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Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium
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Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 26 September 2003; published 14 April 2004!

We derive the photon-number probability distribution and the resulting degree of second-order optical
coherence for light emission from a uniformly distributed active species within a multiple-light-scattering
medium. This is obtained from a master equation describing the probability distribution for photons in the
vicinity of positionr , traveling with a wave vectork, related, in turn, to a coarse-grained average of the optical
Wigner coherence function. Using a simple model for isotropic, spatially uncorrelated scatterers, this reduces
to a generalization of the master equation of a conventional laser in which the medium behaves like a random
collection of low-quality factor cavities that are coupled by photon diffusion between a given cavity and its
neighbors. Laserlike coherence, on average, is obtained in the random laser above a specific pumping thresh-
old. Photon-number statistics above and below the lasing threshold are computed by first assuming that the
atomic response to the local electromagnetic fields is nearly instantaneous. Corrections to this simple model,
arising from nonadiabatic atomic dynamics, are then estimated. The dependence of the photon statistics on
scatterer density, gain concentration, and position within a sample reveal that, on average, increase of the
scattering strength~decrease of the photon transport mean free path! in the medium leads to a sharper peak in
the local photon-number distribution, characteristic of increased local coherence in the optical field. We also
evaluate the coherence of the output field at points outside the random-laser medium. This is a weighted
average of radiation emitted at different positions in the sample, exhibiting varying degrees of coherence due
to variations in the local pumping intensity.

DOI: 10.1103/PhysRevE.69.046603 PACS number~s!: 42.55.Zz, 42.25.Dd, 42.55.Ah
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I. INTRODUCTION

The prediction@1# and observation@2# of laserlike emis-
sion from multiple-light-scattering media with gain have pr
vided a compelling starting point for the investigation
disordered dielectric microstructures as alternative source
coherent light emission. Numerous experimental studies
the emission carried out in colloidal samples@3–6# and op-
tically @7# and electrically@8# pumped semiconductor pow
ders have confirmed that the emission from these multi
light-scattering dielectric microstructures exhibits spec
and temporal properties characteristic of a multimode la
oscillator. These observations include the existence of a w
defined threshold pump intensity above which the emiss
at particular frequencies increases more rapidly with pu
intensity than below threshold and the concomitant colla
of the emission linewidth and pulse duration shorteni
More recent experiments@9,10# have demonstrated, for th
first time, that light emitted from random amplifying medi
above this threshold, exhibits coherence properties chara
istic of true laser light.

A number of theoretical models have been developed
describe lasing in random media. Specific experimental
tures of the spectral and temporal properties of the emis
can be explained by the ring laser model@5#, diffusion mod-
els @11# describing the random walk of photons@12#, and
one-dimensional models@13# based on the time-depende
Maxwell-Bloch equations. None of these models, howev
has treated the coherence properties of the emitted light.
ditionally, the photon statistics of a laser has been inve
gated using two distinct but equivalent methods@14#. One is
based on the Langevin noise operator formalism and
other is based on a master equation approach. Early the
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ical models@15,16# developed to investigate the radiatio
statistics of a random laser applied the Langevin appro
~Boltzmann-Langevin equation for photons!, adapted to the
case of a random amplifying medium. However, the prese
of a diffusion term in the equation describing the fluctuatio
of the photon number made it difficult to apply this approa
to nonlinear systems. Due to the presence of the nonlin
coupling between the atomic and radiation variables, an a
lytical solution was not obtained. On the other hand, a dir
numerical solution is complicated due to the presence
Langevin noise operators. As a result, the photon statis
was investigated only for a system approaching the la
threshold from below. Recently@17#, some moments of the
photon distribution of a random laser were evaluated, usin
model for the ‘‘chaotic’’ nature of the cavity modes~de-
scribed by a random cavity escape rate!, combined with a
master equation formalism. However, this study did n
evaluate higher order factorial moments of the photo
number distribution, essential to understanding the emiss
coherence properties. The fluctuation properties of the ra
tion of a random laser, modeled as a chaotic cavity, have
been considered@18# using a noise-operator formalism and
full nonadiabatic treatment of the nonlinear response of
atomic system.

In this paper, we derive the coherence properties of
random laser using a simple approach, based on the m
equation formalism, generalized to describe ensem
averaged transport properties of light in a multiple-ligh
scattering medium. This makes use of a rate equation m
for the light emitting atoms in the medium, known to provid
an accurate picture of the laser operation for both conv
tional and random lasers. In previous work@11#, the emission
of radiation in random amplifying media is described by
©2004 The American Physical Society03-1
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set of position-dependent generalized laser equations fo
optical energy density and the atomic populations. Here,
multiple-scattering character of the transport is described
a diffusion term that replaces the cavity-loss term in a c
ventional laser. The rate equations include a spontane
emission term that partially accounts for the quantum fl
tuations. However, this formalism does not describe the
herence properties of the emission, since it does not inco
rate the probabilistic character of the photon emission
absorption processes. Photon statistics and probability ca
described using a birth-death~master! equation for photon
distribution function@19#. Such an equation should repro
duce, at least in some order of approximation, the rate eq
tions for average optical energy density and atomic pop
tion. In our study, we generalize the master equation
photon statistics in a conventional laser to the case of a
dom laser by replacing the cavity-loss terms by terms t
describe radiative transfer and multiple light scattering. T
is obtained from a microscopic analysis of the nonline
wave equation for electromagnetic transport, in which
nonlinearities are treated in a simple mean-field approxim
tion and transport is described in an ensemble-averaged w
diffusion approximation. This description attributes feedba
and laser activity to wave transport mediated by highly pr
able realizations of the scattering potential represented by
ensemble-averaged diffusion coefficient. In reality, there m
be large local fluctuations about the average which also c
tribute to lasing at a local pump threshold that is consid
ably less than average pump threshold for the entire med
These highly improbable configurations of the random m
dium may cause isolated regions of a large sample to exh
lasing prior to the entire medium@20#. In our mean-field
theory, we neglect these highly improbable, ‘‘localized’’ co
tribution. Our model leads to a set of generalized mas
equations for photons at different positions within t
sample, and allows evaluation of the average emission
herence. This model enables direct description of the sys
in terms of the experimentally defined parameters, such
scatterer density and gain concentration.

The paper is organized as follows. In Sec. II, we revi
the multiple-light-scattering theory of light in random amp
fying media. In Sec. III, we derive the master equation fo
random laser. The master equation is solved in the ste
state limit by adiabatically eliminating the atomic degrees
freedom in Sec. IV. Here, we calculate the photon distrib
tion function for spatial modes inside the sample. The pho
statistics for light emitted inside the sample as well as
light measured by a detector outside the sample is then c
puted in Sec. V. In Sec. VI, we present a qualitative phys
interpretation of the numerical results obtained. In Sec. V
we discuss the effects of nonadiabaticity of the atomic
sponse in the ‘‘bad cavity’’ regime, and in Sec. VIII w
present concluding remarks.

II. MEAN-FIELD THEORY FOR WAVE PROPAGATION
IN RANDOM AMPLIFYING MEDIA

The physical system we study consists of a random
electric medium uniformly doped with resonant atoms. T
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atomic system is incoherently pumped by a monochrom
optical beam. For intense optical pulses containing ma
photons, the quantum mechanical nature@21# of the electro-
magnetic field is neglected, and a semiclassical treatmen
the radiation is adequate. In this case, the coupled atom-
system is described by the Maxwell-Bloch equations@22#.
For simplicity, we consider a scalar fieldE(r ,t) which we
associate with the electric field of light. It is expected@23#
that in the multiple-scattering regime the vector nature of
electromagnetic field becomes unimportant, as the scatt
light becomes depolarized. The propagation of the elec
magnetic radiation through the nonlinear optical medium
described by the scalar wave equation

¹2E~r ,t !2
e1~r !

c2

]2E~r ,t !

]t2
5

4p

c2

]2Pnl
atoms~r ,t !

]t2
. ~2.1!

Here,e1(r ) is a randomly varyinglinear dielectric function,
whereasPnl

atoms(r ,t) describes thenonlinearmacroscopic po-
larization density of the medium due to presence of reson
atoms.

The linear dielectric function

e1~r !5e01efluct~r ! ~2.2!

has an average valuee0 and a randomly fluctuating par
e f luct(r ), which satisfies^efluct(r )&ens50. Here, ^ &ens de-
notes a statistical averaging over all possible realizations
the dielectric microstructure. We note thatefluct(r ) is linear
and in general complex, and may account for inhomog
neous linear absorption effects.

The nonlinear polarization due to the amplifying mediu
can be expressed~after an adiabatic treatment of the atom
system! as @22#

Pnl
atoms~r !5x~r !E~r !. ~2.3!

