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Microscopic theory of multiple-phonon-mediated dephasing and relaxation
of quantum dots near a photonic band gap
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We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption
line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored”
electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian
describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which
phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous
emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with
undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in
reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in
the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state
in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower
energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing
rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption
line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the
presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with
radiative memory effects.
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I. INTRODUCTION

Recent advances in the synthesis of ultra-high quality
photonic crystals and three-dimensional (3D) photonic band-
gap (PBG) materials suggest the possibility of observing
engineered atom-photon interactions in these systems. One
of the most dramatic consequences of light localization [1,2]
in PBG materials is the inhibition of spontaneous emission of
light from atoms [3,4] and the formation of the photon-atom
bound state [5–9]. When the atomic resonance lies very
close to a photonic band edge or other sharp features in the
electromagnetic density of states, the radiative dynamics can
exhibit long time memory (non-Markovian) effects. Important
new phenomenon such as the ability to population-invert a two-
level system by coherently pumping on resonance is possible
[10–15]. Many of the effects rely on the microfabrication
of PBG materials with resolution on the scale of a few
nanometers in the vicinity of a quantum dot. Other applications
of the photon-atom bound state to quantum information
processing further rely on the ability to deter nonradiative
relaxation and decoherence channels. Experimental studies
of quantum entanglement of photons propagating through
photonic crystals have recently been initiated [16]. In light
of these developments, it is timely to consider the role of
phonon-mediated relaxation and decoherence of optically
excited quantum dots in photonic crystals from a microscopic
point of view.

For quantum dots, the role of phonons in polarization
relaxation is very important [17–21]. For instance, high-
resolution photoluminescence spectra of single quantum dots
show a narrow zero-phonon line on top of a broad background.
The background can be attributed to acoustic phonons [22].
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In this work, we develop and analyze a microscopic model
of phonons in modifying the spectral characteristics of a
quantum dot in a photonic crystal. Starting from a complete
microscopic Hamiltonian describing the dot-exciton, photon,
and phonon degrees of freedom, we derive the quantum
dynamics of the system at a finite temperature. This provides a
more fundamental picture of excited state population, atomic
polarization, and spectral line shape than previous studies
[23–28]. Our microscopic theory then enables a description of
damped (anharmonic) phonon contributions to non-Markovian
atom-radiation field interaction and the stability of the photon-
atom bound state.

The theory developed in this article is relevant to self-
assembled InxGax−1As/GaAs quantum dots where phonon-
induced dephasing can be described by the Independent-Boson
model [17]. Here, an epitaxial layer of InxGax−1As grown
on an substrate of GaAs has a reduction in the strain energy
due to lattice mismatch. This leads to quantum dot formation
by the breaking up of the growing layer into small clumps.
Experimental studies [29–31] in strongly confined quantum
dots at low temperatures have clearly demonstrated that the
polarization decay has a non-Lorentzian homogenous line
shape with a very narrow zero-phonon line superimposed on
a broad acoustic-phonon spectrum. These InxGax−1As/GaAs
quantum dot excitons have lifetimes as long as T1 = 900 ps
in an unstructured electromagnetic vacuum with dephasing
times T2 = 630 ps at cryogenic temperatures [32–34]. Since
the dephasing times are almost as large as the decay times,
dephasing in these materials is radiatively limited. The exciton
lifetime can be extended by placing these quantum dots
inside the structured electromagnetic reservoir of the photonic
crystal such that the radiative recombination of the electrons
and the holes is suppressed by a photonic band gap. It is
interesting to experimentally study the effects of suppression
of radiative recombination resulting in much larger exciton
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lifetimes. In this regime, pure dephasing (interaction with
undamped phonons) is an important effect. We also extend the
effects of phonon induced dephasing beyond the Independent-
Boson model by introducing, phenomenologically, a finite
lifetime for the phonons themselves. Direct nonradiative decay
of the two-level system is also considered. This leads to
population and polarization decay due to phonons in addition
to electromagnetic dephasing and relaxation.

The outline of this article is as follows. In Sec. II, we
introduce a model Hamiltonian that simultaneously describes
the radiative and nonradiative quantum processes leading to
dephasing and decoherence of a two-level system. We derive
an effective Hamiltonian using mean-field theory. In this
approximation, the effective dipole-moment incorporates the
mean-field response of the lattice and is temperature depen-
dent. We demonstrate that this mean-field theory captures
the absorption and emission spectra arising from phonon
sidebands in a general photonic reservoir. We then develop a
theory to calculate the polarization dynamics and the lifetime
of the two-level system in the presence of phonons. In Sec. IV,
we apply our theory to a quantum dot placed inside a photonic
crystal. We first study the absorption line shape and show
that phonon-mediated sidebands can lead to absorption of
photons inside the photonic band gap. We then calculate the
polarization and excitation probability of the two-level atom
and show that for long phonon lifetimes the atom can have
some residual coherence even at large times. This residual
coherence is a consequence of the fractionalized steady-state
due to the formation of the photon-atom bound state. In Sec. V,
we discuss the role of acoustic phonon-induced dephasing
on the polarization dynamics and population decay. We then
generalize our Hamiltonian to allow for nonradiative decay
processes. This enables us to extend our theory beyond pure
dephasing. We also discuss the loss of coherence and decay of
the photon-atom bound state due to phonon-phonon scattering
and other anharmonic processes (finite phonon lifetime) [35].
Finally, in Sec. VI, we present our conclusions.

II. MODEL HAMILTONIAN FOR THE
DOT-PHOTON-PHONON SYSTEM

It is well known that nonradiative exciton decay in
quantum dots caused by phonons can be suppressed due to
quantization effects [36,37]. For instance, in a bulk medium
with nearly dispersionless longitudinal-optical (LO) phonons,
purely nonradiative decay requires the exciton recombination
energy to be an integer multiple of LO phonon energies. This
resonance condition leads to the phonon-bottleneck effect. In
a photonic crystal environment, in which quantum dots are
embedded in periodic array of sub-micron-scale dielectric
rods, such bottlenecks may apply to acoustic phonons as
well. Quantum confinement in the quantum dot increases
the coupling of electrons to short-wavelength phonons. This
strengthens multiple phonon-assisted absorption and emission
processes. Phonon sidebands exist for both acoustic and optical
phonons. Optical phonons give rise to discrete sidebands
separated by the optical phonon energy. Acoustic phonons
in a bulk medium occupy a broad continuum of energies and
give rise to significant line broadening.

We consider a quantum dot (two-level system) with level
separation much larger than all phonon energies so that
phonon-induced mixing of different electronic levels can be
neglected. The full Hamiltonian of our dot exciton, phonon,
and photon system can be written as H = H0 + HI , where

H0 = h̄ω0σ̂ee +
∑

k

h̄ωkâ
†
kâk +

∑
q

h̄�qĉ
†
q ĉq , (1a)

HI =
∑

k

(λkσ̂egâk + λ∗
k â

†
kσ̂ge) + σ̂ee

∑
q

ηq(ĉq + ĉ†q), (1b)

where σ̂eg(σ̂ge) is the raising (lowering) operator for the
two-level atom, ĉ

†
q(ĉq) is the creation (annihilation) operator

for the phonon with wave number q, and â
†
k(âk) is the

creation (annihilation) operator for the photon. λk and ηq

are exciton-photon and exciton-phonon coupling parameters,
respectively. ω0 is the resonant frequency of the two-level
atom, and �q and ωk are the phonon and photon dispersion
relations, respectively. The two-level atom operators obey the
commutation relation:

[σ̂ij , σ̂kl] = δjkσ̂il − δil σ̂kj . (2)

The photon and phonon operators obey bosonic commutation
relations: [âk, â

†
k′ ] = δ(k − k′) and [ĉq , ĉ

†
q ′ ] = δ(q − q ′). In the

absence of dot-photon coupling (λk = 0), the Hamiltonian
Eq. (1) reduces to the Independent-Boson model used in the
literature [17] to study pure dephasing of two-level systems
coupled to a phonon bath.

Optical interaction with quantum dots in a smooth, feature-
less electromagnetic reservoir can be treated in the standard
Fermi Golden Rule framework. However, in the “colored
vacuum” of a photonic crystal, abrupt changes in the photon
density of states (with frequency) introduce non-Markovian
memory effects [38] in the quantized electromagnetic field.
The resonant interaction of the two-level system with the
quantized electromagnetic field is written in a rotating wave
approximation, where the dot-photon coupling constant is
given by [39]

λk = i
ω0| �Dge|

h̄

(
h̄

2ε0ωkV

) 1
2

�ek . �ud. (3)

Here, the atomic dipole moment | �Dge| has been chosen to be
real and �ud is a unit vector parallel to | �Dge|. The vector �ek is
the transverse polarization unit vector of the radiation field,
and V is the quantization(sample) volume.

The interaction of the electron with phonons both shifts the
exciton recombination energy and leads to scattering effects. In
order to isolate the overall energy shift, we use the (canonical)
polaron-transformation:

H̃ = exp(S)H exp(−S), (4a)

where

S = σ̂ee

∑
q

ηq

�q

(ĉ†q − ĉq). (4b)

For convenience we choose units such that h̄ = 1. The
canonical transformation diagonalizes the Hamiltonian Eq. (1)
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to the form H̃ = H̃0 + Hp, where

H̃0 = (ω0 − �)σ̂ee +
∑

k

ωkâ
†
kâk

+
∑

k

(λkĈ+σ̂egâk + λ∗
k â

†
kĈ−σ̂ge), (5a)

Hp =
∑

q

�qĉ
†
q ĉq . (5b)

Here we have introduced a lattice displacement operator:

Ĉ± = exp

[
±

∑
q

ηq

�q

(ĉ†q − ĉq)

]
(6a)

and

� =
∑

q

η2
q

�q

. (6b)

� is called the polaron shift and accounts for the renormal-
ization of the resonant frequency of the two-level atom due to
phonon emission and reabsorption.

A mean-field theory of the electron-thermal lattice vibration
interaction is obtained by replacing Ĉ+ and Ĉ− by their thermal
expectation values 〈Ĉ+〉 and 〈Ĉ−〉 evaluated with respect to the
pure phonon Hamiltonian Hp [40]

〈Ĉ±〉 = Tr[exp(−βHp)Ĉ±]

Tr[exp(−βHp)]

= exp

[
−1

2

∑
q

η2
q

�2
q

(1 + 2〈ĉ†q ĉq〉)
]

. (7)

The mean-field decomposition we use in this article also has
been considered by Anda and Ure [41] in the context of
chemisorption of hydrogen. As we show, this approximation
can be used to recapture important features of the exciton
line shape caused by multiphonon absorption and emission
sidebands. The thermal averages of the phonon operators are
evaluated assuming that the phonon bath is at thermal equi-
librium at temperature T and β = 1/kBT . The Hamiltonian
Eq. (5) is simplified to

HMF = (ω0 − �)σ̂ee+
∑

k

ωkâ
†
kâk+

∑
k

(λ̃kσ̂egâk + λ̃∗
k â

†
kσ̂ge),

(8)

where λ̃k = λk〈Ĉ+〉 and λ̃∗
k = λ∗

k〈Ĉ−〉. This mean-field ap-
proximation relies on the separation of time scales between
optical and vibrational processes for realistic systems in which
λk � ηq . Since h̄/λk � h̄/ηq , phonon scattering occurs very
rapidly compared with purely radiative processes. In other
words, the dot-phonon system can reach equilibrium quickly in
response to any slow change arising from radiative processes.

III. OPTICAL SUSCEPTIBILITY AND LINE SHAPE

A. Absorption line shape

We begin by deriving a general formalism to calculate the
absorption line shape and the rate of decay of an exciton
coupled to a general photonic and a thermal phonon reservoir.

