_In[f(n )] (6.3 Usually,I* a<1. This enables an expansion of the denomi-
n =n

nator in Eq.(6.5), and the Fano parameter is approximated
Above thresholdn=n+1. Sincef(n)=1, it follows, for by

values ofn close ton, Fel*a. 6.9
1 df isti istributior «
IN[f(n")]=+ (n’ —T) ar . 6.4 If the_ StatIStlca|-dIS'[I’I-butIOI’iD| of the transport mgan free
f(n") dn’ - path is a Gaussian with me#&h and standard deviatiod,«

the distribution(6.6) of the Fano parameter is a Gaussian

Making use of Egs(4.3), (6.3), and(6.4), and the fact that distribution with mearx|* and standard deviatiomo,+. We
w=c/l*, we obtain note that the more complex dependence of the Fano param-
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0.1 lation functions calculated using a full master equation treatment
200 [g®(0)], and adiabatic elimination of atomic elimination of
0.05 atomic variablegg{?)(0)], at a positionz=1* within the sample,
) 100 and for transport mean free paths of 0.5 ¢dashed ling 1 cm
(dotted ling, and 2 cm(continuous ling The other parameters are
B e I8 . . i
00 S m T %0 250 the same as for Fig. 6.
Pumping Rate asNyyne aNdNyyne, respectively. The validity of the trunca-

FIG. 6. Fano parameter and average photon number obtaind#" 1S ensured_by requmng_ theR?N does _not change as
from a solution of the truncated master equatidrg) (continuous  Nwunc @Nd Niryne increase. This implies solving a system of
lines and from the master equatio@.1) (dotted liney, respec-  (Niunct 1) (Nyunct 1) coupled equations fd?p'N for all val-
tively, at a positionz=1* within the sample, and for different val- ues 0SnN=<ny,,c and 0= N=<Nyyne, Wherenyyne and Nyync
ues of the transport mean free patt@ |1*=0.5cm, (b) I* are the minimum values af and N for which the conver-
=1.0cm, and(c) I*=2 cm. We set,=15cm, L=10cm, and gence is achieved. These numbers of photons and excited
B=0.1in the calculations. The pumping rate is in unitsfleEx  atoms are chosen sensibly larger than the average numbers of
+ Ynr- photons and excited atoms in the system. The physical pa-

rameters used in the calculations presented here are mainly
eter on transport mean free path, both directly the direct  dictated by computational considerations. Small transport
presence of* in the detailed balance equatioh.4) for the  mean free paths imply large hoppirigavity decay rates
photon distribution functionand through the implicit depen- compared with the atomic emission rate. This is accompa-
dence of the mean number of photons on the transport meatied by large numbers of photons in the system. These, in
free path(generally, a power layl1]), will lead to a non-  turn, lead to numerical convergence difficulties and a large
Gaussian distribution of the Fano parameter. Moreover, thisumber of equations. The Fano parameter calculated using
distribution will be different for a laser operating below the steady-state solutions of the truncated master equation
threshold as opposed to above threshold, because of the d{8.8) is presented in Fig. 6. In the example studied, the Fano
ferent dependence of the mean number of photons on thearameter, obtained from a full nonadiabatic treatment, is

“cavity loss rate” (c/I*) in the two regime$22]. enhanced relative to that given by the simpler Scully-Lamb
theory. When the cavity decay rate is larger than the atomic
VII. NONADIABATIC ATOMIC RESPONSE relaxation rate, adiabatic elimination of the atomic variables

