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We delineate critical issues for “controlling light with light” in photonic crystal �PC� waveguides coupled to
Kerr-nonlinear microresonators. These arise from �a� fundamental trade-off between switching speed and
switching intensity threshold inherent in high-quality Q-factor cavities and �b� the dynamical nonlinear oscil-
lation of such cavities in response to incident light pulses. Using finite-difference time-domain simulations of
electromagnetic pulse propagation, we consider both �i� a nonlinear Fabry-Perot microresonator �embedded
within a PC waveguide� exhibiting a narrow transmission resonance and �ii� a nonlinear point defect �side-
coupled to a PC waveguide� exhibiting a narrow reflection spectrum. We describe self-induced switching from
transmission to reflection induced by pulse intensity tuning as well as control of pulse transmission induced by
the secondary, continuous �cw� laser field propagating through the same PC waveguide. For the Fabry-Perot
microresonator, a well-defined self-switching threshold is obtained. However, this is accompanied by consid-
erable temporal and spectral distortion of the pulse caused by the oscillatory nonlinear response of the mi-
croresonator. When the quality factor of the microresonator is increased, the switching intensity threshold can
be lowered but the pulse transit �switching� time and the pulse distortion are increased. For the side-coupled
microresonator, a gradual �not sharp� self-switching behavior as a function of incident intensity is obtained. For
both the Fabry-Perot and side-coupled nonlinear microresonators, control of pulse transmission can be
achieved by means of a secondary cw laser field. The cw power required for switching with realistic Kerr
nonlinearities is in excess of 1 W/�m2 and may cause optical damage to the semiconducting PC backbone.
Both instantaneous and noninstantaneous Kerr-response models are considered. Our results underscore the
limitations and trade-offs inherent in the possible control of light with light using Kerr-nonlinear
microresonators.
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I. INTRODUCTION

Photonic band-gap �PBG� materials �1,2� are periodic di-
electric structures capable of guiding light through
subwavelength-scale circuit paths using the mechanism of
light localization �3�. This occurs through multiple light scat-
tering and interference rather than total internal reflection or
“refractive-index guiding.” A specific embodiment of the dif-
fractionless flow of light in an optical microchip has been
demonstrated in two- and three-dimensional �2D-3D� PBG
heterostructures �4�. These photonic crystals �PC’s� may be
viewed as the optical analog of semiconductors and may
facilitate micromanipulation of laser light in the same way
that semiconductors control electric currents �5–7�. This
makes them attractive for integrated optics and applications
in telecommunications. One important ingredient in this ap-
plication is the possibility of all-optical switching—i.e., de-
vices that alter the propagation of one laser beam if the in-
tensity of a second laser beam changes slightly. This requires
the use of nonlinear photonic crystals in which the refractive
index is controllably altered by the incident light intensity in
specific regions. One recently proposed mechanism for “con-
trolling light with light” involves the engineering of the elec-
tromagnetic vacuum density of states in a three-dimensional
PBG microchip �8–10�. Here, a multimode waveguide chan-

nel is engineered such that one or more of the waveguide
modes exhibits a sharp frequency cutoff. This leads to a very
large �factor of 100 or more� and sudden �over a range of
10−4 of the optical frequency� change in the local electro-
magnetic density of states �LDOS� at specific frequencies
�11�. If quantum dots are placed near the waveguide channel
with resonant optical transition near this LDOS discontinuity,
the resonant nonlinear optical response of the active regions
exhibits sudden switching from absorptive to amplifying
�negative absorption coefficient� behavior as the optical
pumping intensity is increased �10,11�. A small modulation
��5 nW� in the pump field can thereby facilitate coherent
switching of the propagation characteristics of a second laser
beam passing through the same waveguide channel.

A more traditional mechanism for controlling light with
light is based on nonresonant Kerr nonlinearity and high-
quality �Q� factor optical cavity resonances. The simplest
version of this mechanism consists of a Fabry-Perot resona-
tor filled with weakly nonlinear �nonresonant� ��3� medium.
By pumping the nonlinear medium with an intense laser
field, it is possible to shift the transmission resonance of the
Fabry-Perot cavity, thereby switching the transmission char-
acteristics of a second probe beam that is tuned to Fabry-
Perot resonance frequency �12�. This concept can also be
applied, in a miniaturized embodiment, using photonic crys-
tal microcavities coupled to suitable single-mode
waveguides. It has been shown theoretically that optical bi-
stability can be achieved �13–16� in photonic crystal*Electronic address: dvujic@physics.utoronto.ca
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waveguides coupled to a high-Q microcavity, with a non-
resonant Kerr nonlinearity. Unlike all-optical switching
based on electromagnetic vacuum �density of states� engi-
neering in a multimode PBG waveguide �9,8,17�, the micro-
cavity �with nonresonant Kerr nonlinearity� couples directly
to the waveguide and locally alters the group velocity of
light in the waveguide at frequencies near the cavity reso-
nance.