The absorption line shape χa(ω) is related to the two-time
dipole correlation function [42]:

χa(ω) = iNd

ε0h̄

∫ ∞

−∞
dt�(t) exp (iωt)〈[d̂(t), d̂(0)]〉, (9)

where the angular brackets denote thermodynamic averages
and d̂(t) = exp(iH t)d̂(0) exp(−iH t) with H defined in Eq. (1)
and the dipole operator d̂(0) defined in the following discus-
sion. Also, Nd is the number of dipoles in a unit volume.
The step function �(t) is defined by �(t) = 1 for t � 0 and
�(t) = 0 otherwise.

The susceptibility χa(ω) describes the linear response of
a two-level atom placed in a normalization volume V to an
external field of frequency ω. The dipole moment operator d̂

of an isotropic two-level system is given by d̂ = |Dge|(σ̂eg +
σ̂ge), where |Dge| is the transition dipole moment connecting
the ground(|g〉) and the excited(|e〉) states. It is useful to
express the susceptibilty in terms of the thermodynamic
Green’s functions of the dipole operators as follows:

χa(ω) = − Nd

ε0h̄
|Dge|2 lim

ε→0
[Gω+iε(σ̂ge; σ̂eg) + Gω+iε(σ̂eg; σ̂ge)

+Gω+iε(σ̂eg; σ̂eg) + Gω+iε(σ̂ge; σ̂ge)], (10)

where Gω(Â; B̂) = −i
∫ ∞
−∞ dteiωt�(t)[Â(t), B̂(0)] [43,44].

The infinitesimal imaginary part ε is added to shift the
poles of χ (ω) to the lower half of the complex ω plane.
The susceptibilty χa(ω) is well defined for positive and
negative frequencies. Using the properties of a thermody-
namic Green’s function Gω+iε(σ̂eg; σ̂ge) can be calculated
from Gω+iε(σ̂ge; σ̂eg) by substituting ω with −ω. Moreover
Gω+iε(σ̂eg; σ̂eg) and Gω+iε(σ̂ge; σ̂ge) are zero. In the following,
we focus on the evaluation of Gω+iε(σ̂ge; σ̂eg) in the expression
for optical susceptibility Eq. (10).

Consider the Green’s function in the time domain

Gt (σ̂ge; σ̂eg) = −i�(t)〈[σ̂ge(t), σ̂eg(0)]〉H
= −i�(t)(〈eiHt σ̂gee

−iH t σ̂eg〉H
−〈σ̂ege

iHt σ̂gee
−iH t 〉H ), (11)

where the correlation functions are evaluated in thermody-
namic equilibrium with respect to the full Hamiltonian Eq. (1).
Here and throughout the rest of this article, we use units in
which h̄ = 1. Using the fact that the trace is invariant under
unitary transformations, we get

Gt (σ̂ge; σ̂eg) = G̃t (σ̂ge; σ̂eg)

≡ −i�(t)(〈eiH̃ t ˆ̃σgee
−iH̃ t ˆ̃σ eg〉H̃

−〈 ˆ̃σ ege
iH̃ t ˆ̃σgee

−iH̃ t 〉H̃ ), (12)

where H̃ is the polaron-transformed Hamiltonian de-
fined in Eq. (5), ˆ̃σge = exp(S)σ̂ge exp(−S) = σ̂geĈ−, ˆ̃σ eg =
exp(S)σ̂eg exp(−S) = σ̂egĈ+, S = σ̂ee

∑
q

ηq

�q
(ĉ†q − ĉq), and

Ĉ± are defined in Eq. (6). The trace can be evaluated in a
closed form in a mean-field approximation that replaces H̃

with HMF + Hp. With respect to the Hamiltonian Eq. (8), we
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have

G̃MF
t (σ̂ge; σ̂eg)

= −i�(t)(〈eiHMF t σ̂gee
−iHMF t σ̂eg〉HMF

×〈eiHpt Ĉ−e−iHpt Ĉ+〉Hp
− 〈σ̂ege

iHMF t σ̂gee
−iHMF t 〉HMF

×〈Ĉ+eiHpt Ĉ−e−iHpt 〉Hp
), (13)

where G̃MF
t (σ̂ge; σ̂eg) is the Green’s function calculated with

respect to the polaron-transformed mean-field Hamiltonian
Eq. (8) plus the phonon Hamiltonian Eq. (5b). The thermal
averages over the phonon modes are well known and are given
by [40]

〈Ĉ±(t)Ĉ∓(0)〉Hp
= e−[�(0)−�(t)], (14a)

〈Ĉ±(0)Ĉ∓(t)〉Hp
= e−[�(0)−�(−t)], (14b)

where �(t) is given by

�(t) =
∑

q

η2
q

�2
q

[Nq exp(i�qt) + (Nq + 1) exp(−i�qt)] (15)

and Nq = 〈ĉ†q ĉq〉 = (exp(β�q) − 1)−1. From Eq. (7), we see
that (we have dropped the subscript Hp on the thermal
averages)

〈Ĉ±〉〈Ĉ±〉 = exp

(
−

∑
q

η2
q

�2
q

(1 + 2Nq)

)
= e−�(0). (16)

For illustration purposes, we now consider the Einstein
model of dispersionless phonons [40]. In this case, �(t) is
given by

�(t) = g[N exp(i�0t) + (N + 1) exp(−i�0t)], (17)

where g = ∑
q

η2
q

�2
0

and N = 1
exp(β�0)−1 is the number of

thermally excited optical phonons.
If the equilibium temperature of the two-level system

interacting with the photon reservoir is assumed to be very
low compared with the two-level transition frequency, one can
easily show [45]

G̃MF
t (σ̂ge; σ̂eg) � GMF

t (σ̂ge; σ̂eg)e−[�(0)−�(t)] (t > 0). (18)

Expanding exp{−[�(0) − �(t)]} in a power series in
exp(i�0t), it can be shown [40] that the Green’s function has
the form

G̃MF
ω (σ̂ge; σ̂eg) =

∞∑
n=−∞

LnG
MF
ω−n�0

(σ̂ge; σ̂eg) (t > 0), (19)

where

Ln = e−g(2N+1)en�0β/2In[2g
√

N (N + 1)] (20)

and In(z) is the nth-order modified-Bessel function of the first
kind with complex argument z. Here we have made use of the

relation
√

(N + 1)/N = e
β�0

2 as well as of the identity [46]
ezcos(θ) = ∑∞

n=−∞ In(z)einθ . The nth term in this infinite series
represents the net change in phonon number during an optical
transition. For n � 1, this corresponds to phonon-assisted
optical transitions where n more phonons are emitted than
absorbed by the quantum dot into the phonon reservoir.
Analogous results can be derived for dispersive phonon
models (e.g., acoustic phonons). However, a simple power
series expansion of the acoustic phonon Green’s function
cannot be made and recourse must be made to numerical
methods.

In order to simplify the notation, we denote
GMF

ω−n�0
(σ̂ge; σ̂eg) ≡ GMF

ω,n (σ̂ge; σ̂eg). It is easy to see that
GMF

ω,n (σ̂ge; σ̂eg) satisfies the equation of motion:

(ω − n�0)GMF
ω,n (σ̂ge; σ̂eg)

= 〈[σ̂ge(0), σ̂eg(0)]〉HMF
+ GMF

ω,n ([σ̂ge, HMF ], σ̂eg). (21)

The first term on the right-hand side is equal to unity
in thermal equilibrium since 〈σ̂gg〉 � 1 and 〈σ̂ee〉 � 0 for
h̄ω0 � kBT . The corresponding equation of motion for
GMF

ω,n ([σ̂ge, HMF ], σ̂eg) leads to a hierarchy of equations
involving higher order correlation functions. This hierarchy
can be closed by decoupling certain photon correlation
functions from atomic correlation functions. Physically,
this decoupling scheme corresponds to neglecting multi-
photon processes and considering only temperatures very
low compared with the quantum dot transition energy
scale. On the other hand, multiphonon processes are re-
tained to all orders. The mathematical steps are outlined in
Appendix.

The final expression for GMF
ω,n (σ̂ge, σ̂eg) is given by

[45]

GMF
ω,n (σ̂ge, σ̂eg) = − 1

ω0 − � − (ω − n�0) − ∑
k

|λ̃k |2
ωk−(ω−n�0)

.

(22)

The same procedure can be used to calculate Gω(σ̂eg, σ̂ge)
by using the mean-field approximation to write
Gt (σ̂eg, σ̂ge) � e−[�(0)−�(t)]GMF

t (σ̂eg, σ̂ge). The Fourier
transform of GMF

t (σ̂eg, σ̂ge), GMF
ω (σ̂eg, σ̂ge), can be obtained

from the expression for GMF
ω (σ̂ge, σ̂eg) using the symmetry

properties of the Green’s functions. The absorption spectrum
χ

′′
a (ω) is defined as the imaginary part of the susceptibility

Eq. (10), and by using Gω(σ̂ge, σ̂ge) = Gω(σ̂eg, σ̂eg) = 0 [45],
we obtain

χ
′′
a (ω) = Nd

ε0h̄
|Dge|2Im

⎡
⎣lim

ε→0

∑
n

Ln

1

ω0 − � − (ω − n�0) − ∑
k

|λ̃k |2
ωk−(ω−n�0)−iε

+ lim
ε→0

∑
n

Ln

1

ω0 − � + (ω − n�0) − ∑
k

|λ̃k |2
ωk+(ω−n�0)+iε

⎤
⎦ . (23)
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Equation (23) is one of the central formal results of
this article. The sideband structure is clearly seen in this
expression. The self-energy terms

∑
k

|λ̃k |2
ωk±(ω−n�0)±ε

contain
the details of the electromagnetic reservoir. We restrict our
attention to those values of n and �0 such that ω − n�0

is close to the quantum dot transition frequency ω0. Terms
with large values of n have vanishingly small spectral weights
due to the rapid decrease of Ln with n, and the contribution
of these sidebands to the line shape is negligible. Since
ωk is positive-definite, the second term in the expression
for the optical susceptibility has a negligible imaginary part
and can be dropped. In this analysis, phonon sidebands are
centered at frequencies ω0 + n�0 and have widths determined
by the parameter |λ̃k|2 = |〈Ĉ+〉|2|λk|2. Clearly the coupling
of the dot to the phonons in mean-field theory reduces the
width of all spectral features by the Franck-Condon factor
〈Ĉ+〉〈Ĉ−〉 = e−�(0) [see Eq. (16)] when compared to the dot
with no phonon coupling. The excited quantum dot is in a
displaced lattice state compared to the phonon state when
it is deexcited. The displaced states arise from a coherent
superposition of phonons that surround the exciton and give
rise to the polaron shift in its energy. The displacement of
the many-body wave function grows with exciton-phonon
coupling, g, and the number of thermally excited phonons.
The greater the displacement of the phonon-dressed exciton,
the weaker the effective exciton dipole transition rate.

This modification of the radiative decay rate by phonon
dressing of the excited quantum dot is a distinguishing feature
of our quantum-mechanical mean-field description, absent in
other semiclassical treatments [47]. As we show in Sec. V C,
the physical linewidth of the phonon sidebands is also heavily
influenced by the lifetime of the phonons in the polaronic
cloud. The damping of phonons (arising, for instance, from
the breakup of phonons into lower energy phonons) limits the
influence of the Franck-Condon effect and provides a more
dominant channel for energy dissipation from the quantum
dot excited state.