leads to suppression of fluctuations. However, as shown in

The previous analysis of photon statistics in the randonFig. 7, the relative difference between the second-order cor-
laser is based on the Scully-Larib4] approach, where the relation functions calculated using the two methods is not
atomic variables are adiabatically eliminated. As discussedonsiderable above threshold. Moreover, the full master
above, an adiabatic elimination of the atomic variables is nogquation treatment leads to the same results as the Scully-
rigorously justified for a random laser. This is particularly Lamb theory regarding the dependence of fluctuations on the
evident in strong scattering systems, wher¢*>«. We  scatterers density, namely that the addition of scatterers into
show here, by comparison, that it still recaptures the importhe system decreases the amount of fluctuations.
tant qualitative features of the photon statistics of the emitted
radiation. In order to examine the role of nonadiabatic
atomic response of the atomic population to the local elec-
tromagnetic field, we investigate the laser statistics for a few Using a diffusion model with gain, obtained from a more
sets of parameters. This is done using a full treatment, basegeneral coherence propagation theory for the electric-field
on the master equatiofB.8). The probability distribution autocorrelation function, we have derived the generalized
function PP’N is calculated by truncating the master equationmaster equations for random-laser modes at different posi-
(3.8 at some maximum values ofandN, which we denote tions within the sample. Locally, these equations are formally

VIIl. CONCLUSIONS
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equivalent to that of a single-mode conventional laser with 3.

the cavity-loss terms replaced with terms that describe radia- ng(r)=n(r)+ k(). (A2)

tive transfer and multiple light scattering. We have shown

that stronger scattering not only lowers the threshold for lapyere,

ser action, but also diminishes the noise with respect to the

Poissonian value. These results may be used to explain the _ _

recent experiments, where, for a lower scatterer defiSity n(r) =2, Mi(r) (A3)

the radiation was found to be partially coherent, while for a k

system with stronger scatteref$0], the radiation became represents the total number of photons traveling in all direc-

completely coherent above threshold. We have also showfions, and the current densipyis defined by

that the intensity fluctuations increase with the gain concen-

tration, and that light emitted deeper within the sample is ) .~

more coherent than that emitted from near the front face of J(r):CZ kng(r). (A4)

the sample. k
The analysis presented here assumes isotropic scatteri

and _uniform Qistribution of active_molecules. It will be of The equation describing the evolution of the total number

considerable interest to extend this study to the case of an- _ ) ) , ~

isotropic scattering and nonuniform, nonlinear gain concen® Photons,n(r), is obtained by summing ovek in Eq.

tration. In the case of nontrivial structure and nontrivial spa-(A1)- The terms corresponding to scattering sum to zero, and

tial correlations of the scattering particles, the scattering i€/€ obtain

anisotropic. This leads to a distinction between the scattering . -

mean free path for photons and the transport mean free path. n(r)=—V-j(r)+«[n(r)+1]. (AS5)

Also, as suggested in Sec. I, the statistical and spatial dis- ) ) ]

tributions of the gain medium lead to corrections to the clas- e now insert the expansidA2) into the transport equa-

sical diffusion coefficient, and thereby affect the coherencdion (A1), multiply the equation bk, and sum ovek. We

properties. A more general, nonlinear multiple-light- obtain

scattering theory is necessary to elucidate the coherence

Rbre, we use the notatidy= (1/4) [ dk.

properties of the random laser and to fully describe the }: :_E — _E Canas (B L7 i i
strong scattering regime of incipient photon localization J(N="3zvnn-¢ kEk kWi (k=k") () + Ig](r)'
(I <N\) [33]. In this regime, our model suggests the possi- (AB)

bility of enhanced coherence for the amplified light.
Here, |§lEKN(r)/C is the gain length. Using now that

ACKNOWLEDGMENT 2 Wi kv is independent ok [see the definitiori2.27)] , and

also thatSgk(k-j)=(1/3)j, the first term in the sum on the

This work was supported in part by the Natural Science§- ht-hand side of Ea(A6) b 12, we oi. On th
and Engineering Research Council of Canada. ghhand si e.o % )A,ecomes ( A/@Aﬁ‘ Wil - PN The
other hand, using that i k'wig =Z¢/k-k'wg i, the sec-

ond term in the sum on the right-hand side of E&6) be-

comes (1/3E5k-k'wi .. Putting all these results together,
Eq. (A6) becomes

APPENDIX A: THE DERIVATION OF THE DIFFUSION
EQUATION

In this appendix, we derive the diffusion equation describ-
ing light propagation in an active random medium from ra-
diative transfer theory.