In this paper we delineate the fundamental trade-off in the
functionality of photonic crystal optical switching devices
based on microcavity resonators and Kerr nonlinearity. This
trade-off is a direct concequence of the conjugate relation
between spectral width and temporal duration of wave phe-
nomena. The spectral width of the cavity resonance deter-
mines the intensity of light required to nonlinearly shift the
cavity in and out of resonance with central frequency of an
incident pulse. The temporal duration required for the inci-
dent pulse to be transmitted through the cavity as well as the
time scale of response of the cavity resonance to the optical
field determines the optical switching time. The inverse rela-
tion between optical switching intensity threshold and the
switching time scale has been a limiting factor, critical to the
development of optical transistor action in nonlinear Fabry-
Perot étalons �12�. In a photonic crystal, on the other hand,
there is considerably greater focusing of electromagnetic
field intensity within subwavelength-scale waveguide aper-
tures �13–16�, leading to lower overall power requirements
than in conventional Fabry-Perot architectures �12�. It never-
theless remains a fundamental challenge to achieve subpico-
second switching with microwatt level power in any nonlin-
ear cavity-based architecture. In order to optically shift the
cavity transmission resonance with low intensity light, a nar-
row high-Q-factor resonance is required. However, a narrow
resonance implies that the cavity buildup time �required for a
pulse to enter and leave the cavity� is prolonged, leading to
slower optical switching.

In order to highlight the universal nature of the critical
issues, we provide, from the outset, a semiempirical scaling
relation that summarizes the trade-off between switching
time and switching intensity threshold for the three illustra-
tions presented later in our paper. In addition to providing a
physical picture, this allows readers to extrapolate our results
to different nonlinear materials than we illustrate. We begin
with the fundamental conjugacy relation between the cavity
spectral width, ��T �full width at half maximum for the
transmission spectrum of the cavity� and cavity buildup time
Tcavity. For the Lorentzian spectrum, this takes the form

���T

2
��Tcavity� = 1. �1�

The cavity spectral width is related to the cavity quality fac-
tor Q by the relation ��T=�res /Q where �res is the central
frequency of the cavity resonance for small light intensities.
In order to reduce the low-intensity transmission below 10%,
one must detune the pulse central frequency �0 from �res by
at least 3��T /2. For short pulses it should be much larger
because of the strong overlap of the part of the pulse spec-
trum and cavity transmission spectrum.

From numerical analysis, we find a simple scaling rule for
all three cavity architectures we study in this paper �Fig. 1�.
in particular, a displacement in frequency of the cavity reso-
nance requires a shift in the dielectric constant of the defect
rod by an amount

����
�res

	 n0���shift�/�res, �2�

where �res is the linear dielectric constant of the defect rod
and n0=
�res is the corresponding refractive index. For a
system with noninstantaneous �see Sec. II� Kerr coefficient
n2, this shift in dielectric constant requires a field �time-
averaged� intensity I satisfying the relation

�� = 2n0n2I , �3�

where n0 is the weak-field refractive index and n2 is the Kerr
coefficient.

Finally the overall switching time scale of the device,
Tswitch, defined by the sum of �i� time interval needed for the
light beam to switch the optical gate from the position off/on
to position on/off and �ii� the time taken by the pulse to cross
a cavity. Tswitch is, usually, a few times larger than Tcavity. In
any event Tswitch�Tcavity. This leads to a scaling relation of
the form

��n

n
� �

3n

2Tcavity�res
. �4�

According to this simple analysis, we find that for subpi-
cosecond switching of a pulse with 1.55 �m vacuum wave-
length, we have to provide a Q factor of less than 600 and a
relative index change of defect rod of almost a half of a
percent. Since the nonlinear effect does not change the di-
electric constant uniformly, in practice the peak index change
is even higher. This extremely high value is not suited to
conventional Kerr materials.