Here, the complex optical susceptibilityx(r ) is given by

x~r !5x0DN~r !/V. ~2.4!

x0 is a complex quantity which depends on the detailed
croscopic characteristics of the gain medium@24#. DN(r ) is
the local atomic population inversion~difference in popula-
tion of atoms in the excited state and ground state of the la
transition!. DN(r ) depends on the pumping rateP~r ! ~which
determines the excitation rate and which decreases
depth from the sample surface due to both absorption
scattering! and the emission field intensityuE(r )u2 ~which
governs stimulated emission!. Here, we model the gain me
dium as a four-level system~see Fig. 1!, in which the laser
transition takes place between levelsu3& and u2&. We also
assume that levelsu4& and the lower level of the laser trans
tion, u2&, are unpopulated due to rapid decay to lower leve
In this case, the population inversion is given by@22#

DN~r !5
P~r !

11
uE~r !u2

I sat

. ~2.5!
3-2
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Here, the pumping rateP~r ! is in units of spontaneou
emission rate of the laser transition, andI sat is the saturation
intensity@24#. In what follows, we will make use of a simpl
mean-field theory, in which uE(r )u2 is replaced by
^uE(r )u2&ens. In a homogeneous medium with a homog
neous pumping, this is independent of the positionr .

In a multiple-scattering medium, the propagation dire
tion of light is continuously changed. In this case, one
fines the transport mean free pathl * as the average distanc
the light travels in the random medium before its direction
randomized. For length scales larger than the transport m
free path, the phase correlation of waves can be ignored,
the wave equation~2.1! describing light transport in the ran
dom medium is replaced by a diffusion equation for the wa
field intensity, as we will show below.

The coherence properties of the electromagnetic field
described by the Wigner coherence function, which rep
sents the wave analogous of the specific intensity in radia
transfer theory. The specific intensityI spec(R,k) describes
the number of photons in the vicinity of the pointR, travel-
ing in the directionk̂. The uncertainty principle places
fundamental limit of how accurately bothR and k can be
simultaneously defined and this requires that we interpreR
andk as ‘‘coarse-grained’’ variables. In contrast, the Wign
function is defined as the Fourier transform of the elec
field autocorrelation function,

I ~R,T;k,v![E drdteik•r e2 ivt^E* ~R1r /2;T1t/2!

3E~R2r /2;T2t/2!&ens. ~2.6!

Here, E(r ;t) is the complex electric-field amplitude of th
propagating radiation field. We note that the Wigner funct

FIG. 1. Laser scheme for random laser. The transition 1→4
represents the pumping process, 3→2 ~continuous line! corresponds
to laser emission, the dashed line represents the relaxation pro
and the wiggly arrows represent the rapid nonradiative decay
cesses.
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I (R,T;k,v) defined in Eq.~2.6! is not necessarily positive
definite and differs from the specific light intensity of radi
tive transfer theory, which is always positive definite. Ho
ever, it can be demonstrated@25# that a suitable coarse grain
ing of the Wigner distribution leads to a positive distributio
which can be identified with the specific light intensity.

Consider an extended source~corresponding, in this case
to spontaneous emission of the excited atoms! in the vicinity
of point R8 containing the pointsr18 and r28 @R8[(r18
1r28)/2#, and at timeT8[(t181t28)/2. The electric field gen-
erated by the source at pointr 8 and timet8 is denoted by
E0(r 8;t8). The resulting field is measured by an extend
detector in the vicinity of pointR[(r11r2)/2 and at time
T[(t11t2)/2. The resulting field autocorrelation function
given by

^E* ~r1 ;t1!E~r2 ;t2!&ens

5
v4

c4 Er18 ,r28 ,t18 ,t28
^G1~r1 ,r18 ;t1 ,t18!G2~r2 ,r28 ;t2 ,t28!&ens

3E0~r18 ;t18!E0~r28 ;t28!. ~2.7!

Here, we use the notation*dr[* r , *dt[* t , *dk/(2p)3

[*k , and *dv/2p[*v . The Green’s functions
G6(r ,r 8;t,t8) in Eq. ~2.7! are the advanced~with respect to
t50) and retarded solutions of the wave equation

F¹ r
22

e~r !

c2

]2

]t2GG~r ,r 8;t,t8!5d~r2r 8!d~ t2t8!.

~2.8!

In a uniform medium, the advanced and retarded Gree
functions correspond to the outgoing~1! and the incoming
~2! waves associated with a point source. Sincee~r ! is as-
sumed to be time independent, it follows thatG6 depend
only on the difference between its two time arguments. T
corresponding ensemble-averaged Green’s functi
^G6&ens[Gens

6 describe an ‘‘effective’’ homogeneous me
dium. It follows thatGens

6 (r ,r 8;t,t8)5Gens
6 (r2r 8;t2t8).

It follows from Eqs.~2.6! and~2.7! that the Wigner func-
tion can be expressed as

I ~R,T;k,v!5E
R8,T8,k8,v8

G~R2R8,T2T8;k,k8,v,v8!

3I 0~R8,T8;k8,v8!. ~2.9!

Here,I 0(R8,T8;k8,v8) is the source field Wigner coherenc
function, and the transport kernel G(R2R8,T
2T8;k,k8,v,v8) is given by

ss,
o-
3-3
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G~R2R8,T2T8;k,k8,v,v8![E
r ,r8,t,t8

exp@2 ik•r1 ik8•r 8#exp@ ivt2 iv8t8#^Gens
1 ~R1r /2,R81r 8/2;T1t/2,T81t8/2!

3Gens
2 ~R2r /2,R82r 8/2;T2t/2,T82t8/2!&ens. ~2.10!
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In the case of a random amplifying medium
I 0(R8,T8;k8,v8) is proportional to the excited atomic popu
lation at positionR8 and timeT8. The total dielectric func-
tion

e~r ![e1~r !14px~r ! ~2.11!

contains both the nonlinear, intensity-dependent comp
part x, and the linear parte, with random spatial fluctua
tions. As a consequence, applying the usual perturba
multiple-scattering theory@23,25,26#, with e(r )2e0 as the
perturbation, becomes cumbersome. In what follows,
simplify the problem by using a mean-field approximatio
in which we assume a nearly homogeneous population in
sion. More precisely, we assume that the spatial variation
P(r ) occur slowly over length scales much longer than
transport mean free path. In this case, we can replaceuE(r )u2
in Eq. ~2.5! by a corresponding ‘‘coarse-grained’’ avera
value I avg5^uE(r )u2&coarse where ^ &coarse[(1/V)*dr , and
the sampling volumeV corresponds to the scale over whic
P(r )5P is considered constant. This mean-field approxim
tion for the nonlinear part of the wave equation allows us
perform perturbation theory@in the fluctuating linear part o
the dielectric constantefluct(r )] about the uniform partē0
[e01x0P/(11I avg /I sat). The resulting perturbation theor
is the standard multiple-scattering theory for an effective
ear medium@26,25# with absorption and gain.

We define

G~Q,V;k,k8,v![S c

v D 4E
R,T

exp~2 iQ•R!

3exp~ iVT!G~R,T;k,k8,v!.

~2.12!

Neglecting interference of different radiative transfer pat
perturbation theory@23,27# leads to an integral equatio
~Bethe-Salpeter equation! for the transport kernel:

G~Q,V;k,k8,v!

5Gens
1 ~Q/21k,V/21v!Gens

2 ~Q/22k,V/22v!

3Fdk,k81E
k9

B̃~k2k9!G~Q,V;k9,k8,v!G . ~2.13!

Here,

Gens
6 ~k,v![E

r ,t
exp~2 ik •r ! exp~ ivt ! Gens

6 ~r ,t !, ~2.14!
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and B̃(k) is the Fourier transform of the complex dielectr
autocorrelation function

B~r2r 8![S v

c D 4

^efluct~r !efluct* ~r 8!&ens. ~2.15!

This is a generalization of the ‘‘ladder approximation’’ fo
the summation of the scattering processes, well known
electronic transport@27,28#, to include the effects of spatia
correlations in the random potential and intensity-depend
~mean-field! imaginary part of the dielectric function. In th
presence of absorption and gain, the mean-field sin
photon Green’s functions in Eq.~2.13! are given by

Gens
1 ~k,v!5

1

v1
2

c2
ē02k22S1~k,v!

, ~2.16a!

Gens
2 ~k,v!5

1

v2
2

c2
ē0* 2k22S2~k,v!

, ~2.16b!

wherev65v6 i01, ē0 is the complex homogeneous part
the dielectric function, and the self-energies

S1~k,v!5E
k8

B̃8~k2k8!Gens
1 ~k8,v!, ~2.17a!

S2~k,v!5E
k8

B̃8* ~k2k8!Gens
2 ~k8,v! ~2.17b!

describe the effect of the scattering. Here,B̃8(k) is the Fou-
rier transform of the dielectric autocorrelation function

B8~r2r 8![S v

c D 4

^e f luct~r !e f luct~r 8!&ens. ~2.18!