B. Polarization autocorrelation and excited-state lifetime

In this section, we derive general expressions for the polar-
ization autocorrelation function and the lifetime of the excited
state of a two-level system. In the absence of dot-photon
coupling, σ̂ee commutes with the rest of the Hamiltonian and
there is no broadening of the zero-phonon line. The role of
phonons is to induce pure dephasing without relaxation. In
the presence of dot-photon coupling, there is line broadening
due to radiative decay and the total rate of dephasing is due
to both photon and phonon contributions. A simple two-level
atom coupled to a free-space electromagnetic vacuum has a
purely exponential decay. However, a two-level atom placed
near a photonic bandgap exhibits non-Markovian radiative
dynamics [8].

The polarization is defined as the temporal dipolar autocor-
relation function:

P (t) = −i�(t)〈σ̂ge(t)σ̂eg(0)〉H . (24)

It describes the overlap between the initial system state (say the
atom fully excited) and the state at a later time t . This captures
the effects of dephasing due to the coupling of the two-level

atom to the electromagnetic modes and the phonon reservoir.
Using the mean-field decomposition outlined previously, we
rewrite Eq. (24) as

PMF (t) � −i�(t)〈σ̂ge(t)σ̂eg(0)〉HMF
e−[�(0)−�(t)]. (25)

Since the polarization is defined only for t > 0, we relate
the correlation function to the corresponding thermody-
namic Green’s function: 〈σ̂ge(t)σ̂eg(0)〉HMF

� iGMF
t (σ̂ge, σ̂eg)

for βsω0 � 1. Physically this follows from the fact that
〈σ̂eg(0)σ̂ge(t)〉HMF

� 0 for βsω0 � 1 since this term has a finite
contribution only for the excited state. In thermal equilibrium
and temperatures low compared to the quantum dot optical
transition energy, the atom is primarily in the ground state.
Therefore we have PMF (t) = �(t)GMF

t (σ̂ge, σ̂eg)e−[�(0)−�(t)].
GMF

t (σ̂ge, σ̂eg) can be evaluated by extending GMF
ω (σ̂ge, σ̂eg)

on the whole complex plane and using the inverse-Laplace
transform.

Until now we have focused solely on the equilibrium
dynamics of the two-level atom interacting with a photon
and a phonon reservoir. We now consider an important
nonequilibrium problem of population dynamics of the two-
level atom. The atom, at t = 0, is assumed to be in the
excited state, and hence, its density matrix ceases to be of the
canonical form [exp(−βH )/Z]. In this section, we derive an
expression for the lifetime of the excited state by studying the
temporal evolution of 〈σ̂ee(t)〉 using the Heisenberg’s equation
of motion.

We now proceed with the Heisenberg equations of motion.
Since σ̂ee commutes with exp(−S), the equation of motion for
the operator σ̂ee can be written using either the Hamiltonian
Eq. (1) or the polaron-transformed Hamiltonian Eq. (5). An
approximate solution is obtained by solving the problem in
the Born approximation in which the equation of motion for
σ̂ee(t) is considered to only second order in the dot-photon
coupling. The dot-phonon coupling, on the other hand, is
treated exactly to all orders and is subsequently approximated
by thermal averages of the phonon displacement operators.
The equation of motion for σ̂ee(t) is easily shown to be
given by

∂σ̂ee(t)

∂t
= −

[∑
k

|λk|2
∫ t

0
dt ′Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)

× e−iωk (t−t ′) + H.c.

]
+ N̂ (t), (26)

where N̂ (t) = −i
∑

k λke
−iωkt Ĉ+(t)σ̂eg(t)âk(0) + H.c. and

H.c. is the Hermitean conjugate. We now evaluate the
quantum expectation value of this operator equation to cal-
culate 〈σ̂ee(t)〉 = Tr(ρA ⊗ ρphonon ⊗ 〈{0}|σ̂ee(t)|{0}〉), where
the atom is described by an arbitrary density matrix ρA,
ρphonon = e−βHp

Tr(e−βHp )
and |{0}〉 represents the photon vacuum.

The phonon bath is assumed to be in thermal equilibrium at a
temperature β.

We now need to evaluate 〈Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)〉.
In what follows, we perform the mean-field factoriza-
tion 〈Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)〉� 〈Ĉ+(t)Ĉ−(t ′)〉〈σ̂eg(t)σ̂ge(t ′)〉
and we provide a formal justification for relating the
atomic polarization autocorrelation function to the atomic
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population according to the relation 〈σ̂eg(t)σ̂ge(t ′)〉 �
eiω′

0(t−t ′)〈σ̂eg(t ′)σ̂ge(t ′)〉 = eiω′
0(t−t ′)〈σ̂ee(t ′)〉, where ω′

0 = ω0 −
� is the dressed atomic transition frequency.

We introduce the Liovillian £ = £0 + £p + £I , where
£0Ô(t) = [Ô(t), H̃0], £pÔ(t) = [Ô(t),Hp] and £I Ô(t) =
[Ô(t), H̃I ] for any general operator Ô(t) with H̃0 = (ω0 −
�)σ̂ee + ∑

k ωkâ
†
kâk , H̃I = ∑

k(λkĈ+σ̂egâk + λ∗
k â

†
kĈ−σ̂ge),

and Hp = ∑
q �qĉ

†
q ĉq . In terms of the Liouvillian,

σ̂eg(t) = e−i(£0+£p+£I )(t−t ′)σ̂eg(t ′). Since Eq. (26) is already
second order in λk , the Born approximation implies that

σ̂eg(t) � e−i£p(t−t ′)e−i£0(t−t ′)σ̂eg(t ′)

= e−i£0(t−t ′)σ̂eg(t ′), (27)

where we have used £pσ̂eg = 0. Evaluating Eq. (27), it is
easy to see that σ̂eg(t) � ei(ω0−�)(t−t ′)σ̂eg(t ′). Using the Born
approximation, defined earlier, the right-hand side of Eq. (26)
can be simplified to

∂〈σ̂ee(t)〉
∂t

= −
(∑

k

|λk|2

×
∫ t

0
dt ′〈Ĉ+(t)Ĉ−(t ′)〉〈σ̂eg(t ′)σ̂ge(t ′)〉

× ei(ω′
0−ωk )(t−t ′) + H.c.

)
+ N̂ (t), (28)

where 〈Ĉ+(t)Ĉ−(t ′)〉 = Tr[ρphononĈ+(t)Ĉ−(t ′)], 〈σ̂eg(t)σ̂ge(t)〉
= Tr[ρA〈{0}|σ̂ee(t)|{0}〉], ω′

0 = ω0 − �, and N̂ (t) =
−i

∑
k λke

−iωkt 〈Ĉ+(t)〉〈σ̂eg(t)〉〈âk(0)〉 + H.c.
Using the thermal averages evaluated over the phonon

reservoir 〈Ĉ+(t)Ĉ−(t ′)〉 given by Eq. (14) and the fact that
the electromagnetic vacuum expectation values 〈âk(0)〉 =
〈â†

k(0)〉 = 0, we rewrite Eq. (28) as

∂�(t)

∂t
= −

∫ t

0
dt ′e−(�(0)−�(t−t ′))G(t − t ′)�(t ′) − c.c. (29)

where �(t) = 〈σ̂ee(t)〉, G(t − t ′) = ∑
k |λk|2ei(ω′

0−ωk )(t−t ′) and
c.c. denotes complex conjugate. We solve this integro-
differential equation for different photonic reservoirs in later
sections.

IV. OPTICAL SUSCEPTIBILITY IN A PHOTONIC
CRYSTAL

In this section, we calculate the optical susceptibility for
a two-level atom inside a photonic crystal coupled to a
phonon bath. Since the density of states changes rapidly in
the vicinity of the photonic band edge, the Wigner-Weisskopf
approximation is inadequate. In order to capture the non-
Markovian nature of the atom-photon interaction, we must
evaluate the self-energy more precisely [48,49].

A. Absorption spectra

We consider a simplified isotropic dispersion relation for the
PBG material, obtained by expanding the photonic dispersion
to leading order about the band edge wave vector k0. In the

effective mass approximation, it is given by

ωk = ωe + A(k − k0)2, (30)

where ωe is the band-edge frequency and A is a constant which
depends on the photonic crystal parameters. For convenience
of illustration, we choose A = ωe

k2
0

. A physical 3D photonic

crystal is highly anisotropic and the isotropic dispersion model
Eq. (30) is an oversimplification. On the other hand, the
dispersion relation Eq. (30) can be realized in a 3D PBG
material with a one-dimensional waveguide mode that has
a cutoff inside the PBG [50,51].

For the structured electromagnetic vacuum defined by
Eq. (30), the self-energy term in Eq. (23) can be easily
evaluated [8,38] to yield the (non-Lorentzian) absorption line:

χa(ω) = − Nd

ε0h̄
|Dge|2

[∑
n

Ln

× 1

(ω − n�0) − ω0 + � + e−�(0) iC√
(ω−n�0)−ωe

]

(31)

with C = ω2
0 |Dge |2

12πε0h̄

k3
0

ω
3/2
e

Ln = e−g(2N+1)en�0β/2In

[2g
√

N (N + 1)], and we have absorbed the Lamb shift
into the resonant frequency of the quantum dot. In the
limit of vanishing coupling to phonons, the expression for
susceptibility reduces to

χa(ω) = − Nd

ε0h̄
|Dge|2 1

ω − ω0 + iC√
ω−ωe

. (32)

Clearly, this susceptibility has no imaginary part for ω < ωe

and there is no absorption inside the PBG. However, when
the coupling to phonons is included, the atom can absorb at
frequencies inside the band gap by phonon-assisted processes.
For example, for ω0 < ωe and �0 > ωe − ω0, the n = 1 term
describes the absorption of a photon whose energy is outside
the gap assisted by an emission of a phonon into the thermal
reservoir. The contribution of higher order phonon processes
becomes progressively smaller due to smaller spectral weights
attached to them, but the probability of a phonon-mediated
process increases with rise in temperature.

In Fig. 1, we plot the absorption spectra of a quantum
dot in the structured reservoir of a photonic crystal. The
quantum dot transition frequency is 1 eV, and the optical
phonon frequency is 0.01 eV. Temperature is measured in
units of eV−1. Absorption is seen for frequencies inside the
photonic band gap at strong dot-phonon coupling strengths and
high temperatures. At low cryogenic temperatures and weak
dot-phonon coupling, the absorption spectrum is dominated
by the zero-phonon line.

B. Polarization of the two-level atom in a photonic crystal

In this section, we consider the effect of phonons on the
polarization (coherence) of the two-level system inside a pho-
tonic crystal. For an excited atom whose resonant frequency
is near the band edge, the atom is dressed by its own localized
radiation field. This leads to Rabi splitting of the excited state
into an Autler-Townes doublet [8]. If the dressing is strong
enough, the lower frequency component of the doublet is
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FIG. 1. (Color online) Plots of absorption spectra χ (ω) (in arbitrary units) defined in Eq. (31) of the quantum dot slightly detuned from
a photonic band edge in a photonic crystal. In the absence of direct nonradiative decay and phonon damping, the radiative line shapes are
modified by the non-Markovian interaction with the photonic band edge. The quantum dot transition is assumed to be 1 eV, and the optical

phonon frequency is .01 eV. Temperature is chosen 1/40 eV for all the plots. The frequency scale is α = C
2
3 , where C = ω2

0 |Dge |2
12πε0h̄

k3
0

ω
3/2
e

. The

sidebands (separated by �0 in frequency) have been shifted for comparison in the same plot. The band edge and the resonant frequency of

the atom are shown with respect to the zero-phonon line. The dot-phonon coupling g = ∑ η2
q

�2
q

is 0.5 in (a) and g = 1.0 in (b). The detuning

δ = −3α (inside PBG). The effect of phonon sidebands is clearly seen at room temperatures (kBT = 1
40 eV). Absorption inside the band gap

is noticeable due to enhanced phonon-mediated absorption due to strong dot-phonon coupling and an increase in temperature of the phonon
bath. Phonon-mediated absorption also increases with the dot-phonon coupling strength. For low temperatures (kBT ≈ 10−3 eV ), we expect
no phonon-assisted absorption. The spectral weight in the sidebands is also smaller at low temperatures. In the absence of phonon damping,
the width of all the peaks is purely radiative in nature.

pushed inside the photonic band gap and this component is
immune from spontaneous radiative decay. This photon-atom
bound state results in a nonzero steady-state population and
finite coherence for large times. In the model Hamiltonian
of Eq. (1) and our subsequent mean-field theory, the role of
phonons is to dephase the optical dipole of the quantum dot
and to displace the excited state wave function from that of
the ground state. This leads to diminished polarization and
coherence but to an enhanced excited state population for the
photon-atom bound state. In this model, the lifetime of the
photon-atom bound state is limited by damping of the phonons
themselves due to anharmonic or dissipative processes. The
important role of the phonon lifetime in modifying the photon-
atom bound state is discussed in Sec. V C.