Further critical issues for all-optical switching devices,
based on microcavities in PC’s made of Kerr-type nonlinear
materials, arise from distortion of transmitted information. In

FIG. 1. Three types of defect cavities: �a� Low-Q-factor Fabry-
Perot resonator in photonic crystal �PC� waveguide. �b� High-
Q-factor Fabry-Perot resonator in PC waveguide. These two types
of cavities are engineered by adding one high-dielectric rod with
radius 5a /12 �a is the lattice constant� and three or four standard
high-dielectric rods of radius a /4 on both sides in the defect line.
�c� Side-coupled microcavity �shown as elliptical rod with long
axes of a /2 and short axes of a /4�. All rods are assumed to exhibit
a nonlinear Kerr coefficient �see text� n2=1.5�10−17 m2/W and
linear refractive index nH=3.5. The background dielectric �white
region� is assumed to be linear with a refractive index of nL=1.5.
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order to reduce pulse shape distortion during the interaction
and transmission process through the cavity region, it is nec-
essary to use pulses with duration much longer than the cav-
ity buildup and decay time. When a slightly off-resonance
pulse enters the microcavity resonator, the resonance fre-
quency of the cavity is shifted toward the pulse center fre-
quency. This allows more of the pulse to enter, leading to an
overshoot in the cavity resonance beyond the pulse center
frequency. This in turn allows less of the pulse to enter the
cavity and the cavity resonance reverts to its original posi-
tion. This process can repeat itself, leading to oscillations in
the cavity refractive index, the cavity resonance central fre-
quency, and the transmission spectrum of the switching de-
vice. As a result the pulse spectral features and temporal
profile can be severely distorted. Moreover, the nonlinear
effect changes the Q factor of the cavity itself in an oscilla-
tory manner. These phenomena are universally observed
when dealing with high-Q �greater than 1000� cavities and
short �picosecond-scale� pulses. The details of these phenom-
ena are different for different architectures. Accordingly, we
provide detailed numerical illustrations of these effects in
these distinct photonic crystal microresonators. We evaluate
the optical power level and switching time scales in single-
pulse propagation. We determine the transmitted pulse ener-
gies as well as details of the pulse reshaping, distortion, and
delay as an incident pulse interacts with the nonlinear mi-
croresonator. We demonstrate that in addition to the trade-off
between switching intensity threshold and switching time,
higher Q factors lead to increased temporal distortion of the
pulse profile due to oscillations in the nonlinear dielectric
constant of the microcavity. Finally, we consider the com-
bined effects of a steady-state laser beam �holding field� and
fast optical pulse passing through the PC waveguide coupled
to the nonlinear microcavity. For very intense holding fields,
it is possible to amplify the pulse by transfer of energy from
the holding field through the nonlinear microcavity.

Unlike earlier studies �13–16�, we use the noninstanta-
neous as well as instantaneous Kerr model of nonlinearity
and we consider the switching process in greater detail.
Switching of the pulse is not only a consequence of changing
the band structure with the signal beam or control beam, but
through active interaction and feedback between the micro-
cavity properties and the respective beams.

Section II of the paper defines structures for investigation
and introduces basic equations. Section III contains an analy-
sis of the pulse propagation through three different struc-
tures. Section IV discusses the influence of a continuous
wave �holding field� on pulse propagation, and Sec. V sum-
marizes our overall conclusions.

II. MODEL

We study optical switching in an idealized two-
dimensional photonic crystal composed of rods of high-index
material embedded in a low-index material. This idealized
2D system �with no propagation allowed normal to the 2D
plane� is expected to mimic the behavior of a more realistic
2D-3D PBG heterostructure �4� in which 2D confinement of
light occurs through a planer PC microchip layer that is suit-

ably embedded in a 3D PBG material. The idealized 2D
structure consists of a square-lattice photonic crystal �lattice
constant a� of high-dielectric rods �nH=3.5� with radius of
a /4, embedded in low-dielectric material �nL=1.5�. This ide-
alization describes a periodic array of parallel rods whose
axial length �and aspect ratio� is infinite and for which we
consider only electromagnetic propagation vectors that are
normal to the rod axes. In a typical photonic crystal mem-
brane �18,19� or PBG-heterostructure-based microchip layer
�4� the actual vertical thickness of the chip is less than 1 �m,
for circuits operating at 1.5 �m wavelength. For our 2D
model, we describe electromagnetic power in a waveguide
channel in units of watts per unit length normal to the 2D
microchip plane. The idealized 2D structure has a band gap
for transverse-magnetic �TM� polarized light, between �min
=0.24�2�c /a� and �max=0.29�2�c /a�. A single-mode wave-
guide �Fig. 2� is constructed by reducing the radius of rods in
one line to a /12. We consider two different types of defect
cavities. The first type of a resonant cavity is engineered by
adding one rod with larger radius of 5a /12 and three �Fig.
1�a�� or four �Fig. 1�b�� rods with standard radius on both
sides of the large one within the waveguide channel. This
type of architecture leads to a narrow frequency band of
transmission through the waveguide near the microcavity
resonance. The second type of cavity is created by introduc-
ing a point defect with an elliptical dielectric rod, with long
axis of a /2 and short axis of a /4 adjacent to the waveguide
channel �see Fig. 1�c��. This type of architecture leads to a
narrow frequency band of reflection in the waveguide near
the defect resonance. Numerical, finite-difference time-
domain �FDTD� simulations of light propagation along the
waveguide �for the structures given in Figs. 1�a� and 1�c��
are performed at a resolution of 12 pixels per lattice constant
a, while linear and nonlinear optical propagation character-
istics of the structure shown in Fig. 1�b� are calculated with
resolution of 24 pixels per lattice constant.