We note that, in the general case, whene f luct(r ) is a complex
quantity, the dielectric function autocorrelation functionsB
and B8 are distinct. For uniform absorption,B5B8. Using
the expressions, Eq.~2.16!, for the Green’s functions, Eq
~2.13! can be further transformed to the general form
3-4
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22
V

c

v

c
~ ē01 ē0* !G~Q,V;k,k8!2

2

c2 S V

2 D 2

~ ē02 ē0* !

3G~Q,V;k,k8!522k•QG~Q,V;k,k8!

1GG~Q,V;k,k8!1DGens~Q,V,k!

3Fd~k2k8!1E
k9

B̃~k2k9!G~Q,V;k8,k9!

2DS~Q,V,k!G~Q,V;k,k8!G . ~2.19!

Here and throughout the remainder of the paper, we omit
v dependence of the propagatorG and specific intensityI for
simplicity of notation. The gain coefficientG in Eq. ~2.19!
corresponding to the presence of the amplifying medium
defined by

G[
v1

2

c2
ē02

v2
2

c2
ē0* 58p i

v2x09

c2V
DN, ~2.20!
s
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n
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a
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DGens~Q,V,k![Gens
1 ~Q/21k,V/21v!2Gens

2 ~Q/2

2k,V/22v!, ~2.21!

and

DS~Q,V,k![S1~Q/21k,V/21v!

2S2~Q/22k,V/22v!. ~2.22!

Equation~2.19! describes wave propagation in a disorder
active medium. It represents the generalization of the w
propagation equation for a passive random medium, stud
in the literature@25#.

The transport equation obeyed by the Wigner cohere
function I (R,T;k) is derived from Eq.~2.19! by performing
an inverse Fourier transform with respect toQ andV, mul-
tiplying the resulting equation byI 0(R8,T8;k8), and then
integrating overR8, T8, andk8. We obtain
2
v

ic2
]TI ~R,T;k!52

2

i
k•¹RI ~R,T;k!1GI ~R,T;k!1E

R8,T8
DGens~R2R8,T2T8;k!I 0~R8,T8;k!

1E
R8,T8,k8

DGens~R8,T8;k!B̃~k2k8!I ~R2R8,T2T8;k8!

2E
R8,T8,k8

DS~R8,T8;k!I ~R2R8,T2T8;k8!. ~2.23!
se-

n

Here, we have considered the long time behavior, and u
V!v. Also, without loss of generality, we have set the re
constant part of the dielectric function equal to 1. For a r
dom dielectric medium withhomogeneous linear absorption,
B(r )5B8(r ) are real quantities, and one can replace the fi
term in Eq.~2.23! with

2E
R8,T8,k8

DGens~R8,T8;k8!B̃~k2k8!I ~R2R8,T2T8;k8!.

~2.24!

We note that the generalized transport equation~2.23!
is formally analogous to the classical Boltzmann equat
@29#. The conventional radiative transport equation c
be obtained from Eq.~2.23! by neglecting the nonlocal
spatial and temporal effects, arising from the phase corr
tions in the wave field@25#. Formally, this corresponds t
neglecting theQ andV dependence ofDGens(Q,V,k), i.e.,
DGens(Q,V,k)→DGens(0,0,k) @25#. Within this approxi-
mation, Eqs.~2.23! and ~2.24! lead to
ed
l
-

al

n
n

a-

]TI ~R,T;k!

52c k̂•¹ I ~R,T;k!1
c2i

2v
G I ~R,T;k!

1
c2i

2v
DGens~0,0,k!I 0~R,T,k!

1
c2i

2vEk8
DGens~0,0;k!B̃~k2k8!I ~R,T;k8!

2
c2i

2v S E
k8

DGens~0,0,k8!B~k2k8! D I ~R,T;k!.

~2.25!

We now make the identification between the coar
grained Wigner coherence functionI (R,T,k) and mean
number of photons,nk̂(R,T), in the vicinity of a pointR and
at timeT and traveling in the direction of the wave vectork̂,
and the notational changeR↔r andT↔t. Using this inter-
pretation, Eq.~2.25! leads to Boltzmann transport equatio
3-5
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@29# with gain, in which the source term is identified wit
spontaneous emission from the excited dye molecules:

ṅ̄k̂•~r !52c k̂•“n̄k̂~r !1(
k̂8

wk̂,k̂8@ n̄k̂8~r !2n̄k̂~r !#

1k@ n̄k̂~r !11#DN̄~r !. ~2.26!

Here, the scattering rateswk̂,k̂8 and wk̂8,k̂ are related to the
statistical properties of the dielectric background accord
to

wk̂,k̂85wk̂8,k̂[
1

2
i
c2

v
DGens~0,0,uku!B̃~k2k8!.

~2.27!

In our model, the scattering is assumed elastic and isotro
As a result, the Green’s functions only depend on the m
nitude of the photon wave vector. The role of anisotro
scattering and nonlocal wave correlations will be the s
ject of a future study. In Eq.~2.26!, k5cse /V[4pvx09/V
is the radiative transition rate (se is the stimulated emis
sion cross section!, and we make the identifica
tion (c2/2v) iDGens(0,0,uku)I 0(r ,uku)[kDN̄(r ) @note that
DGens(0,0,uku)52i ImS1(uku) is purely imaginary#. In the
transport equation~2.26!, we have restored the possibility o
slow spatial variations in the gain coefficient by identifying
with the position-dependent average atomic population
version,DN̄(r ). This population inversion is obtained from
the Einstein rate equation for the atomic system. In the fo
level system described above~see Fig. 1! ~we assume tha
the lower laser level is not populated due to rapid decay
lower levels!, the average atomic population inversion
equal to the average atomic populationN(r ) in the excited
state of the laser transition. This population obeys the eq
tion

Ṅ̄~r !5P~r !2gnrN̄~r !2k@ n̄~r !11#N̄~r !. ~2.28!

Here, we have assumed isotropic atomic emission,
n̄(r )5( k̂n̄k̂(r ) is the average number of photons emitted
all directions.gnr in Eq. ~2.28! is the rate of nonradiative
decay of the laser transition.

For physical length scales larger than the transport m
free path, one can further make thediffusion approximation

@29#. Formally, this consists in expanding thek̂-dependent
functions in the transport equation~2.26! in spherical har-
monics, and keeping only the first two terms of the exp
sion. This leads to the diffusion equation for the photo
propagating in all directions,n̄(r )5( k̂nk̂(r ) ~see Appendix
A!:

ṅ̄~r !5D“ r
2n̄~r !1k@ n̄~r !11#N̄~r !. ~2.29!

Here, D5cl* /3 is the classical diffusion coefficient (l * is
the transport mean free path for photons!. Equation~2.29!
describes the average properties of the random amplify
medium, and leads to a physical picture in which the en
medium, on average, is either below or above a las
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threshold. This is in contrast with other studies@20#, which
claim that lasing comes from isolated and highly improbab
spatially localized, fluctuations away from the averag
While such effects may occur in the real physical system,
mean-field theory description leading to a simple diffusi
equation~2.29! neglects these isolated, fluctuation contrib
tions to lasing. We also note that in the general case o
random, nonuniform, distribution of active material with
the sample, the scattering rates may depend on the statis
distribution of both the dielectric background and gain m
dium. This appears formally as a dependence of the trans
mean free path and associated diffusion coefficient on
absorption and gain@30#.

III. MASTER EQUATION FOR A RANDOM LASER

We now construct a probabilistic model for photo
number distribution function associated with Eqs.~2.26! and
~2.29!. In particular, we demonstrate that both these eq
tions can be recaptured within a suitable factorization
proximation for the master equation for the photon proba
ity distribution. Moreover, we demonstrate that lasi
occurs, on average, throughout the illuminated random
dium when local pumping exceeds a specific threshold. T
master equation describes the coherence properties o
emitted light below and above threshold. This is inferr
from the degree of second-order coherenceg(2)(0) of the
local photon distribution. Our model predicts that light em
sion above threshold not only exhibits a laserlike inp
output intensity characteristic, but that the emission exhib
coherence properties similar to a traditional laser.