Consider the transport equati¢®.26) for the mean num-

ber of photonsng(r,t), in the vicinity of a pointr and at  Here, |* =c7 is the transport mean free path, related to the

1. c__ 1 1
EJ(r)——§Vn(r)—FJ(r)+GJ(r). (A7)

time t and traveling in the direction of the wave vectar scattering properties of the medium by the scattering rate
(1) = — ck- VAR(r) + X Wigo [T (1) —Tig(1)] T’lzg Wik (1—k-k"). (A8)
k/
+ k[NR(r)+1IN(r). (A1) Equations(A5) and (A7) represent the basic equations of

the diffusion theory. By adiabatically eliminating the current

Here,w; i+ is the elastic scattering rathi(r) represents the | from Eq. (A7), and inserting the corresponding expression
number of excited atoms at positionandx is the isotropic  into Eq. (A5), they are reduced to the diffusion equation
radiative rate. _ o

One derives the diffusion equation from the transport n(r)=D VZn(r)+ «N(r)[n(r)+1]. (A9)
equation(Al) by making the diffusion approximation, which
consists in expandingi(r) into spherical harmonics and Here, D=c/3(11* —1/) is the diffusion coefficient. For
keeping only the first two terms of the expans{@9]: I*<lq, the diffusion coefficient becomds=cl*/3.
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APPENDIX B: THE DERIVATION OF TRANSPORT

C = _ bNk.N . . .
EQUATION FROM MASTER EQUATION K, nk(r)—En&‘NnkPrk , Is obtained by multiplying the

master equatiof3.3) by ny and summing oveng, n andN.
The equation obeyed by the average number of photons ihe terms corresponding to relaxation processes and pump
the cell atr and traveling in the direction of the wave vector sum to zero, and we obtain:

(1) = = { NN [N(1) + 1]~ [ng(r) + 11N(1) = ng(HN(H)N(D) +ng(NN(D}F+wW{ = ng(nn(r) + (1) [n(r) — 1]

+ng(r)n(r)—n§(r)}+w

[AR(r)+ 1]Ap(r— a;>+ﬁg<r>( > M(r— am) —ﬁ;(r)( > Ni(r— am)

k" #k k'
+ 2 Wi M)+ > g (PRI pRent (B1)
K #k ng.n.NiZgng=n
|
For isotropic scatteringyvii, =W=const, and the last group where N(0) can be obtained from E¢5.1) as
of terms in Eq.(B1) can be written as ()
) ) MOy = ———. (C2
W X nf(n—(ng—1)PM YN ng(n—np PP ™Y Yr K
MmN On the other hand, the steady-state average number of ex-
o r— — B — o cited atoms in the system(r), corresponding to the pump-
—V\I[n(r)—nk(r)]—lz%:ﬁ Wnk,(r)—é:,r( Wik Mo (). ing rate’P(r) for which f(0,r)=1 can be expressed as
(B2 _ P(r)
N(r)=——"———. (C3
Equations(B1) and (B2) lead to Ynrt &[N(r)+1]

Here,n(r) is the average number of photons in the system.

k(1) = k[Ng(r) + LIN(r) + W[ —ng(r) +Ni(r = &) Using Egs.(C2) and(C3), we can expresa/(0yr) as

+ 2 Wi [ (1) —Tg(r)]. (B3) NO;)=N(r)[L1+Bn(r)]. (C4
kK’
] . [ Here, B=k/(k+ yn,).

Using now the mean-field approximatiomi(r)N(r) According to the discussion presented in Sec. IIl, we have
=ni(r)N(r), the expansion _ o

. N - IDVZn(r)|=«N(r)[n(r)+1]<wn(r), (C5)

N(r = &) =ni(r) = & Vni(r), (B4)

and also

(where&;=1*k), and thaw=c/I*, Eq.(B3) takes the form — _ — _
(2.26. «kN(D[1+8n(r)]<&N(r)[n(r)+1]<wn(r). (C6)

As a result,xkN(0Or) and D Vfﬁ(r) in Eg. (C1) can be ne-

APPENDIX C glected compared withvn(r), and f(0,r) can be approxi-
Using the expressiofy.3), we obtain mated by
‘o «kN(Or) DV2n(r)+wn(r) - f(Or)~n(r). (C7
= + .. . .
(0r) w ' €Y Thus, the conditiorf(0,r)=1 impliesn(r)~1.
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