The first two cavities have Lorentzian transmission spec-
trum allowing 100% of transmission only for frequency
equal to the resonant frequency of defect cavities which are

FIG. 2. Dispersion relation for the photonic crystal waveguide,
shown in Fig. 1, as a function of wave vector k along the waveguide
axis. The dashed line shows the resonant frequency �res,1a of the
low-Q-factor Fabry-Perot resonator of Fig. 1�a�. The small rect-
angle approximately borders the frequency spectrum which can
cross the cavity. The 2D photonic band gap is bounded by frequen-
cies �min and �max.
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�res,1a=0.2581�2�c /a� and �res,1b=0.2612�2�c /a�. The
cavity shown in Fig. 1�c� gives a “notch filter” response in
the transmission spectrum around the resonant frequency
�res,1c=0.2646�2�c /a�. In order to determine the quality fac-
tors Q of the resonant cavities we introduce a weak source
excitation where the z component of the electric field takes
the form of a Gaussian pulse in time:

Ez�t� = e��t − 3	p�/	p�2
sin�t − 3	p� , �5�

where the parameter 	p is chosen to cover the frequency
range of interest. Here we consider only the linear optical
response of the material. When the pulse impinges on the
defect, there is a buildup of energy in the cavity, after which
the energy decays back into the waveguide. During this final
decay, the amplitude of the field in the defect decreases ex-
ponentially:

A�t� = A�0�exp�−
t

	
� . �6�

The quality factor is defined by the relation Q=�res	 /2 and
we obtain the values Q1a=538, Q1b=2483, and Q1c=1055.

We investigate the light propagation in nonlinear photonic
crystals with waveguide and microcavity using the FDTD
method �20,21�. We assume nonresonant third-order ���3��
optical nonlinearity in the high-index material only, while the
low-index material is linear. The refractive index of many
materials can be described by the relation �22� n=n0+�n
=n0+n0c�0n2�E2, where n0 is the weak-field refractive in-
dex, c is the speed of light in vacuum, �0 is the permittivity
of free space, and n2 is the Kerr coefficient. Here the re-
sponse of the medium is noninstantaneous and the angular
brackets represent a time average of the electric field inten-
sity, over an optical cycle. We refer to this as the “noninstan-
taneous model.” For purely comparative purposes, we con-
currently study the “instantaneous model” n=n0+n0c�0n2E2.
This model was used in previously published literature �13�.
In general, the noninstantaneous model is a more realistic
description of picosecond pulse propagation in typical semi-
conductors. Materials with much faster response �on the time
scale of a single optical period� typically have very weak
nonlinearity. The noninstantaneous model requires modifica-
tion in the context of femtosecond-scale pulses �23�. How-
ever, in the context of high-Q-factor microcavities, femtosec-
ond pulses will be severely stretched due to cavity buildup
and decay times. We restrict ourselves to pulses of sufficient
duration such that the noninstantaneous model is physically
the more relevant one and we consider the noninstantaneous
model for mathematical comparison only.