A. Master equation for the radiative transfer model with gain

We partition the sample into a collection of hypothetic
cubic cells of side lengthl * centered on the points of a cub
lattice with lattice constanta5 l * . These cells exchange pho
tons with the neighboring cells, and the number of photo
within each cell fluctuates in time due to atomic emissi
and absorption events. Each cell is labeled by a coa
grained position vectorr . Assuming thatl * @l, it is possible
to simultaneously associate this approximate positionr and
arbitrary wave vectork with photons in the medium. Eac
cell labeled byr is characterized by the joint distributio
function Pr

. . . ,nk̂ , . . . ,N describing the probability of having a

state withnk̂ photons of wave vector (v/c) k̂ andN atoms in
the excited state.Pr

. . . ,nk̂ , . . . ,N changes with time due to ab
sorption and emission of photons by atoms within the c
nonradiative decay of the excited atoms, populating the
cited state of the laser transitions by a pumping mechani
as well as transport of photons to and from neighboring ce
Here, we assume that the ground state of the laser trans
is not populated, and neglect reabsorption of the emit
photons. As in a conventional laser master equation desc
tion, the rate at which photons are added to the cell by
diative emission whennk̂ photons propagating in the direc
tion k̂ are already present in the cell is given byk(nk̂

11)NPr
. . . ,nk̂ , . . . ,N , wherek is the single-atom spontaneou
3-6
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emission rate. This leads to a state with (nk̂11) photons

propagating in the directionk̂ and a corresponding decay o
Pr

. . . ,nk̂ , . . . ,N with time. The factor of (nk̂11) in the overall
emission rate is the usual enhancement factor whennk̂11
indistinguishable bosons appear in the final state@31#. On the
other hand,Pr

. . . ,nk̂ , . . . ,N can increase with time if there ar
initially ( nk̂21) photons of wave vectork in the background
and N11 excited atoms, and a single photon is emitted
one ofN11 atoms. The rate of increase ofPr

. . . ,nk̂ , . . . ,N in

this case is given byk nk̂ (N11)Pr
. . . ,nk̂21, . . . ,N11 . This

must then be summed over all possible choicesk̂ of the
photon propagation directions.

Similarly, the nonradiative relaxation process of t
atomic system will cause a decay ofPr

. . . ,nk̂ , . . . ,N at a rate

gnrN Pr
. . . ,nk̂ , . . . ,N , if there are initialN atoms in the excited

state and one of them nonradiatively decays to the la
ground state, and an increase ofPr

. . . ,nk̂ , . . . ,N , if there are
initially N11 excited atoms in the cell. The rate of th
increase is (N11)Pr

. . . ,nk̂ , . . . ,N11 . On the other hand, the
number of atoms in the excited state in the cell increases
result of the pumping process, at the pumping rateP~r !.
This, in turn, leads to a decay ofPr

. . . ,nk̂ , . . . ,N , at a rate

P(r )Pr
. . . ,nk̂ , . . . ,N , if there are initiallyN atoms in the ex-

cited state, and to an increase, at a rate
P(r )Pr

. . . ,nk̂ , . . . ,N21 , if there are initiallyN21 atoms in the
excited state.

The new dynamics of the photon probability distributio
in a random medium arise from the inflow and outflow
photons from a given cell. In a simple model of isotrop
random scattering, the photon of wave vector (v/c)( k̂) trav-
els ballistically in the directionk̂ at the speed of light,c, over
the lengthl * after which its direction is randomized by sca
tering into a neighboring cell. The rate for this process isw

5c/ l * . If there are initiallynk̂ photons in the statek̂ in the
cell at r , then the outflow of a photon would cause decay
Pr

. . . ,nk̂ , . . . ,N . Since each of thenk̂ photons is leaving the

cavity at the ratew, the overall decay rate ofPr
. . . ,nk̂ , . . . ,N is

given by2wnk̂Pr
. . . ,nk̂ , . . . ,N . On the other hand, if there ar

initially ( nk̂11) photons in the cell, the outflow of a sing
photon will enhancePr

. . . ,nk̂ , . . . ,N . This enhancement coul
arise from any of the (nk̂11) photons initially present and
the rate of increase ofPr

. . . ,nk̂ , . . . ,N is given by w(nk̂

11)Pr
. . . ,nk̂11, . . . ,N .

In a conventional high-quality factor laser cavity, consi
ing of a pair of mirrors,w is the analog of the leakage rate
light from the laser. While a conventional laser has a la
number of extraneous nonlasing modes, in the random la
all modes can contribute equally on average to the ove
lasing process. Light scattered in a random direction sim
enters a neighboring cell which participates with compara
probability to the buildup of laser radiation. In other word
the rateg las of photons emitted by atoms into a lasing mo
is equal to the total ratek of photons spontaneously emitte
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The actual lasing efficiency of excited atoms, however,
diminished, in our model, by nonradiative relaxation d
scribed by a rategnr , and we define an efficiency factorb
[g las /(k1gnr). Moreover, the efficiency is severely offse
by the fact that the cavity decay ratew is typically greater
than the spontaneous emission rate@32#. In the language of
conventional lasers, the cells of the random laser act as ‘‘
cavities.’’

The inflow of photons to the cell atr from the neighbor-
ing cell atr2dk̂ containingnk̂

8 photons occurs at a ratew nk̂
8 .

This rate must be weighted by the conditional probabil

P
r2dk̂

n
k̂
8 ,n8,N8 that there are in factnk̂

8 photons in the statek̂,

when there aren8 photons in all states andN8 excited atoms
in the cell at r2dk̂ . This leads to an increase i
Pr

. . . ,nk̂ , . . . ,N , provided that there are initiallynk̂21 photons

in the cell atr , and to a decrease inPr
. . . ,nk̂ , . . . ,N if there

are initially nk̂ photons in the cell atr . Overall, the rate
of increase ofPr

. . . ,nk̂ , . . . ,N due to the neighboring cell a

r2dk̂ is given by (n
k̂
8 ,n8,N8nk̂

8 w P
r2dk̂

n
k̂
8 ,n8,N8(Pr

. . . ,nk̂21, . . . ,N

2Pr
. . . ,nk̂ , . . . ,N), summed over all possible choicesk̂ of the

photon propagation directions. Here,dk̂5 l * k̂, and the con-
ditional probability Pr

nk̂ ,n,N is defined from

Pr
. . . ,nk̂ , . . . ,nk̂8 , . . . ,N as a sum~denoted by$nk̂8%) over all

states$ . . . ,nk̂ , . . . ,nk̂8 , . . . % with fixed value ofnk̂ , such
that ( k̂nk̂5n:

Pr
nk̂ ,n,N

5 (
$ nk̂8%k̂8Þ k̂

Pr
. . . ,nk̂ , . . . ,nk̂8 , . . . ,N . ~3.1!

Finally, the number of photons in the statek̂ may vary due
to the change of the direction of propagation of the phot
caused by scattering. The scattering of photons from stak̂
containingnk̂ photons to statek̂8 occurs at a ratewk̂k̂8nk̂ ,
since allnk̂ photons may scatter at a ratewk̂k̂8 . This process
results in the transfer of a photon from statek̂ to statek̂8,
and leads to a decay of toPr

. . . ,nk̂ , . . . ,N at a rate

wk̂k̂8nk̂Pr
. . . ,nk̂ , . . . ,nk̂ ,N . On the other hand,Pr

. . . ,nk̂ , . . . ,N in-

creases in time, if there are initiallynk̂11 photons in statek̂,
and one of them is scattered to statek̂8, provided that there
are nk̂821 photons in statek̂8. The corresponding rate o
increase of Pr

. . . ,nk̂ , . . . ,N in this case is

wk̂k̂8nk̂Pr
. . . ,nk̂11, . . . ,nk̂821, . . . ,N . This must then be summe

over all possible choices of photon propagation directionk̂
and k̂8. We note that we neglect here the nonlocal wa
correlations which could in principle arise in Eq.~2.23!. In
the case of very strong scattering such thatl * .l ~the
vacuum wavelength of photons!, the rate of change o
I (R,k) is influenced byI (R8,k8) even for uR2R8u> l * .
Moreover, in the incipient photon localization regime@33#,
strong wave-interference and correlation effects become
portant on scalesuR2R8u@ l * . In this case, even the ‘‘ladde
3-7
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approximation’’ @23# leading to Eq.~2.23! becomes inad-
equate. However, for present considerations we assume
l * @l. Consequently the scattering process does not a
the total number of photons propagating in all directions i
a

-
l
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given cell, nor is the photon distribution in a given cell in
fluenced nonlocally by neighboring cells.

Putting all the above processes together, we arrive at
master equation
d.
f prob-
ach cell
f

r

Ṗr
. . . ,nk̂ , . . . ,N

52k(
k̂

@~nk̂11!NPr
. . . ,nk̂ , . . . ,N

2nk̂ ~N11!Pr
. . . ,nk̂21, . . . ,N11

#

2gnr@NPr
. . . ,nk̂ , . . . ,N

2~N11!Pr
. . . ,nk̂ , . . . ,N11

#1P~r !@Pr
. . . ,nk̂ , . . . ,N21

2Pr
. . . ,nk̂ , . . . ,N

#

1wF2(
k̂

nk̂Pr
. . . ,nk̂ , . . . ,N

1(
k̂

~nk̂11!Pr
. . . ,nk̂11, . . . ,NG1w(

k̂
(

n
k̂
8 ,n8,N8

nk̂
8P

r2dk̂

n
k̂
8 ,n8,N8

3@Pr
. . . ,nk̂21, . . . ,N

2Pr
. . . ,nk̂ , . . . ,N

#1(
k̂,k̂8

wk̂k̂8@~nk̂11!Pr
. . . ,nk̂11, . . . ,nk̂821, . . . ,N

2nk̂Pr
. . . ,nk̂ , . . . ,nk̂8 , . . . ,N

#.