We now study the temporal evolution of the polarization
of an initially excited quantum dot coupled to the structured
electromagnetic reservoir of the photonic crystal and a bath of
thermalized optical phonons. The coherence of the two-level
atom coupled to phonons is |PMF (t)| as defined by Eq. (25).
It is easily shown to be given by

PMF (t) = −i�(t)
∑

n

Lne
−i(n�0+ωe)t

×
⎡
⎣2a1x1e

αx2
1 t + a2(x2 + y2)eαx2

2 t

−
3∑

j=1

ajyj Erfc
(√

αx2
j t

)
e
αx2

j t

⎤
⎦ . (33)

The definition of constants ai’s and xi’s and the detailed
derivation of Eq. (33) can be found in [8]. In the absence of
any coupling to phonons (L0 = 1 and Ln = 0 for all n �= 0),
it has been shown [8] that for ω0 near the band edge, strong
interaction between the atom and its localized radiation splits
the atomic level into dressed states. These dressed states
are formed at frequencies ωe − αIm(x2

1 ) and ωe − αIm(x2
2 ).

The first dressed state is pushed inside the gap, and this
bound state leads to the fractionalized steady-state atomic
population in the excited state. However, in the presence of
phonon coupling, we see using Eq. (33) that there exists
an infinite number of dressed states formed at frequencies
ωe − n�0 − αIm(x2

1 ) and ωe − n�0 − αIm(x2
2 ). The relative

spectral weights of these dressed states are determined by
Ln. For low β and large g, the spectral weight is distributed
over a large number of phonon sidebands. However for low
temperatures (cryogenic temperatures, high β) and g � 1,
the spectral weight is contained in a few sidebands about
the zero-phonon line. The short time ∼ps temporal evolution
of polarization of the two-level atom is determined by the
interference of these sidebands. However, undamped optical
phonons do not lead to complete dephasing at long time scales.
Moreover, the coupling of the two-level system to the phonon
bath results in a Franck-Condon shift that reduces the optical
dipole-moment resulting in slower electromagnetic dephasing.
The ultimate cause of decoherence and decay of the photon-
atom bound state occurs from damping (finite lifetime) of the
phonons themselves or from other nonradiative decay channels
(see Sec. V).
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C. Population dynamics of the fractionalized steady state

We now calculate the residual population on the fractional-
ized steady state. We start from Eq. (29), which we solve using
the method of Laplace transforms. The Laplace transform of
�(t) is given by

�̃(s) = �(0)

s + ∑
n LnZ̃(s − in�0) + ∑

n LnZ̃∗(s − in�0)
,

(34)

where the self-energy Z̃(s) is easily evaluated [14,38] for the
isotropic dispersion relation Eq. (30) and is given by

Z̃(s − in�0) = α
3
2 e

−iπ
4√

s − iδ + in�0
, (35)

where α
3
2 = ω

7
2
0 |Dge |2

6πε0h̄c3 . The resulting inverse-Laplace transform
cannot be evaluated analytically, and the inversion is done
numerically. At zero temperature, Ln = 0 for n < 0 (“hot”
sidebands inactive) since there are no phonons available to
absorb from the thermal phonon reservoir. Only the cold
bands (n > 0), involving phonon emission contribute to the
spectrum. At finite temperatures, all sidebands are active, and
the weight of Ln’s, for n < 0, increases with temperature. With
increasing temperatures, there is a marginal shift in the spectral
weight to the n < 0 sidebands.

The dressing of the photon-atom bound state by the phonons
leads to (i) a shift of the spectral weight further inside the
photonic band gap due to the polaron shift, (ii) a reduction of
the effective transition dipole moment due to dephasing, and
(iii) a diminished overlap between the excited state many-body
(atom + phonon cloud) wave function from the ground state.
In the absence of phonon damping, this leads to the peculiar
result that optical phonons suppress radiative decay. In the
next section, we consider additional physical effects that need
to be included for a realistic picture of quantum dot phonon
interactions.

V. ROLE OF ACOUSTIC PHONONS, NONRADIATIVE
RELAXATION, AND PHONON LIFETIME

In the previous section, we studied phonon-mediated
relaxation of a quantum dot using a purely optical phonon bath
and photons. In this section, we reconsider polarization and
population decay dynamics of the quantum dot with coupling
to acoustic phonons. We also include a purely nonradiative
decay channel in our model Hamiltonian. Finally we consider
anharmonic phonon processes described by a phenomeno-
logical damping parameter. These processes enable complete
decay of the photon-atom bound state.

A. Undamped acoustic phonons

The optical phonon model used in the previous sections
led to well-separated phonon sidebands. Interference between
these sidebands gives rise to oscillations in the polarization
at optical phonon timescales. However, the polarization of
a photon-atom bound state does not decay to zero at long
times. For coupling to a continuum of acoustic phonons,
the distinct sidebands likewise merge into a continuum.

Quantum interference within this continuum of modes leads
to polarization decay to a new steady state without any
subsequent revivals.

For acoustic phonons, we adopt a model used in earlier
literature [17,18] to describe GaAs-based quantum dots.
Assuming a spherical dot model with acoustic deformation
potential interactions, the dot-phonon coupling is

ηq =
(

h̄q

2ρclV

) 1
2

(De − Dh) exp

(
−q2L2

4

)
, (36)

where ρ = 5379 kg m−3 is the mass density of GaAs, cl =
5110 m/s is the longitudinal sound velocity, De = −14.6 eV
and Dh = −4.8 eV are the deformation potentials for electrons
and holes, and L = 5 nm is the electronic localization length
in the quantum dot. The exponential in Eq. (36) introduces an
effective cutoff in q; hence, an explicit cutoff at the Debye
wave vectors is not required. Typical material parameters
for GaAs with a quantum dot electronic localization length
L = 5 nm lead to characteristic time and energy (temperature)
scales of τ = L/cl � 1 ps and h̄/τ � 0.7 meV (7.8 K), re-
spectively. For small q’s, an effective linear dispersion relation
�q = clq is assumed and Eq. (15) for �(t) is now given by

�(t) = αp

∫ ∞

0
dxx exp

(
−x2

2

) [
i sin(xt)

+ cos(xt) coth

(
h̄βx

2τ

)]
, (37)

where t = t
τ

and the dimensionless dot-phonon coupling
(Huang-Rhys factor) αp is defined as

αp = (De − Dh)2

4π2h̄ρc3
l L

2
� 0.033. (38)

An analytic expression for �(t) can be derived by approxi-
mating coth( h̄βx

2τ
) � 2τ

h̄βx
which is certainly valid for h̄βx

2τ
� 1

(T � 7.8 K). The integrals are straightforward to perform
analytically, and we obtain:

�(t) = αp(t)e− t2
2 , (39)

where αp(t) = α(1)
p + itα(2)

p and α(1)
p =

√
2παpτ

h̄β
and α(2)

p =√
π
2 αp. The spectral weight of the zero-phonon line, e−�(0), is

now given by e−α
(1)
p .

We now consider the population decay dynamics Eq. (29)
in the presence of an acoustic phonon reservoir. Unlike the
case of optical phonons, a straightforward expansion in terms
of the phonon sidebands cannot be made. Using Eq. (39) in
Eq. (29) for �(t), we obtain

∂�(t)

∂t
� − e−�(0)

∑
k

|λk|2
∫ t

0
dt ′eαp( t−t ′

τ
)e

− (t−t ′)2
τ2

× �(t ′)ei(ω′
0−ωk )(t−t ′) + c.c., (40)

where αp( t−t ′
τ

) = α(1)
p + i t−t ′

τ
α(2)

p . A straightforward scaling

analysis shows that for t � α−1, ∂�(t)
∂t

� 0. The right-hand side
of Eq. (40) is nonzero only for t � α−1 when population decay
kicks in due to radiative processes which happen on timescales
of α−1. This is due to the fact that the role of phonons is
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confined to pure dephasing [as modeled using the Independent-
Boson model for the dot-phonon dynamics in Eq. (1)] wherein
phonons do not cause any population decay [since σ̂ee

commutes with the phonon part of the interaction Hamiltonian
in Eq. (1)] but are only associated with polarization decay.

The radiative memory kernel �(t − t ′) ≡∑
k |λk|2ei(ω′

0−ωk )(t−t ′) describes non-Markovian effects
in the vicinity of a photonic band edge. When the radiative
transition is detuned by a small amount, δ, from a 1 − D

band edge singularity in the electromagnetic density of states,
this memory kernel decays [14] as a power law �(t − t ′) �
α

3
2 e

− iπ
4 eiδ(t−t ′)√
t−t ′ . Phonon dephasing effects tend to suppress these

memory effects. The more phonons that participate in the
decay process, the more rapidly memory is lost.

The primary effect of undamped acoustic phonons in our
model is a very rapid decay of polarization at picosecond
timescales followed by radiative decay at long timescale but
with a reduction in strength of the effective radiative coupling
|λk|2 due to the Franck-Condon shift of the excited state wave
function. In a PBG material, the excited-state population in the
photon-atom bound state is enhanced. Despite the continuum
of acoustic phonon modes, the model Hamiltonian does not
allow for decay of the system to its ground state by pure
phonon effects. This picture is valid at very low temperatures.
In an ordinary vacuum, this corresponds to the situation where
the dynamics of quantum dots and their polarization decay is
“radiatively limited” [29,32,33]. In a PBG material, where ra-
diative processes can be suspended on timescales much longer
than in ordinary vacuum, it is important to consider additional
channels for phonon-mediated decay of the photon-atom
bound state. This is the subject for the next two subsections.

B. Addition of purely nonradiative decay channel

Our model Hamiltonian Eq. (1) recaptures certain features
of multiple-phonon-assisted radiative transitions. In this
picture, the quantum dot excited state is dressed by various
numbers of phonons, leading to a series of sidebands with
energies determined by the number and energy of phonons
involved. However, transitions from these dressed states to
the quantum dot ground state are purely radiative in nature.
The spectral width of these sidebands is determined by the
optical density of states at the sideband transition frequency
and the modified optical transition matrix element. The
optical transition dipole, in this simple model, is diminished
due to phonon dephasing effects and the Franck-Condon
displacement of the dressed excited states from the ground
state. This leads to an artificially small linewidth to the
phonon sidebands. In a more realistic picture, we must
incorporate phonon-mediated decay mechanisms in addition
to the phonon-mediated dressing of the excited state. As we
will show, these additional decay channels limit the extent to
which the optical dipole transition can be suppressed by the
Franck-Condon effect and provide a more realistic picture of
the spectral linewidths of the phonon sidebands.