~3.2!

In writing the master equation~3.2!, we have used the weak scattering (l * @l) assumption that different cells are uncorrelate
This assumption is needed to factorize the joint probabilities involving photons in neighboring cells into products o
abilities involving individual cells. Such factorization has been made in terms describing the inflow of photons. Thus, e
can be regarded as an independent laser mode, in which the nonlinearity~saturation effects! may stabilize the total intensity o
the radiation above threshold.

Summing over all states with fixed value ofnk̂ such that( k̂nk̂5n in master equation~3.2! yields the master equation fo
the conditional probabilityPr

nk̂ ,n,N :

Ṗr
nk̂ ,n,N

52k$N~n11!Pr
nk̂ ,n,N

2~N11!@nk̂Pr
nk̂21,n21,N11

1~n2nk̂21!Pr
nk̂ ,n21,N11

#%2gnr@NPr
nk̂ ,n,N

2~N11!Pr
nk̂ ,n,N11

#

1P~r !@Pr
nk̂ ,n,N21

2Pr
nk̂ ,n,N

#1w@2n Pr
nk̂ ,n,N

1~nk̂11!Pr
nk̂11,n11,N

1~n112nk̂!Pr
nk̂ ,n11,N

#

1wF n̄k̂~r2ak̂!Pr
nk̂21,n21,N

1S (
k̂8Þ k̂

n̄k̂8~r2dk̂8!D Pr
nk̂ ,n21,N

2S (
k̂8

n̄k̂8~r2dk̂8!D Pr
nk̂ ,n,NG

1 (
k̂8Þ k̂

wk̂k̂8@~nk̂11!Pr
nk̂11,n,N

2nk̂Pr
nk̂ ,n,N

1nk̂8~Pr
nk̂21,n,N

2Pr
nk̂ ,n,N

!#. ~3.3!
-

free
Here, we have used the expressionn̄k̂(r2dk̂)

5(n
k̂
8 ,N8nk̂

8P
r2dk̂

n
k̂
8 ,N8 for the average number of photons prop

gating in thek̂ direction in the cell atr2dk̂ .
It is demonstrated in Appendix B that Eq.~3.3! repro-

duces the transport equation~2.26! within mean-field ap-
proximation(nk ,n,NnkNPr

nk̂ ,n,N
'n̄k̂(r )N̄(r ).

B. Master equation for the diffusion model with gain

For each cell centered atr , we define the photon prob
ability distributionPr

n,N describing the probability that a tota

number ofn photons are propagating in allk̂ directions and
N atoms are in their excited state,

Pr
n,N5(

nk̂

Pr
nk̂ ,n,N . ~3.4!
-

By summing overnk̂ in Eq. ~3.3!, we derive the master equa
tion for Pr

n,N :

Ṗr
n,N52k@~n11!N Pr

n,N2n~N11!Pr
n21,N11#

2gnr@NPr
n,N2~N11!Pr

n,N11#

1P~r !@Pr
n,N212Pr

n,N#

1w@2n Pr
n,N1~n11! Pr

n11,N#

1w@Pr
n21,N2Pr

n,N#(
k̂

n̄k̂~r2dk̂!. ~3.5!

For length scales much larger than the transport mean
path, one can use the approximation

n̄k̂~r2dk̂!.n̄k̂~r !2dk̂•¹rn̄k̂~r !. ~3.6!

Further, we employ thediffusion approximation~A2! for
n̄k̂(r ) to obtain
3-8
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(
k̂

n̄k̂~r2dk̂!5n̄~r !2
l *

c
¹r"j ~r !5n̄~r !1

1

w
D¹ r

2n̄~r !. ~3.7!

For the second part of Eq.~3.7!, we have used the steady
state currentj obtained from Eq.~A7!, where we have ne
glected terms of the orderl * / l g ( l g is the gain length defined
in Appendix A!. In Eq. ~3.7!, D5cl* /3 is the classical dif-
fusion coefficient. This leads to thediffusion master equation
for Pr

n,N :

Ṗr
n,N52k@~n11!NPr

n,N2n~N11!Pr
n21,N11#

2gnr@NPr
n,N2~N11!Pr

n,N11#1Pr@Pr
n,N212Pr

n,N#

1w@~n11!Pr
n11,N2nPr

n,N#1@D ¹ r
2n̄~r !1wn̄~r !#

3@Pr
n21,N2Pr

n,N#. ~3.8!

Thus, we obtain a set of master equations for the la
modes at different positions within the sample. Each eq
tion for a givenr ~depicted schematically in Fig. 2! is simi-
lar, at any given position, to the master equation for a sing
mode conventional laser@19#. In addition, the maste
equation for the random laser contains terms@the last group
of terms in Eq.~3.8!# that correspond to the increasing of th
photon number in a given cell due to the arrival of the ph
tons through diffusion from the neighboring cells. We no
that the rate of this process is always positive. The nega
diffusion term D ¹ r

2n̄(r ) can be expressed in steady-sta

limit from the diffusion equation~2.29! as 2kN̄(r )@ n̄(r )
11#. Using then thatk5cse /V ~wherese is the emission
cross section, andV is the volume of the sample!, this term
can be further expressed in terms of the absorption c
section sa absorption lengthl a5(saN0 /V)21 ~where N0

FIG. 2. Various transition processes described by the ma
equation of a random laser. The vertical arrows represent
photon-number conserving pumping~continuous line! and nonradi-
ative relaxation~dashed line! processes. The horizontal arrows re
resent the excited atom-number conserving inflow~right arrows!
and outflow~left arrows! of photons. The diagonal arrows corre
spond to spontaneous and stimulated emission, which increas
number of photons in a cell, and decrease the number of exc
atoms.
04660
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is the ground-state atomic population, assumed to be e
to the total atomic population!, and normalized excited stat
population Ñ(r )[N̄(r )/N0, as 2(se /sa)(c/ l a)Ñ(r )@ n̄(r )
11)]'2(c/ l a)n̄(r ). On the other hand, the termwn̄(z) is
of the order of (c/ l * )n̄(r ). This is greater than the absolu
value of the diffusion term, for values of the transport me
free path and absorption length (l a@ l * ), within the range of
validity of a diffusion model.

The master equation~3.8! determines the equations o
evolution for the average number of photons in the la
mode and excited atoms,n̄(r )5(n,NnPr

n,N and N̄(r )
5(n,NNPr

n,N , respectively:

ṅ̄~r !5D¹ r
2n̄~r !1kN~r !@n~r !11#, ~3.9a!

Ṅ̄~r !5P~r !2gnrN̄~r !2kN~r !@n~r !11#. ~3.9b!

Clearly, in the mean-field approximationN(r )n(r )
5N̄(r )n̄(r ), Eqs.~3.9a! and ~3.9b! reproduce the diffusion-
rate equations~2.28! and~2.29! used to describe the emissio
spectral and temporal properties of a random laser@11#.

IV. STEADY-STATE PHOTON DISTRIBUTION FUNCTION

Laser photon statistics are obtained from the photon
tribution functionPr

n5(NPr
n,N which describes the probabil

ity that n photons occupy the cell centered atr . In order to
obtain the master equation forPr

n , we sum overN in Eq.
~3.8!. The terms corresponding to pump and relaxation p
cesses sum to zero, and we obtain

Ṗr
n52$k~n11!N~n,r !Pr

n1@D ¹ r
2n̄~r !1wn̄~r !#Pr

n

2w~n11!Pr
n11%1$knN~n21,r !Pr

n21

1@D ¹ r
2n̄~r !1wn̄~r !#Pr

n212wnPr
n%, ~4.1!

Here,N(n,r )[(NN Pr
n,N/Pr

n is the number of excited atom
in the cell centered atr when preciselyn photons occupy the
cell.

For continuous wave pumping, we obtain that the stea
state is maintained by the balancing of transitions betw
neighboring photon states. This corresponds to setting
terms in curly brackets in Eq.~4.1! to zero, individually:

@k~n11!N~n,r !1D ¹ r
2n̄~r!1wn̄~r!#Pr

n5w~n11!Pr
n11 .
~4.2!

The factor by which the photon-number distribution fun
tions corresponding to two neighboring photon states di
from each other,

f ~n,r ![
kN~n,r !

w
1

D ¹ r
2n̄~r !1wn̄~r !

w~n11!
, ~4.3!

is always positive. As argued in Sec. III, the second term
Eq. ~4.3! is always positive.

The detailed balance equation for the random laser,
~4.2!, has the solution
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Pr
n5Pr

0)
k50

n21 FkN~k,r !

w
1

D ¹ r
2n̄~r !1wn̄~r !

w~k11!
G . ~4.4!

We note that calculating the photon distribution functi
Pr

n requires knowledge of the mean number of photo
n̄(r ), which, in turn, is determined byPr

n . The necessity of
knowing the average photon number in order to determ
the emission statistics is in our model a consequence of
assumption that optical modes in different cells are unco
lated. By factorizing the probability distributions at differe
positions, we obtain that the probability of photon arriv
into a spatial mode only depends on the average numbe
photons in the neighboring spatial modes. Here, we de
the statistics of the random laser by solving self-consiste
the rate equations obtained from Eqs.~3.9a! and~3.9b! in the
mean-field approximation together with Eq.~4.4!.

The photon distribution function defined in Eq.~4.4! ex-
hibits two types of behavior, depending on whetherf (0,r ) is
less than unity or exceeds unity. In the former case,Pr

n de-
creases withn. In the latter case,Pr

n increases withn until it
reaches a maximum and then decreases with further incr
ing of n. The transition between the two regimes determin
the threshold for the crossover in the statistical behavio
laser radiation. This transition is defined by the conditi
f (0,r )51, which takes the form

kN~0,r !1D ¹ r
2n̄~r !5w@12n̄~r !#. ~4.5!

On the other hand, it is straightforward to show~see Appen-
dix C! that the conditionf (0,r )51 impliesn̄(r ).1. Conse-
quently, the threshold condition~4.5! for the change in sta
tistics becomes

kN~0,r !1D¹ r
2n̄~r !50. ~4.6!

Equation~4.6! expresses the condition that the unsatura
gain kN(0,r ) equals the diffusion ‘‘cavity loss’’
2D ¹ r

2n̄(r ). This is the analog of the Schalow-Towne
threshold condition for random-laser action. Therefore,
our model of a random laser, the laser oscillation thresh
coincides with the photon statistics crossover point. This
sult is in good agreement with the experimental findin
@9,10#.

As discussed above, if the laser is operating above thr
old, the photon distribution function has a peak atn5ñ(r )
defined by the condition

Pr
ñ115Pr

ñ . ~4.7!

This is equivalent to

1

w
$D ¹ r

2n̄~r !1k N ~ ñ,r !@ ñ~r !11#%5ñ~r !2n̄~r !. ~4.8!

Here we have used that, above threshold,ñ(r )11.ñ(r ).
The only positive solutionñ of Eq. ~4.8! is ñ(r )5n̄(r ),
wheren̄(r ) is the mean-field solution of the steady-state ra
diffusion equation~3.9a!. This shows that, similar to the cas
of a conventional laser@34#, the average numbers of photon
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given by the rate equation and the peak photon number in
master equation for a random laser are the same ab
threshold.

V. STATISTICAL PROPERTIES OF THE EMITTED
LASER LIGHT

The statistical properties and coherence of the emitted
diation can be studied using the Fano-Mandel parameter@35#
F[@ n̄22n̄22n̄#/n̄, describing photon-number fluctuation
Here, n2(r )5(nn2Pn,r and g(2)(0)[(n̄22n̄)/(n̄)25F/n̄
11 is the well-known degree of second-order cohere
@36#. For chaotic~incoherent! light g(2)(0)52, whereas for
Poissonian~coherent! light g(2)(0)51. For a laser operating
well below threshold, in a weakly excited thermal state,
well as for a laser operating well above threshold, in a
herent state,F→0. In a conventional laser withb'1025,
the Fano parameter exhibits a sharp peak as a functio
pump intensity at the lasing threshold@19#. The large fluc-
tuations in the threshold region are indicative of a pha
transition. As the spontaneous emission factorb increases,
this peak becomes smaller and wider.

We obtain photon statistics and optical coherence defi
by F at various positionsr within the random-laser sampl
by evaluatingPr

n . To this end, Eq.~4.4! and the diffusion
equation~2.29! are solved self-consistently. Here, we use t
steady-state atomic excitation number,N(n,r ), obtained
from the rate equation for the atom number, similar to E
~2.28!. In the presence of a stationary photon distributionPr

n

~consistent with a four-level laser scheme described abo!,
this takes the form@34#

N~n,r !5
P~r !

@gnr1k~n11!#
. ~5.1!

We then calculate the average number of excited atom

N̄(r )5(n8Pr
n8N(n8,r ). Equation ~5.1! together with Eq.

~4.4! and the mean-field factorization of Eq.~3.9a! provides
a closed set of equations forPr

n and n̄(r ). The expression
~5.1! for the atomic excitation number corresponds to
‘‘adiabatic elimination’’ of the atomic variables. We note th
the typical ‘‘cavity decay rate’’w for a random laser is much
faster than the atomic transition ratesk. For example, for a
transport mean free pathl * 5100l, w corresponds to a pi-
cosecond time scale, whilek corresponds to a nanosecon
time scale. As such, the adiabatic approximation is not
orously justified. However, this leads to a much simp
analysis, which qualitatively agrees with the more comp
cated numerical analysis of the nonadiabatic atomic
sponse. The difference between the results for the pho
statistics obtained using a full master equation treatm
based on Eq.~3.8!, and those obtained within the adiabat
approximation~Scully-Lamb theory! is illustrated for a few
sets of parameters in Sec. VII.

For concreteness, we consider a slab in thexy plane, be-
tween the two planesz50 andz5L. We definez,0 as the
left region andz.0 as the right region. A pumping beam
collimated perpendicular toz50 plane from the left. The
3-10
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light emitted from the sample is measured by a detector
the left @2#. This geometry is close to that of the cells used
some experiments@37#.

In Fig. 3, we plot the Fano-Mandel parameter as a fu
tion of incident pumping rate, at different depths within t
random-laser sample, for fixed scatterer density and g
concentration. As with a conventional laser, the Fano-Man
parameter exhibits a fluctuation peak indicative of a tran
tion from chaotic to coherent light. The magnitude of t
fluctuation peak decreases deeper within the sample, du
attenuation of the local pumping intensity as it penetra
deeper into the sample. Deeper into the sample, the fluc
tions also decrease more rapidly with the increasing of
pump above threshold. This suggests that the light emi
from deeper inside the sample, although weaker in inten
is more coherent than that emitted from near the front fac
the sample. These modes, however, have smaller cont
tion to the total laser radiation detected outside of
sample, as we show below.

The Fano-Mandel parameter as a function of incid
pumping rate and different values of the scatterer density
gain concentration, at a given depth within the sample
presented in Fig. 4. It is apparent that optical coheren
above threshold, is enhanced in samples with higher scat
density and lower gain molecule concentration, within t
range of parameters studied.

The output radiation~outside of the sample! is obtained as
a weighted average of the contributions from different poi
within the sample@11#. In our model, different spatial mode
are assumed uncorrelated. In this case, the Fano factor fo
total output radiation is

Foutput5

(
i

~ n̄i
22n̄i

22n̄i !

(
i

n̄i

5

(
i

n̄iFi

(
i

n̄i

, ~5.2!

FIG. 3. Fano parameter and average photon number at diffe
locations within the random laser sample, for a transport mean
path of 1024 cm and absorption length of 1.531022 cm. The po-
sition within the sample is 0.25l * ~dotted line!, l * ~dashed line!,
and 2.5l * ~continuous line!, respectively, from the front of the
sample. We setb50.1 andL51 cm in the calculations, and th
pumping rate is in units ofG[k1gnr .
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whereni andFi are the photon number and the Fano fac
for the i th cell within the sample, respectively. General
each celli is defined by both the positionz and the wave
vector of the emerging photon, (v/c) k̂ f . The deeper the cel
i is within the sample, the smaller the probability~weight
factor! that photons from this cell will emerge from th
sample without further scattering. More specifically, in E
~5.2!,

(
i

¯[
1

l *
(
z,k̂

expS 2
z

uk̂ f• ẑu l *
D¯. ~5.3!

Here, exp(2z/uk̂• ẑu l * ) represents the fraction of the radiatio
at z that emerges without being further scattered@38#. In our
~diffusion! model, the wave-vector dependence of differe
physical quantities is not considered. After performing t
wave-vector~angular! integration, the mode summation i
continuum limit becomes

(
i

•••5
1

l *
E

0

L

dzh~z!•••. ~5.4!