In this subsection, we introduce pure nonradiative decay
due to phonons through an additional term in the interaction

Hamiltonian:

Hdecay =
∑

p

(ζpσ̂egd̂p + ζ ∗
p d̂†

pσ̂ge), (41)

where d̂
†
p(d̂p) is the creation (annihilation) operator for

the decay phonon with wave number p. We assume that
these decay phonons form a continuum with a smooth and
featureless (vibrational) density of states. The operator d̂

†
p

could, for instance, correspond to the simultaneous creation
of many phonons of the type described earlier with energies
{h̄�ki

} such that p = ∑
i ki and h̄ω0 � ∑

i h̄�ki
. Rather

than solving the full Hamiltonian, we capture the role of
this decay term by introducing a phenomenological decay
rate, γnonrad, for the excited state amplitude. In the limiting
case of HI = 0 [see Eq. (1b)], this corresponds to the
replacement ω0 → ω0 − iγnonrad and the decay of the two-level
atom correlation function is given by −i�(t)〈σ̂ge(t)σ̂eg(0)〉 =
−i�(t)e−iω0t exp(−γnonradt).

We start by considering the effect of Hdecay on the
“Independent-Boson part” of the Hamiltonian H in Eq. (1).
The modified Independent-Boson Hamiltonian becomes

H0 = h̄ω0σ̂ee +
∑

q

h̄�qĉ
†
q ĉq +

∑
p

h̄ξpd̂†
pd̂p, (42a)

H
decay
I = σ̂ee

∑
q

ηq(ĉq + ĉ†q) + Hdecay. (42b)

The correlation function g(t) = −i�(t)〈σ̂ge(t)σ̂eg(0)〉 for the
unperturbed Independent-Boson Hamiltonian is well known
[17,40]. Using the linked-cluster theorem [40], the correlation
function can be written as g(t) = g0(t)eW (t). Here g0(t) =
−i�(t)e−iω0t is the two-level atom propagator in the absence
of the dot-phonon interaction and W (t) is given by [40]

W (t) = −eiω0t

∫ t

0
dt1

∫ t

0
dt2D(t1 − t2)

× g0(t − t1)g0(t1 − t2)g0(t2) (43)

and D(t1 − t2) is the phonon correlation function [40] defined
as

iD(t1 − t2) =
∑

q

η2
q[(Nq + 1)e−i�q |t1−t2| + Nqe

i�q |t1−t2|].

(44)

It is now straightforward to show [52] that g(t) =
−i�(t)e−i(ω0−�)t e−[�(0)−�(t)]. This is the well-known
result [40] for the Independent-Boson model with �(t) and �

defined in Eqs. (15) and (6), respectively.
We now consider the effect of the decay term, Hdecay, on the

correlation function of the Independent-Boson Hamiltonian.
This decay term interferes with the pure phonon dephasing
process. If the timescale of the decay-phonon processes is
substantially faster than the pure dephasing phonons, the
atom will undergo nonradiative decay even before it can
transfer energy and emit or absorb pure dephasing phonons.
If the timescales of these two phonon processes are compa-
rable, the spectral structure of the phonon sidebands due to
pure dephasing phonons should be modified by the nonradia-
tive decay processes. The contribution of this decay term to
the Independent-Boson correlation function can be included
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in the lowest order by the ansatz [53]:

D(t1 − t2) → D(t1 − t2)e−γnonrad|t1−t2|. (45)

A microscopic derivation of this replacement follows from
the interaction Hamiltonian Eq. (41). Our ansatz corresponds
to the leading correction to the irreducible self-energy of the
temporal atomic dipole propagator, arising from the additional
interaction Eq. (41). The decay term acts only during the times
when the dot interacts with the purely dephasing phonons and
leads to the renormalization of the dot-pure dephasing phonon
coupling due to direct nonradiative processes. This simultane-
ous interaction of the nonradiative decay processes and purely
dephasing processes results in broadening of the phonon side-
bands. A microscopic expression for γnonrad can be obtained
from Hdecay. To the lowest order in the dot-nonradiative decay
coupling, we obtain γnonrad = π

∑
p(np + 1

2 )|ζp|2δ(ω − ξp),

where np = 1
eβξp −1

. The excited state probability then decays

as e−2γnonradt . Assuming a smooth density of states in the
vicinity of ω0, the sum can be converted into an integral
and evaluated. For βξp � 1, it is easy to see that γnonrad is
linear in T . Therefore, in this simple model, we find that the
nonradiative decay rate increases linearly with temperature (in
the high-temperature limit βξp � 1).

Using Eq. (45) in Eq. (43) and evaluating the time integrals
[35], W (t) can be expressed in terms of the modified phonon
correlation function �̃(t) as

W (t) = −t�̃′(0) − [�̃(0) − �̃(t)], (46a)

�̃(t) =
∑

q

η2
q

[
Nq

(�q + iγnonrad)2
e(i�q−γnonrad)t

+ Nq + 1

(�q − iγnonrad)2
e(−i�q−γnonrad)t

]
. (46b)

It is convenient to write �̃(t) = �̃1(t) + i�̃2(t). Also note
�̃(0) can be decomposed as �̃(0) = �̃1(0) + i�̃2(0), where
e−�̃1(0) is the spectral weight of the zero-phonon line [35]
and �̃2(0) is a phase. Also �̃′(0) = d�̃(t)

dt
|t=0 = γ̃nonrad − i�̃,

where γ̃nonrad is an additional decay term contributing to
polarization decay due to modified pure dephasing caused by
Hdecay and �̃ is the new polaron shift. They are given by

γ̃nonrad =
∑

q

η2
qγnonrad

�2
q + γ 2

nonrad

(1 + 2Nq),

(47)
�̃ =

∑
q

η2
q

�q

�2
q + γ 2

nonrad

.

We now study an analytical and instructive example of
the modification of the phonon correlation function due to
nonradiative decay γnonrad using the acoustic phonon model
described in the previous subsection [Eqs. (36)–(38)]. The
modified function W (t) Eq. (43) now takes the form:

W (t) = αp

∫ t

0
dt1

∫ t1

0
dt2

∫ ∞

0
dxx3 exp

(
−x2

2

)

×
[
i sin(xt12) − cos(xt12) coth

(
h̄βx

2τ

)]
e−γ nr t12 ,

(48)

where γ nr ≡ γnonradτ and t12 ≡ (t1 − t2)/τ . We now approxi-
mate coth( h̄βx

2τ
) = 2τ

h̄βx
as in Eq. (39). The modified phonon

correlation function can now be obtained using Eq. (46a)
following a straightforward evaluation of Eq. (48):

�̃1(t) = α(1)
p e− t

2 (2γ nr+t)

[(
1 + γ 2

nr

) +
√

π

2
γ nre

1
2 (γ nr+t)2

× (
2 + γ 2

nr + 2γ nr t
)
Erf

(
γ nr + t√

2

)]
, (49a)

�̃2(t) = −α(2)
p e− t

2 (2γ nr+t)

[(
2γ nr + γ 3

nr − t
) + γ 2

nre
1
2 (γ nr+t)2

×
√

π

2

(
3 + γ 2

nr + γ nr t
)
Erf

(
γ nr + t√

2

) ]
. (49b)

The zero-phonon line intensity (e−�̃1(0)) which is determined
by �̃1(0) and the phase �̃2(0) are easily extracted from the
preceding discussion. It is instructive to consider the situation
in which direct nonradiative decay is weak perturbation com-
pared to the dot-acoustic phonon coupling (γ nr ≡ γnonradτ �
1). In this case, we make a power-series expansion in γ nr to
obtain

�̃1(0) = α(1)
p

[
1 + 3γ 2

nr + O
(
γ 4

nr

)]
, (50a)

�̃2(0) = −2α(2)
p

[
γ nr + 2γ 3

nr + O
(
γ 5

nr

)]
. (50b)

Note that the spectral weight of the zero-phonon line e−�̃1(0)

decreases with increasing nonradiative decay. The decay term
in the modified phonon correlation function, γ̃nonrad (which
causes exponential decay at long times t � τ ), and the
modified polaron shift �̃ are now obtained using �̃′

1(0) and
�̃′

2(0), respectively:

γ̃nonrad = α(1)
p γnonrad

[
1 +

√
π

2
γ nre

γ 2
nr
2 Erf

(
γ nr√

2

) ]
, (51a)

�̃τ = α(2)
p

[(
1 − γ 2

nr

) −
√

π

2
γ 3

nre
γ 2
nr
2 Erf

(
γ nr√

2

) ]
. (51b)

A Taylor expansion of γ̃nonrad and �̃ lead to

γ̃nonradτ = α(1)
p γ nr

[
1 + γ 3

nr + O
(
γ 5

nr

)]
, (52a)

�̃τ = α(2)
p

[
1 − γ 2

nr + O
(
γ 4

nr

)]
. (52b)

Note that γ̃nonrad → 0 as γnonrad → 0 as one would expect.
Moreover, the modified polaron shift �̃ decreases with
increasing γnonrad reflecting the fact that polaronic effects are
suppressed by direct nonradiative effects.

The short-time phonon dynamics t � τ of
e−[�̃(0)−�̃(t)+t�̃′(0)] can be obtained by expanding �̃(0) −
�̃(t) + t�̃′(0) as a power series in t which is found to be
given by

�̃(0) − �̃(t) + t�̃′(0) = α(1)
p

2
t

2 + O(t3). (53)

Neglecting terms t
3 and higher, we find that the absorption

spectrum which is the Fourier transform of the dipolar
autocorrelation function is

χ ′′(ω) = 1√
2πD

e
− (ω−ω0)2

2D2 , (54)
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where ω0 is the bare quantum dot transition frequency and

D2 = α
(1)
p

τ 2 is the width of the Gaussian spectrum. Note that D ∝√
T and the width of the sidebands increases with temperature.
The long-time phonon dynamics (t � τ ) is easy to obtain

by making an asymptotic expansion of �̃(t) = �̃1(t) + i�̃2(t)
in Eq. (49) as follows:

�̃1(t) = α(1)
p

{
e

γ 2
nr
2

√
π

2

[
γ 2

nr t + γ nr

(
2 + γ 2

nr

)]

+ e− t
2 (2γ 2

nr+t)

[
1 − 2γ nr

t
+ 3γ 2

nr

t
2 + O

(
1

t
3

) ]}
,

(55a)

�̃2(t) = −α(2)
p

{√
π

2
e

γ 2
nr
2

[
γ 3

nr t + γ 2
nr

(
3 + γ 2

nr

)]

− e− t
2 (2γ nr+t)

[
t − 2γ nr + 3γ 2

nr

t
+ O

(
1

t
2

) ]}
.

(55b)

For large t , we consider Eq. (55) to leading order and obtain

�̃1(t) � α(1)
p e

γ 2
nr
2

√
π

2

[
γ 2

nr t + γ nr

(
2 + γ 2

nr

)]
, (56a)

�̃2(t) � −α(2)
p

√
π

2
e

γ 2
nr
2

[
γ 3

nr t + γ 2
nr

(
3 + γ 2

nr

)]
. (56b)

For simplicity, denote �̃1(t) = �̃
(1)
1 (0) + �̃

(2)
1 t in Eq. (56).