Here, h(z)5r(z)/*0
Ldzr(z), and r(z)5(1/4p)*dk̂ fexp

3@2z/(uk̂ f• ẑu l * )# is a function that decreases rapidly wi
the position within the sample. Clearly, only the radiati
emitted within a few transport mean free paths from fro
face of the sample contributes significantly to the total out
radiation. The Fano parameter for the total output radiat
for various values of the scatterer density and gain conc
tration is presented in Fig. 5. Once again we observe a t
sition from chaotic to coherent light at specific pump thres
old. We also find that optical coherence, above threshold
enhanced in samples with shorter mean free path~stronger

nt
e

FIG. 4. Fano parameter and average photon number as a f
tion of scaled pumping rate at the positionz5 l * within the random-
laser sample and for different values of the transport mean free
and absorption length:l * 51023 cm and l a51.531022 cm ~con-
tinuous line!, l * 51024 cm and l a51.531022 cm ~dashed line!,
and l * 51023 cm and l a55.031023 cm ~dotted line!. The other
sample parameters are the same as for Fig. 3.
3-11
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scattering! and lower gain molecule concentration, mirrorin
the behavior of the Fano parameter of individual cells with
the sample.

VI. INTERPRETATION OF NUMERICAL RESULTS

We now provide a qualitative interpretation of the resu
obtained in this paper. Suppose that the laser is opera
above threshold. In this regime, we have shown above
the photon distribution functionPr

n has a peak at the value o
n5n̄ , equal to the mean number of photons. We furth
assume that forn close ton̄, Pr

n can be written as~omitting
the dependence on the spatial coordinatez):

Pn5Pn̄ expF2
~n2n̄!2

2s2 G . ~6.1!

On the other hand, from Eq.~4.4! we obtain

Pn5Pn̄F )
n85n̄

n

f ~n8!G61

, ~6.2!

where61 on the exponent correspond ton greater or smaller
than n̄, respectively.

Equations~6.1! and~6.2! lead to the equation for the var
ances:

2
~n2n̄!2

2s2
56 (

n85n̄

n

ln@ f ~n8!#. ~6.3!

Above threshold,n̄.n̄11. Since f (n̄)51, it follows, for
values ofn close ton̄,

ln@ f ~n8!#.6~n82n̄!S 1

f ~n8!

d f

dn8
D

n85n̄

. ~6.4!

Making use of Eqs.~4.3!, ~6.3!, and ~6.4!, and the fact that
w5c/ l * , we obtain

FIG. 5. Fano parameter and average photon number for the
put radiation, for various scatterer and gain parameters. The o
sample parameters are the same as for Fig. 3.
04660
ng
at

r

11F5s25
n̄

12 l * N0

kÑ

@gnr1k~ n̄11!#

gnr

c

.n̄ ~6.5!

~note thats25n̄ for a Poissonian distribution!.
The results presented in Figs. 3 and 4 can now be ea

explained using Eq.~6.5!; namely, the amount of fluctuation
in the emitted light decrease with the increasing of scatte
density~decreasing ofl * ), and with the decreasing of gai
concentration (N0). Also, a sizable suppression of fluctu
tions is obtained for positions deeper into the sample, wh
Ñ decreases andn̄ increases.

In the mean-field analysis presented above, we have
tained an average diffusion coefficient with a constant va
throughout the sample. More generally, the transport m
free path may vary randomly from region to region with
the sample. This gives rise to additional fluctuations of
laser emission, related to the statistics of the diffusion co
ficient. A description of such effects requires solving the d
fusion equation and the equation for the photon distribut
function ~4.4! for an ensemble of systems characterized b
probability distribution of transport mean free paths. A d
tailed microscopic analysis of this issue is beyond the sc
of this paper. Instead, we provide a qualitative discuss
using Eq.~6.5! to illustrate how random spatial variations o
the diffusion coefficient translate into fluctuations of the las
emission.

According to the expression~6.5!, statistical fluctuations
in l * lead to corresponding fluctuations inF. The probability
distribution forF is given by

PF~F !5E dl* Pl* ~ l * !d„F2F~ l * !…. ~6.6!

HerePl* is the distribution of the transport mean free pa
over an ensemble of systems, andF( l * ) is given by Eq.
~6.5!. In order to facilitate an analytical investigation, w
consider a regime where the laser is operating above thr
old, but below the saturation regime, such thatbn̄!1. For a
random laser, we chooseb5k/(k1gnr). In this case, the
average excited state atomic population is given byN̄
5P/@gnr1k(n̄11)#'P/(gnr1k) and we rewrite the de-
nominator in Eq.~6.5! as 12 l * a, where

a[
P
c

gnr

k
b2. ~6.7!

Usually, l * a!1. This enables an expansion of the denom
nator in Eq.~6.5!, and the Fano parameter is approximat
by

F' l * a. ~6.8!

If the statistical distributionPl* of the transport mean free

path is a Gaussian with meanl *̄ and standard deviations l* ,
the distribution~6.6! of the Fano parameter is a Gaussi
distribution with meana l *̄ and standard deviationas l* . We
note that the more complex dependence of the Fano pa

ut-
er
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THEORY OF PHOTON STATISTICS AND OPTICAL . . . PHYSICAL REVIEW E 69, 046603 ~2004!
eter on transport mean free path, both directly~by the direct
presence ofl * in the detailed balance equation~4.4! for the
photon distribution function! and through the implicit depen
dence of the mean number of photons on the transport m
free path~generally, a power law@11#!, will lead to a non-
Gaussian distribution of the Fano parameter. Moreover,
distribution will be different for a laser operating belo
threshold as opposed to above threshold, because of the
ferent dependence of the mean number of photons on
‘‘cavity loss rate’’ (c/ l * ) in the two regimes@22#.

VII. NONADIABATIC ATOMIC RESPONSE

The previous analysis of photon statistics in the rand
laser is based on the Scully-Lamb@14# approach, where the
atomic variables are adiabatically eliminated. As discus
above, an adiabatic elimination of the atomic variables is
rigorously justified for a random laser. This is particular
evident in strong scattering systems, wherec/ l * @k. We
show here, by comparison, that it still recaptures the imp
tant qualitative features of the photon statistics of the emi
radiation. In order to examine the role of nonadiaba
atomic response of the atomic population to the local e
tromagnetic field, we investigate the laser statistics for a
sets of parameters. This is done using a full treatment, ba
on the master equation~3.8!. The probability distribution
function Pr

n,N is calculated by truncating the master equat
~3.8! at some maximum values ofn andN, which we denote

FIG. 6. Fano parameter and average photon number obta
from a solution of the truncated master equation~3.8! ~continuous
lines! and from the master equation~4.1! ~dotted lines!, respec-
tively, at a positionz5 l * within the sample, and for different val
ues of the transport mean free path:~a! l * 50.5 cm, ~b! l *
51.0 cm, and~c! l * 52 cm. We setl a515 cm, L510 cm, and
b50.1 in the calculations. The pumping rate is in units ofG[k
1gnr .
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asntrunc andNtrunc, respectively. The validity of the trunca
tion is ensured by requiring thatPr

n,N does not change a
ntrunc and Ntrunc increase. This implies solving a system
(ntrunc11)(Ntrunc11) coupled equations forPr

n,N for all val-
ues 0<n<ntrunc and 0<N<Ntrunc, wherentrunc and Ntrunc
are the minimum values ofn and N for which the conver-
gence is achieved. These numbers of photons and exc
atoms are chosen sensibly larger than the average numbe
photons and excited atoms in the system. The physical
rameters used in the calculations presented here are m
dictated by computational considerations. Small transp
mean free paths imply large hopping~cavity decay! rates
compared with the atomic emission rate. This is accom
nied by large numbers of photons in the system. These
turn, lead to numerical convergence difficulties and a la
number of equations. The Fano parameter calculated u
the steady-state solutions of the truncated master equa
~3.8! is presented in Fig. 6. In the example studied, the Fa
parameter, obtained from a full nonadiabatic treatment
enhanced relative to that given by the simpler Scully-La
theory. When the cavity decay rate is larger than the ato
relaxation rate, adiabatic elimination of the atomic variab
leads to suppression of fluctuations. However, as show
Fig. 7, the relative difference between the second-order
relation functions calculated using the two methods is
considerable above threshold. Moreover, the full mas
equation treatment leads to the same results as the Sc
Lamb theory regarding the dependence of fluctuations on
scatterers density, namely that the addition of scatterers
the system decreases the amount of fluctuations.

VIII. CONCLUSIONS

Using a diffusion model with gain, obtained from a mo
general coherence propagation theory for the electric-fi
autocorrelation function, we have derived the generaliz
master equations for random-laser modes at different p
tions within the sample. Locally, these equations are forma

ed

FIG. 7. The relative difference between the second-order co
lation functions calculated using a full master equation treatm
@g(2)(0)#, and adiabatic elimination of atomic elimination o
atomic variables@ga

(2)(0)#, at a positionz5 l * within the sample,
and for transport mean free paths of 0.5 cm~dashed line!, 1 cm
~dotted line!, and 2 cm~continuous line!. The other parameters ar
the same as for Fig. 6.
3-13
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equivalent to that of a single-mode conventional laser w
the cavity-loss terms replaced with terms that describe ra
tive transfer and multiple light scattering. We have sho
that stronger scattering not only lowers the threshold for
ser action, but also diminishes the noise with respect to
Poissonian value. These results may be used to explain
recent experiments, where, for a lower scatterer density@9#,
the radiation was found to be partially coherent, while fo
system with stronger scatterers@10#, the radiation became
completely coherent above threshold. We have also sh
that the intensity fluctuations increase with the gain conc
tration, and that light emitted deeper within the sample
more coherent than that emitted from near the front face
the sample.

The analysis presented here assumes isotropic scatt
and uniform distribution of active molecules. It will be o
considerable interest to extend this study to the case of
isotropic scattering and nonuniform, nonlinear gain conc
tration. In the case of nontrivial structure and nontrivial sp
tial correlations of the scattering particles, the scattering
anisotropic. This leads to a distinction between the scatte
mean free path for photons and the transport mean free p
Also, as suggested in Sec. II, the statistical and spatial
tributions of the gain medium lead to corrections to the cl
sical diffusion coefficient, and thereby affect the coheren
properties. A more general, nonlinear multiple-ligh
scattering theory is necessary to elucidate the cohere
properties of the random laser and to fully describe
strong scattering regime of incipient photon localizati
( l * <l) @33#. In this regime, our model suggests the pos
bility of enhanced coherence for the amplified light.
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APPENDIX A: THE DERIVATION OF THE DIFFUSION
EQUATION

In this appendix, we derive the diffusion equation descr
ing light propagation in an active random medium from
diative transfer theory.

Consider the transport equation~2.26! for the mean num-
ber of photons,n̄k̂(r ,t), in the vicinity of a pointr and at
time t and traveling in the direction of the wave vectork̂,

ṅ̄k̂~r !52ck̂•“n̄k̂~r !1(
k̂8

wk̂k̂8@ n̄k̂8~r !2n̄k̂~r !#

1k@ n̄k̂~r !11#N~r !. ~A1!

Here,wk̂,k̂8 is the elastic scattering rate,N(r ) represents the
number of excited atoms at positionr , andk is the isotropic
radiative rate.

One derives the diffusion equation from the transp
equation~A1! by making the diffusion approximation, whic
consists in expandingn̄k̂(r ) into spherical harmonics an
keeping only the first two terms of the expansion@29#:
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n̄k̂~r !.n̄~r !1
3

c
k̂• j ~r !. ~A2!

Here,

n̄~r !5(
k̂

n̄k̂~r ! ~A3!

represents the total number of photons traveling in all dir
tions, and the current densityj is defined by

j ~r !5c(
k̂

k̂n̄k̂~r !. ~A4!

Here, we use the notation( k̂[(1/4p)*dk̂.
The equation describing the evolution of the total numb

of photons,n̄(r ), is obtained by summing overk̂ in Eq.
~A1!. The terms corresponding to scattering sum to zero,
we obtain

ṅ̄~r !52¹"j ~r !1k@ n̄~r !11#. ~A5!

We now insert the expansion~A2! into the transport equa
tion ~A1!, multiply the equation byk̂, and sum overk̂. We
obtain

1

c
j̇ ~r !52

c

3
¹n̄~r !2

3

c (
k̂,k̂8

k̂wk̂k̂8~ k̂2 k̂8!• j ~r !1
1

l g
j ~r !.

~A6!

Here, l g
21[kN(r )/c is the gain length. Using now tha

( k̂8wk̂,k̂8 is independent ofk̂ @see the definition~2.27!# , and
also that( k̂k̂( k̂• j )5(1/3)j , the first term in the sum on the
right-hand side of Eq.~A6! becomes (1/3)( k̂8wk̂,k̂8j . On the
other hand, using that( k̂8k̂8wk̂k̂85( k̂8k̂• k̂8wk̂,k̂8 , the sec-
ond term in the sum on the right-hand side of Eq.~A6! be-
comes (1/3)( k̂8

ˆ k̂• k̂8wk̂,k̂8j . Putting all these results togethe
Eq. ~A6! becomes

1

c
j̇ ~r !52

c

3
¹n̄~r !2

1

l *
j ~r !1

1

l g
j ~r !. ~A7!

Here, l * 5ct is the transport mean free path, related to t
scattering properties of the medium by the scattering rat

t21[(
k̂8

wk̂k̂8~12 k̂• k̂8!. ~A8!

Equations~A5! and~A7! represent the basic equations
the diffusion theory. By adiabatically eliminating the curre
j from Eq. ~A7!, and inserting the corresponding expressi
into Eq. ~A5!, they are reduced to the diffusion equation

ṅ̄~r !5D ¹ r
2 n̄~r !1kN̄~r !@ n̄~r !11#. ~A9!

Here, D5c/3(1/l * 21/l g) is the diffusion coefficient. For
l * ! l g , the diffusion coefficient becomesD5cl* /3.
3-14
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APPENDIX B: THE DERIVATION OF TRANSPORT
EQUATION FROM MASTER EQUATION

The equation obeyed by the average number of photon
the cell atr and traveling in the direction of the wave vect
p

re

04660
in

k̂, n̄k̂(r )5(nk̂ ,Nnk̂Pr
nk̂ ,N , is obtained by multiplying the

master equation~3.3! by nk̂ and summing overnk̂ , n andN.
The terms corresponding to relaxation processes and p
sum to zero, and we obtain:
ṅ̄k̂~r !52k$nk̂~r !N~r !@n~r !11#2@nk̂~r !11#2N~r !2nk̂~r !N~r !n~r !1nk̂
2
~r !N~r !%1w$2nk̂~r !n~r !1nk̂~r !@nk̂~r !21#

1nk̂~r !n~r !2nk̂
2
~r !%1wF @ n̄k̂~r !11#n̄k̂~r2dk̂!1n̄k̂~r !S (

k̂8Þ k̂
n̄k̂8~r2dk̂8!D 2n̄k̂~r !S (

k̂8
n̄k̂8~r2dk̂8!D G

1 (
k̂8Þ k̂

wk̂k̂8F2n̄k̂~r !1 (
nk̂ ,n,N;( k̂nk̂5n

nk̂nk̂8~Pr
nk̂21,n,N

2Pr
nk̂ ,n,N

!G . ~B1!
f ex-
-

m.

ve
For isotropic scattering,wk̂k̂85W5const, and the last grou
of terms in Eq.~B1! can be written as

W (
nk̂ ,n,N

nk̂$~n2~nk̂21!!Pr
nk̂21,n,N

2nk̂~n2nk̂!Pr
nk̂ ,n,N

%

5W@ n̄~r !2n̄k̂~r !#5 (
k̂8Þ k̂

Wn̄k̂8~r !5 (
k̂8Þ k̂

wk̂k̂8n̄k̂8~r !.

~B2!

Equations~B1! and ~B2! lead to

ṅ̄k̂~r !5k@nk̂~r !11#N~r !1w@2n̄k̂~r !1n̄k̂~r2dk̂!#

1(
k̂,k̂8

wk̂k̂8@ n̄k̂8~r !2n̄k̂~r !#. ~B3!

Using now the mean-field approximationnk̂(r )N(r )
5n̄k̂(r )N̄(r ), the expansion

n̄k̂~r2dk̂!.n̄k̂~r !2dk̂•“n̄k̂~r !, ~B4!

~wheredk̂5 l * k̂), and thatw5c/ l * , Eq. ~B3! takes the form
~2.26!.

APPENDIX C

Using the expression~4.3!, we obtain

f ~0,r !5
kN~0,r !

w
1

D¹ r
2n̄~r !1wn̄~r !

w
, ~C1!
whereN~0,r ! can be obtained from Eq.~5.1! as

N~0,r !5
P~r !

gnr1k
. ~C2!

On the other hand, the steady-state average number o
cited atoms in the system,N̄(r …, corresponding to the pump
ing rateP~r ! for which f (0,r )51 can be expressed as

N̄~r !5
P~r !

gnr1k@ n̄~r !11#
. ~C3!

Here,n̄(r ) is the average number of photons in the syste
Using Eqs.~C2! and ~C3!, we can expressN~0,r ! as

N~0,r !5N̄~r !@11bn̄~r !#. ~C4!

Here,b[k/(k1gnr).
According to the discussion presented in Sec. III, we ha

uD¹ r
2n̄~r !u5kN̄~r !@ n̄~r !11#!wn̄~r !, ~C5!

and also

kN̄~r !@11bn̄~r !#,kN̄~r !@ n̄~r !11#!wn̄~r !. ~C6!

As a result,kN~0,r ! and D ¹ r
2n̄(r ) in Eq. ~C1! can be ne-

glected compared withwn̄(r ), and f (0,r ) can be approxi-
mated by

f ~0,r !'n̄~r !. ~C7!

Thus, the conditionf (0,r )51 implies n̄(r )'1.
.
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