Similarly we denote �̃2(t) = �̃
(1)
2 (0) + �̃

(2)
2 t . The dipole

autocorrelation function now has the following asymptotic
form for t � τ :

e−i(ω0−�̃)t e−[�̃(0)−�̃(t)]−γ̃nonradt

� e−i(ω0−�̃)t e−[�̃1(0)−�̃
(1)
1 (0)]e−i ˜[�2(0)−�̃

(1)
2 (0)]

× e−[γ̃nonradτ−�̃
(2)
1 ] t

τ ei�̃
(2)
2

t
τ . (57)

The oscillating part ei�̃
(2)
2

t
τ is absorbed into the term oscillating

at the atomic resonant frequency e−i(ω0−�̃)t and provides
correction to the polaron shift �̃. The absorption spectrum
is now easy to obtain as the imaginary part of the Fourier
transform of the dipole autocorrelation function Eq. (57)

and is a Lorentzian with width
(γ̃nonradτ−�̃

(2)
1 )

τ
. Combining the

short-time and long-time dynamics of the phonon correlation
function, we conclude that the overall line shape exhibits
Lorentzian behavior near the peak of the spectrum and decays
more rapidly as a Gaussian in the wings.

We now consider population decay dynamics of the two-
level atom coupled to the radiation reservoir and in the pres-
ence of direct nonradiative decay term Hdecay. The nonequi-
librium correlation function 〈Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)〉 in
Eq. (26), in the presence of nonradiative decay, can be
expressed as

〈Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)〉
� e−[�̃(0)−�̃(t−t ′)]e−γ̃nonrad(t−t ′)〈σ̂eg(t)σ̂ge(t ′)〉, (58)

where we have used 〈Ĉ+(t)Ĉ−(t ′)〉 = e−(�̃(0)−�̃(t−t ′))

e−γ̃nonrad(t−t ′) [45]. Using the Born approximation described in

Eqs. (26)–(28) and replacing the atomic transition frequency
ω′

0 → ω′
0 + iγnonrad [see discussion after Eq. (41)]. we obtain

〈σ̂eg(t)σ̂ge(t ′)〉 � eiω′
0(t−t ′)e−γnonrad(t−t ′)〈σ̂ee(t ′)〉, (59)

where ω′
0 = ω0 − �̃. Using Eqs. (59) and (58), Eq. (29) for

�(t) now has the form:
∂�(t)

∂t
= −2γnonrad�(t) −

∑
k

|λk|2

×
∫ t

0
dt ′e−(γnonrad+γ̃nonrad)(t−t ′)−(�̃(0)−�̃(t−t ′))�(t ′)

× ei(ω′
0−ωk )(t−t ′) + c.c. (60)

In the presence of nonradiative decay, Eq. (29) now
has an additional contribution on the right-hand side
given by −∑

p(1 + 2np)|ζp|2 ∫ t

0 dt ′�(t ′)ei(ω′
0−ξp)(t−t ′), where

ξp is the dispersion of this additional decay channel
[see Eq. (41)]. In the Markovian approximation, we write∑

p(1 + 2np)|ζp|2 ∫ t

0 dt ′�(t ′)ei(ω′
0−ξp)(t−t ′) � 2γnonrad�(t) and

obtain Eq. (60). Note that in the limit when λk → 0 ∀k (no
radiative coupling), the population decays due to the first term
on the right-hand side which arises due to the additional decay
Hamiltonian Eq. (41).

Using a simple scaling analysis, it is easy to show that, for
t � α−1, Eq. (60) simplifies to

∂�(t)

∂t
= −2γnonrad�(t), (61)

and the only decay mechanism for population is through the
direct nonradiative decay term since the second term on the
right-hand side does not contribute at these timescales. For
t � α−1, we now use the asymptotic expansion of �̃(t) (valid
for t � τ ) outlined in Eqs. (55) and (56). Equation (60) can
then be rewritten as

∂�(t)

∂t
� −2γnonrad�(t) − e−�1(0)

∑
k

|λk|2
∫ t

0
dt ′

× e−i�2(0)e−γ nonrad(t−t ′)�(t ′)ei(ω′
0−ωk )(t−t ′) + c.c., (62)

where γ nonrad = γnonrad + γ̃nonrad − �̃
(2)
1
τ

, �1(0) = �̃1(0) −
�̃

(1)
1 (0), and �2(0) = �̃2(0) − �̃

(1)
2 (0), and we have ab-

sorbed the term ei�̃
(2)
2

t−t ′
τ in eiω′

0(t−t ′). Note that the dot-
photon coupling constant is now modified in the presence
of direct nonradiative decay as |λk|2 → e−�1(0)|λk|2. Also
e−�1(0) ∑

k |λk|2ei(ω′
0−ωk )(t−t ′) is the phonon-renormalized ra-

diative memory kernel where e−�1(0) is the effective Franck-
Condon factor which renormalizes the dot-photon coupling.
We note that the nonradiative decay channel leads to weak-
ening of the photon memory because of the exponential
damping term e−γ nonrad(t−t ′). Using the isotropic dispersion
relation Eq. (30) for the structured reservoir of a photonic
crystal, Eq. (62) can be solved by Laplace transformation [38]
to yield

�̃(s) = �(0)

s + 2γnonrad + 2ReZ̃(s)
, (63)

where Z̃(s) = e−�1(0) α
3
2 e

iπ
4 e−i�2(0)√

s+iδ+γ nonrad
. The photonic memory of

the structured reservoir is now damped, and the two-level
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FIG. 2. (Color online) Salient features of the modified undamped acoustic phonon correlation function in the presence of direct nonradiative
decay e−(�̃(0)−�̃(t)+t γ̃nonrad), where �̃(t) and γ̃nonrad are defined in Eqs. (49) and (51), respectively. In (a), we plot the modified phonon correlation
as a function of t

τ
, which now decays at long times due to direct nonradiative decay. In (b), we plot the spectral profile corresponding to (a).

The δ-function peak in the middle acquires a width for finite nonradiative decay rate. The zero-phonon line resembles a Lorentzian for large
γnonrad. The width of the Lorentzian also increases with γnonrad. The large ω (small t) Gaussian spectrum persists in the presence of direct
nonradiative decay. In (c), we plot the spectral weight of the zero-phonon line given by e−�̃(0) as a function of inverse-temperature. The spectral
weight decreases with increasing temperature due to excitation of the sidebands. Finally in (d), we study the Franck-Condon shift e−�(0)

(see discussion following Eq. (62) of the excited state as a function of direct nonradiative decay. Increasing γnonradτ reduces the Franck-Condon
shift. The artificial subnatural linewidth of the radiative transition is thereby removed.

system does not support a steady-state population. The atom
decays nonradiatively at a rate determined by γ̃nonrad and γnonrad

in spite of the presence of a photonic band gap.
The polarization dynamics of a quantum dot in a PBG

material and coupled to an acoustic phonon reservoir with
nonradiative decay is easy to obtain by using the modified
phonon correlation function:

PMF (t) � −i�(t)e−iωet−γnonradt−γ̃nonradt e−(�̃(0)−�̃(t))

×
[

2a1x1e
αx2

1 t + a2x2e
αx2

2 t + a2y2e
αx2

2 t

−
3∑

j=1

ajyj Erfc
(√

αx2
j t

)
e
αx2

j t

]
. (64)

The definition of constants ai’s and xi’s can be found in [8]. The

radiative timescale is now determined by α
3
2 = e−�1(0)ω

7
2
0 |Dge |2

6πε0h̄c3 .
The detuning of the quantum dot transition frequency is given
by δ = ω0 − �̃ − ωe. There is no long-term coherence trapped
in the photon-atom bound state which, at t � τ , decays at a

rate γnonrad + γ̃nonrad − �̃
(2)
1
τ

.
In Fig. 2, we plot important features of the modified phonon

correlation function e−(�̃(0)−�̃(t)+t γ̃nonrad) in the presence of

direct nonradiative decay, where �̃(t) and γ̃nonrad are defined
in Eqs. (49) and (51), respectively. In Fig. 2(a), we plot the
modified phonon correlation as a function of t

τ
. Note that the

correlation function now decays at long times. In Fig. 2(b), we
plot the absorption spectrum which is the Fourier transform of
the modified phonon correlation function e−(�̃(0)−�̃(t)+t γ̃nonrad).
The zero-phonon line is now broadened due to nonradiative
decay and the spectrum acquires a finite linewidth. For large
γnonrad, the spectrum is almost Lorentzian for ω (or large t)
in the vicinity of the resonant frequency. We also plot the
spectral weight of the zero-phonon line given by e−�̃(0) as
a function of inverse-temperature h̄β

τ
. The zero-phonon line

intensity decreases with increasing temperature due to transfer
of spectral weight to the sidebands and the decay of the phonon
correlation function. The Franck-Condon displacement of the
excited state wave function, e−�(0) [see discussion following
Eq. (62)], is also studied as a function of direct nonradiative
decay. Increasing γnonradτ reduces the Franck-Condon shift
and the artificial subnatural linewidth of the radiative transition
approaches the natural width.

In Fig. 3, we study the influence of nonradiative decay
on quantum dot polarization |PMF (t)| [Eq. (64)] and on
the excited-state population l(t) described by Eq. (63) in
the structured reservoir of a photonic crystal for various
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FIG. 3. (Color online) Study of the influence of nonradiative decay on quantum dot dipole autocorrelation function (polarization) |PMF (t)|
[Eq. (64)] and the excited-state population l(t) [Eq. (63)] in a photonic crystal for detuning δ/α = −1 from the photonic band edge. The
timescale is measured in units of α−1, where α = 1010s−1 for ω0 � 1015s−1. In (a), we depict the polarization dynamics. In (b), we plot the
excited-state population dynamics. The rapid loss of coherence at picosecond timescales in (a) appears as a nearly discontinuous drop near
t = 0 on the timescale depicted. There is no long-time coherence trapped in the photon-atom bound state and no fractionalized steady-state
population in the presence of direct nonradiative decay even though the quantum dot transition is inside the photonic band gap.

detunings of the atomic transition frequency from the photonic
band edge. There is no long-time coherence trapped in the
photon-atom bound state and no fractionalized steady-state
population in the presence of direct nonradiative decay for all
values of detuning δ.

C. Line shape and population decay for damped
acoustic phonons

The model Hamiltonian Eq. (1) describes purely radiative
decay from each of the dressed states (phonon sidebands).
In an ordinary vacuum, this radiative decay is possible from
all the dressed states. The linewidth of any given sideband
is artificially found to be subnatural. The Franck-Condon
displacement of the excited-state wave function (with a phonon
cloud surrounding the excited-state quantum dot) diminishes
the transition rate from each dressed state. For a quantum dot
in ordinary vacuum, coupled to a continuum of undamped
acoustic phonons, the subnatural linewidth of individual
sidebands leads to a reduced decay rate. In a PBG material,
where radiative decay can be completely suppressed over
certain spectral ranges, the model Hamiltonian Eq. (1) leads
to the untenable result that the lifetime of the photon-atom
bound state is increased by phonon interactions. In Sec. VI B,
we introduced an independent nonradiative decay mechanism
to correct this picture. In this subsection, we demonstrate
how the inclusion of a finite phonon lifetime leads to a more
realistic picture of the phonon sideband linewidth and decay of
the photon-atom bound state. Our phenomenological phonon
damping parameter captures processes like inelastic scattering
of phonons and other anharmonic processes that allow the
phonons in the polaronic cloud to decay into lower energy
phonons and for energy to be dissipated within the vibrational
degrees of freedom into a thermal heat bath.

We introduce a phenomenological phonon decay rate γq

into the phonon propagator as follows [35]:

iD(t) =
∑

q

η2
q[Nqe

(i�q−γq )|t | + (Nq + 1)e(−i�q−γq )|t |].

(65)

The self-energy contribution can again be evaluated using
the linked cluster theorem, and we find a modified �̃(t) now
given by

�̃(t) =
∑

q

η2
q

[
Nq

(�q + iγq)2
e(i�q−γq )t

+ Nq + 1

(�q − iγq)2
e(−i�q−γq )t

]
. (66)

This is identical to Eq. (46b) except with the single nonradia-
tive decay rate γnonrad replaced with a set of phonon damping
coefficients {γq}. As before we write �̃(t) = �̃1(t) + i�̃2(t).
Also �̃(0) can be decomposed as �̃(0) = �̃1(0) + i�̃2(0),
where e−�̃1(0) is the intensity of the zero-phonon line (Huang-
Rhys factor) and �̃2(0) is an additional phase:

�̃1(0) =
∑

q

η2
q

�2
q − γ 2

q(
�2

q + γ 2
q

)2 (1 + 2Nq), (67a)

�̃2(0) =
∑

q

η2
q

2�qγq(
�2

q + γ 2
q

)2 . (67b)

Also �̃′(0) = �damp − i�̃, where �damp is an additional decay
term contributing to the polarization decay due to phonon
damping and �̃ is the modified polaron shift. They are given
by

�damp =
∑

q

η2
qγq

�2
q + γ 2

q

(1 + 2Nq),

(68)
�̃ =

∑
q

η2
q

�q

�2
q + γ 2

q

.

For analytical simplicity, we consider a solvable model and
assume that the phonon damping is wave-vector dependent
and has the form γq = γ�q , where γ is a real number between
zero and one. The most efficient of anharmonic three-phonon
processes, the Landau-Rumer process of relaxation of a
transverse acoustic mode into thermal longitudinal modes, has
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a dependence of this form [54,55]:

γq =
6G2(kBT )4

(
1 + 2ct

3cl

)
πρcT c4

l h̄
3 �q, (69)

where ct (cl) is the transverse (longitudinal) sound velocity
and G is the Gruneissen constant (taken to be 2).

The modified phonon correlation function due to phonon
damping can be easily evaluated using Eqs. (65) and (43) for
W (t) and is given by [in the approximation coth( h̄βx

2τ
) � 2τ

h̄βx
]:

W (t) = αp

∫ t

0
dt1

∫ t1

0
dt2

∫ ∞

0
dxx3 exp

(
−x2

2

) [
i sin(xt12)

− 2τ

h̄βx
cos(xt12)

]
e−γ xt12 , (70)

where t12 = t1−t2
τ

. This differs from the case of direct
nonradiative decay Eq. (48) through the appearance of the
dimensionless wave vector of the damped acoustic phonons
in the final temporal exponential. The function W (t) is easily
evaluated and is given by

W (t) = −α(1)
p

×
(1 − γ 2) +

√
2
π
tγ (1 + γ 2) + (1 + γ 2)2Re

[
ez2

Erfc[z]
(−i+γ )2

]
(1 + γ 2)2

+ iα(2)
p t

−1 + (1 + γ 2)Im

[
ez2

Erfc[z]
−i+γ

]
(1 + γ 2)

, (71)

where z = (−i+γ )t√
2

, α(1)
p =

√
2παpτ

h̄β
, and α(2)

p = √
π
2 αp. The

modified phonon correlation function from Eq. (71) is straight-
forward to obtain:

�̃1(t) = −α(1)
p Re

[
ez2

Erfc[z]

(−i + γ )2

]
, (72a)

�̃2(t) = α(2)
p tIm

[
ez2

Erfc[z]

(−i + γ )

]
. (72b)

The zero-phonon line spectral weight e−�̃1(0) which is deter-

mined by �̃1(0) = α(1)
p

(1−γ 2)
(1+γ 2)2 and the phase �̃2(0) = 0. The

linear decay contribution �damp and the modified polaron shift
�̃ are now given by

�dampτ = α(1)
p

√
2

π

γ

1 + γ 2
, (73a)

�̃τ = α(2)
p

1

1 + γ 2
. (73b)

The short-time t � τ phonon dynamics contained in
e−[�̃(0)−�̃(t)+t�̃′(0)] is identical to the case of direct nonradiative
decay obtained previously in Eq. (53). The wings of the

spectrum are Gaussian with width D2 = α
(1)
p

τ 2 . It is instructive
to note that the short-time phonon dynamics is independent of
the nature of phonon damping or direct nonradiative decay. In
fact it is identical to the case of undamped phonons. To see

this, we observe that e− ˜[�(0)−�̃(t)+t�̃′(0)] � e
t2
2 �̃′′(0). Using the

general expressions for �̃(t) obtained in Eq. (37) for undamped
phonons, Eq. (46b) for direct nonradiative decay, and Eq. (66)

for damped phonons, we find

�̃′′(0) = −
∑

q

η2
q(1 + 2Nq)

= − 2αp

h̄βτ

∫ ∞

0
dxx2e− x2

2

= −α(1)
p

τ 2
. (74)

This can also be verified using explicit expressions for �̃(t)
obtained in Eq. (49) for direct nonradiative decay and Eq. (72)
for damped phonons.

In the long-time t � τ regime, the error functions in
Eq. (72) for �̃1(t) and �̃2(t) can be replaced, to a very good
approximation, by

Erfc[z] � e−z2

√
πz

(|z| � 1). (75)

Equation (72) for �̃1(t) and �̃2(t) then has a simple form:

�̃1(t) � α(1)
p

√
2
π
γ (3 − γ 2)

t(1 + γ 2)3
(t � 1), (76a)

�̃2(t) = −α(2)
p

2
√

2
π
γ

(1 + γ 2)2
(t � 1). (76b)

Using the fact that �̃1(t) → 0 for t � 1 and neglect-
ing the time-independent factor �̃2(t), we approximate
e−[�̃(0)−�̃(t)+t�̃′(0)] [using �̃2(0) = 0; see Eq. (72)] by
e−�̃1(0)−t�′(0). It follows that for t � 1 [using �′(0) = �damp −
i�̃ and Eq. (73) for �damp]:

e−(�̃(0)−�̃(t)+t�̃′(0)) � e−�̃1(0)+i�̃t e
− 2αpγ

h̄β(1+γ 2)
t
. (77)

The spectrum (Fourier transform of the dipole autocorrelation
function) clearly exhibits a Lorentzian peak with linewidth

2αpγ

(1+γ 2)
KBT

(h̄/τ ) . As γ → 0, the Lorentzian peak transforms to a
delta-function centered at the atomic transition frequency with
a broad Gaussian background as in the case of undamped
acoustic phonons (see Sec. V A). The zero-phonon line is
unbroadened in the absence of phonon damping, which is
characteristic of pure dephasing.

The atomic dipole autocorrelation function in the structured
reservoir of a photonic crystal is now given by

PMF (t) � −i�(t)e−iωet−�dampt e−[�̃(0)−�̃(t)]

×
[

2a1x1e
αx2

1 t + a2(x2 + y2)eαx2
2 t

−
3∑

j=1

ajyj Erfc
(√

αx2
j t

)
e
αx2

j t

]
. (78)

The definition of constants ai’s and xi’s can be found in [8].
�damp and �̃ are defined in Eq. (43) and �̃(t) is defined in
Eq. (72). Note that the photon-atom bound state loses all
polarization on the timescale �−1

damp.
We now consider the population decay dynam-

ics of the excited state in the presence of acoustic
phonon damping. The nonequilibrium correlation function
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〈Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)〉 in Eq. (26), in the presence of
phonon damping, can be expressed as

〈Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)〉
� e−[�̃(0)−�̃(t−t ′)]e−�damp(t−t ′)〈σ̂eg(t)σ̂ge(t ′)〉, (79)

where we have used 〈Ĉ+(t)Ĉ−(t ′)〉 =
e−[�̃(0)−�̃(t−t ′)]e−�damp(t−t ′) [45]. In the Born approximation as
in Eq. (28), Eq. (79) can be simplified as

〈Ĉ+(t)σ̂eg(t)Ĉ−(t ′)σ̂ge(t ′)〉
� e−[�̃(0)−�̃(t−t ′)]eiω′

0(t−t ′)−�damp(t−t ′)〈σ̂ee(t ′)〉. (80)

Using Eq. (76) in Eq. (80) and noting that �̃2(0) = 0, �̃1(t) →
0 for t � τ , and e−i�̃2(t) � 1, Eq. (29) for �(t) for long
timescales is governed by the integro-differential equation:

∂�(t)

∂t
� −e−�̃1(0)

∑
k

|λk|2

×
∫ t

0
dt ′e−�damp(t−t ′)�(t ′)ei(ω′

0−ωk )(t−t ′) + c.c. (81)

Solving Eq. (81) for the structured reservoir of a photonic
crystal using the isotropic dispersion model of Eq. (30), we
find l̃(s) = l(0)

s+2ReZ̃(s)
, where

Z̃(s) = α
3
2 e

iπ
4 e−�̃1(0)√

s + iδ + �damp
. (82)

We note that in spite of the absence of any direct
nonradiative decay channel, the atom does not have a
steady-state population even if the atomic transition frequency
is inside the photonic band gap and decays at long times
at a rate determined by �damp. For example, if we consider
the regime �damp � δ, then �̃(s) � �(0)/(s + γph), where

γph � e−�̃1(0)
√

2α3

�damp
. It follows that �(t) � �(0)e−γpht for

long timescales. Hence, there is no fractionalized steady state
irrespective of the sign of δ. Unlike the case of purely nonra-
diative decay (where decay occurs independently of radiative
coupling), our phonon damping scales with the strength of the
radiative coupling constant. Phonon damping may be regarded
as a vital correction to our mean-field description Eq. (8)
of the quantum dot dressed by phonons. In this mean-field
theory, we neglected decay of the atomic polarization by
the simultaneous emission of photons and phonons. The
various phonon sidebands were only allowed to decay by
purely radiative emission (with a Franck-Condon displaced
radiative coupling coefficient). Our phenomenological phonon
damping process now describes the phonon-assisted decay
of the atomic polarization. Phonon damping also provides
a cutoff to the extent of Franck-Condon displacement of the
excited state (atom plus acoustic phonons) wave function.

In Fig. 4, we study characteristic features of the modified
phonon correlation function e−[�̃(0)−�̃(t)+t�damp] in the presence
of phonon damping, where �̃(t) and �damp are defined
in Eqs. (72) and (73), respectively. The modified phonon
correlation function decays at long times due to the finite
lifetime of phonons. The zero-phonon line now acquires a
finite width 2αpγ

(1+γ 2)
KBT

(h̄/τ ) due to phonon damping. We also study

the influence of finite phonon lifetimes on quantum dot polar-
ization |PMF (t)| [Eq. (78)] and the excited-state population l(t)
[Eq. (82)] in the structured reservoir of a photonic crystal for
detuning δ/α = −1 of the atomic transition frequency from
the photonic band edge. No long-time coherence is trapped
in the photon-atom bound state, and the population decays
to zero at a rate determined by the lifetime of the phonons
surrounding the quantum dot.

VI. DISCUSSION

In this article, we have presented a mean-field theory for the
role of phonons in modifying the optical properties of two-level
systems. Using a thermodynamic Green’s function formalism,
the combined effect of photon and phonon reservoirs was
shown to provide dressing of the atomic states with various
numbers of phonons and the optical absorption spectrum was
shown to consist of transitions between the atomic ground
state and various dressed excited states (phonon sidebands). In
our mean-field theory, the lattice displacement operator was
replaced by an equilibrium thermal average over the phonon
reservoir. This led to an effective temperature-dependent
radiative coupling constant describing the (Franck-Condon)
overlap between the displaced excited state and the ground
state. In this mean-field theory, phonon-assisted decay of
the atomic polarization was removed from the Hamiltonian.
The linewidth of each dressed state was determined entirely
by the Franck-Condon displaced optical transition dipole
matrix element and the electromagnetic density of states at
the dressed state frequency. Phonon-assisted decay processes
were then introduced through a phenomenological phonon
damping parameter, providing a more realistic linewidth to the
phonon sidebands and regulating the extent of Franck-Condon
displacement. In the case of undamped optical phonons,
the line shape comprises distinct peaks separated by an
optical phonon frequency with the linewidth of a sideband
determined solely by the reduced transition matrix element
and the electromagnetic density of states at the corresponding
sideband frequency. When phonon damping is introduced, the
sidebands are broadened and a realistic picture is obtained.
This additional broadening is governed by the lifetime of
optical phonons. Undamped acoustic phonons produce a
Gaussian spectral function with a sharp peak for the zero-
phonon line. For a thermal reservoir of damped acoustic
phonons, the zero-phonon line is broadened, resulting in a
Lorentzian structure in the vicinity of the atomic transition
frequency and Gaussian wings away from the transition.

The polarization dynamics of the quantum dot was studied
using the temporal dipolar autocorrelation function. The auto-
correlation function was evaluated using the mean-field factor-
ization described earlier. For a phonon reservoir consisting of
undamped acoustic phonons coupled linearly to the quantum
dot population operator (Independent-Boson model), the role
of phonons was limited to pure dephasing. In an unstructured
electromagnetic reservoir, the phonons cause a rapid initial
partial dephasing on picosecond timescales as the polaronic
cloud forms. On longer timescales, the polarization decays
exponentially to zero through electromagnetic dephasing. We
then generalized the system to include nonradiative decay
processes and damped phonons. Direct nonradiative decay
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FIG. 4. (Color online) Salient features of the modified acoustic phonon correlation function in the presence of phonon damping
e−(�̃(0)−�̃(t)+t�damp), where �̃(t) and �damp are defined in Eqs. (72) and (73), respectively. In (a), we plot the modified phonon correlation
as a function of t

τ
. The correlation function decays at long times due to the finite lifetime of phonons. In (b), we plot the spectral profile

corresponding to (a). The δ-function peak in the middle acquires a width for finite phonon damping. The zero-phonon line resembles a
Lorentzian for large phonon damping γ , and its width increases with increasing γ . The large ω (small t) Gaussian spectrum remains as in
the case of undamped acoustic phonons. In (c) and (d), we study the influence of finite acoustic phonon lifetimes on the quantum dot dipole
autocorrelation function (polarization) |PMF (t)| [Eq. (78)] and the excited state population l(t) [Eq. (82)] in a photonic crystal for detuning
δ/α = −1 of the quantum dot transition frequency from the photonic band edge. The timescale is measured in units of α−1, where α = 1010 s−1

for ω0 � 1015 s−1. No long-time coherence is trapped in the photon-atom bound state, and no fractionalized steady-state population is found
with finite phonon lifetimes even though the quantum dot transition is inside the photonic band gap.

is beyond the framework of our starting Hamiltonian and
corresponds to the direct coupling of phonon operators to the
quantum dot dipole. Polarization decay beyond pure dephasing
was obtained using a semi-phenomenological model for non-
radiative relaxation. Atomic polarization decays exponentially
to zero at a faster rate involving the sum of nonradiative
decay rate, the phonon damping rate, and the electromagnetic
dephasing rate. The overall rate of decay increases with
temperature and the nonradiative coupling strength.

For a quantum dot placed inside a photonic crystal and
coupled to a bath of undamped acoustic phonons, the long-time
polarization may be nonzero because of the formation of a
photon-atom bound state. A rapid decay of polarization at
very small timescales occurs as the polaronic cloud forms.
This nonzero residual coherence may be of importance for
quantum information-processing applications. However, when
nonradiative decay and damped phonons are included, there
is no long-time residual coherence. The coherence trapped in
the photon-atom bound state, in the case of pure dephasing,
was shown to be controlled by the application of a coherent
external laser field [13]. It is of considerable interest to
determine whether suitable forms of external control can be
adapted to maintain coherence in the photon-atom bound
state when phonon damping and direct nonradiative decay are
present.

In order to describe population dynamics of an excited
quantum dot, we considered Heisenberg equations of motion
for the relevant atomic operators. The hierarchy of equations
of motion was closed using a mean-field factorization of the
atomic and lattice operators and a Born approximation that
collapses the resulting two-time nonequilibrium atomic dipole
correlation function to the atomic population at single time.
In the absence of nonradiative decay and phonon damping,
the long-time excited-state population in a photonic crystal
may be nonzero for negative detunings from the photonic
band edge leading to the “fractionalized” steady state. In
the case of undamped optical and acoustic phonons, the
fractionalized steady-state population is artificially increased
with increasing dot-phonon coupling strength and increasing
temperature because of the polaron shift between the excited
and ground states of the quantum dot. For acoustic phonons,
there was substantial dephasing of the atomic transition
dipole moment with increasing temperatures, contributing
to residual population in the excited state. However, in the
presence of nonradiative decay and phonon damping, there
is no fractionalized steady state and the population decays to
zero.

Our formalism can be generalized to multilevel atoms in-
teracting simultaneously with electromagnetic and vibrational
degrees of freedom. Coherent control of the polarization of a
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three-level atom using an external laser field in the presence of
pure dephasing can be described in this framework. Our for-
malism enables a more microscopic description than presented
earlier [13] of the interplay between externally imposed coher-
ence and various dephasing effects. Our formalism can also
treat interactions between multiple quantum dots. Interacting
quantum dots that are coupled to a common electromagnetic
reservoir and correlated or uncorrelated phonon reservoirs
are experimental systems of interest for quantum information
processing. Decoherence of two entangled quantum dots
placed in close proximity inside a PBG material can likewise
be analyzed at a microscopic level using our method.
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APPENDIX: PHONON SIDEBAND CONTRIBUTION TO
MEAN-FIELD THERMODYNAMIC GREEN’S FUNCTION

Evaluating the commutator [σ̂ge, HMF ] in Eq. (21) using
the mean-field Hamiltonian Eq. (8), we find

[σ̂ge, HMF ] = (ω0 − �)σ̂ge +
∑

k

λ̃k(σ̂gg − σ̂ee)âk. (A1)

Using Eq. (A1), we find

(ω − n�0)GMF
ω,n ([σ̂ge, HMF ], σ̂eg)

= 1 + (ω0 − �)GMF
ω,n (σ̂ge, σ̂eg)

+
∑

k

λ̃kG
MF
ω,n [(σ̂gg − σ̂ee)âk, σ̂eg]. (A2)

In order to close the system of equations, we need to
express GMF

ω,n (σ̂ggâk, σ̂eg) and GMF
ω,n (σ̂eeâk, σ̂eg) in terms of

GMF
ω,n (σ̂ge, σ̂eg). The equation of motion for GMF

ω,n (σ̂eeâk, σ̂eg) is

(ω − n�0)GMF
ω,n (σ̂eeâk, σ̂eg)

= 〈[σ̂eeâk(0), σ̂eg(0)]〉HMF
+ GMF

ω,n ([σ̂eeâk, HMF ], σ̂eg).

(A3)

The first term on the right-hand side is identically zero. The
commutator [σ̂eeâk, HMF ] is

[σ̂eeâk, HMF ] = ωkσ̂eeâk +
∑

q

λ̃q σ̂egâkâq −
∑

q

λ̃∗
q σ̂geâ

†
q âk.

(A4)

Using Eq. (A4) in Eq. (A3), we obtain an equation of motion
for GMF

ω,n (σ̂eeâk, σ̂eg):

(ω − n�0)GMF
ω,n (σ̂eeâk, σ̂eg)

= ωkG
MF
ω,n (σ̂eeâk, σ̂eg) +

∑
q

λ̃qG
MF
ω,n (σ̂egâkâq , σ̂eg)

−
∑

q

λ̃∗
qG

MF
ω,n (σ̂geâ

†
q âk, σ̂eg). (A5)

It is easy to see that the Green’s functions GMF
ω,n (σ̂egâkâq , σ̂eg)

and GMF
ω,n (σ̂geâ

†
q âk, σ̂eg) generate equations of motion

involving higher powers of photon operators. In order to close
this hierarchy of equations, we decouple the two-level system
and photon operators in the Green’s function by replacing
the photon operators with their thermal expectation values
evaluated in the absence of dot-photon interaction:

GMF
ω,n (σ̂egâkâq , σ̂eg) � δkq〈âkâk〉GMF

ω,n (σ̂eg, σ̂eg),
(A6)

GMF
ω,n (σ̂geâ

†
q âk, σ̂eg) � δkq〈â†

kâk〉GMF
ω,n (σ̂ge, σ̂eg).

We observe that in thermal equilibrium 〈âkâk〉 = 〈â†
kâk〉 � 0.

Hence we conclude that the contribution of GMF
ω,n (σ̂eeâk, σ̂eg)

to GMF
ω,n (σ̂ge, σ̂eg) can be ignored. The decoupling procedure

outlined previously is equivalent to considering one-photon
processes and ignoring all multiphoton contributions. Note,
however, that the phonon processes are included to all orders
because of the polaron transformation.

We now consider the equation of motion for
GMF

ω,n (σ̂ggâk, σ̂eg). A similar analysis to Eqs. (A3)–(A5) yields

(ω − n�0)GMF
ω,n (σ̂ggâk, σ̂eg)

= ωkG
MF
ω,n (σ̂ggâk, σ̂eg) −

∑
q

λ̃qG
MF
ω,n (σ̂egâq âk, σ̂eg)

+
∑

q

λ̃∗
qG

MF
ω,n (σ̂geâkâ

†
q, σ̂eg). (A7)

Once again the Green’s functions GMF
ω,n (σ̂egâq âk, σ̂eg) and

GMF
ω,n (σ̂geâkâ

†
q, σ̂eg) generate equations of motion involving

higher order photon operators. We decouple the two-level
system and photon operators in the Green’s function as before
to obtain

GMF
ω,n (σ̂egâq âk, σ̂eg) � δkq〈âkâk〉GMF

ω,n (σ̂eg, σ̂eg),
(A8)

GMF
ω,n (σ̂geâkâ

†
q, σ̂eg) � δkq(1 + 〈â†

kâk〉)GMF
ω,n (σ̂.ge, σ̂eg).

Since in thermal equilibrium 〈âkâk〉 = 〈â†
kâk〉 � 0,

we conclude that GMF
ω,n (σ̂egâq âk, σ̂eg) � 0 and

GMF
ω,n (σ̂ggâk, σ̂eg) can be expressed in terms of GMF

ω,n

(σ̂ge, σ̂eg) by using Eq. (A8) in Eq. (A7) as

GMF
ω,n (σ̂ggâk, σ̂eg) � λ̃∗

kG
MF
ω,n (σ̂ge, σ̂eg)

ω − n�0 − ωk

. (A9)

Eliminating GMF
ω,n (σ̂ggâk, σ̂eg) between Eqs. (A2) and (A9)

and using GMF
ω,n (σ̂eeâk, σ̂eg) � 0, we obtain for GMF

ω,n (σ̂ge, σ̂eg)
using Eq. (21):

(ω − n�0)GMF
ω,n (σ̂ge, σ̂eg)

= 1 + (ω0 − �)GMF
ω,n (σ̂ge, σ̂eg)

+
∑

k

|λ̃k|2
ω − n�0 − ωk

GMF
ω,n (σ̂ge, σ̂eg). (A10)

Solving for GMF
ω,n (σ̂ge, σ̂eg), we obtain Eq. (22).
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