Restricting ourselves to the TM polarization, Maxwell’s
equations in 2D reduce to

�Dz

�t
= � �Hy

�x
−

�Hx

�y
� , �7�

�0
�Hx

�t
= −

�Ez

�y
, �8�

�0
�Hy

�t
=

�Ez

�x
, �9�

where �Hx ,Hy� are components of the magnetic field, Ez is
the electric field, and �0 is the permeability of free space.
The electric displacement Dz is given by the equation

Dz = �0n2Ez � �0�n0
2 + 2n0�n�Ez. �10�

Maxwell’s equations �7�–�9� can be simplified by introducing
the approximate relation

�Dz

�t
= �nl

�Ez

�t
, �11�

involving the nonlinear dielectric function �nl.
For the noninstantaneous model we use the approximate

form

�nl = �0n0
2�1 + c�0n2�A�x,y,t��2� , �12�

where A is the slowly varying envelope of the electric field,
satisfying the relation �Ez

2= 1
2A2. Here we assume that the

time dependence of �nl is slow compared to the optical pe-
riod, so in the noninstantaneous model, we simply took in-
tensity out of the differentiation.

For the instantaneous model we include the full time de-
pendence of the nonlinear dielectric and obtain

�nl = �0n0
2�1 + 6c�0n2�Ez�x,y,t��2� . �13�

For illustration, we choose the Kerr coefficient in the
high-index rods to be n2=1.5�10−17 m2/W, corresponding
to AlGaAs �24�. The background dielectric is assumed to be
linear �n2=0�.

We studied influence of a continuous wave on pulse
propagation through the waveguide by providing two inde-
pendent inputs, one in the form of pulse, Gaussian in time,
with central frequency �0, and one in the form of a continu-
ous wave oscillating at different frequency �cw, where ��cw
−�0� is much larger than the bandwidth of the pulse. In that
case Maxwell’s equations can be separated into two coupled
sets of equations, one to describe pulse propagation and one
for continuous wave. These two sets of equations are con-
nected only through nonlinear effect, Eqs. �12� and �13�,
where we have to use the full electric field which is a super-
position of both Ez�x ,y , t�=Ez

p�x ,y , t�+Ez
cw�x ,y , t�. Super-

scripts p and cw stand for pulse and continuous wave, re-
spectively.

III. PULSE PROPAGATION

In order to study the nonlinear switching behavior, we
launch pulses whose envelope is Gaussian in time, with full
width at half maximum �FWHM� ��=0.000 22�2�c /a� into
the input waveguide. As a result of the interaction with the
defect cavity, the waveguide is transferred to one mini-
waveguide �Fig. 2� allowing propagation of a very narrow
frequency spectrum around the resonant frequency. The
power transmission spectrum has Lorentzian shape with full
width at half maximum �0.0005�2�c /a�. Our aim is to see
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if the nonlinear effect can be used as a gate for pulse propa-
gation through this waveguide. As the first numerical experi-
ment we study the properties of pulses with central fre-
quency �0=0.2573�2�c /a� propagating through the
nonlinear photonic crystal given on Fig. 1�a�. Similarly to
earlier studies �13�, we find that for low enough light inten-
sity the transmission is small because the pulse is off reso-
nance. However, sufficiently high light intensity can locally
change the band structure and the cavity resonance frequency
in order to allow switching from pulse reflection to transmis-
sion. Comparing the results of the instantaneous and nonin-
stantaneous Kerr nonlinearities, we find that the switching
threshold in the instantaneous model occurs for lower light
intensities than in the noninstantaneous model. The transmit-
ted energy through the microcavity resonator on threshold is
about 49% in the instantaneous model, whereas it is about
40% in the noninstantaneous model �see Fig. 3�a��. A more
significant difference between these two models is the peak
nonlinearity induced by the pulse. We find that the maximal
relative change of the refraction index in the noninstanta-

neous model is smaller than 1% at threshold. This value is a
few times smaller than in the instantaneous model. Neverthe-
less, for both models, the refractive index change required
for switching is much much higher than the typical values
used in optoelectronic devices in this frequency range �25�.
While a smaller refractive index modulation could be used in
the context of the higher-Q-factor cavity, this would lead to
the slower switching due to the cavity buildup and relaxation
time.

One of the most important questions concerning optical
switching is whether the information carried by the pulse is
retained after crossing the cavity. In order to answer this
question, we plot the pulse spectral distribution of the trans-
mitted power for both models in Figs. 4 and 5. There is a
large dispersion of the spectrum above the threshold, corre-
sponding to significant temporal pulse distortion. This is a

FIG. 3. �a� Transmission energy Eout relative to pulse input en-
ergy Einp of the pulse propagating through the waveguide shown on
Fig. 1�a� as a function of input pulse energy for the instantaneous
�black circles� and noninstantaneous �grey triangles� models. The
pulse envelop is Gaussian in time with full width at half maximum
��=0.000 22�2�c /a�, detuned from the linear resonance by �res

−�0=0.0008�2�c /a�. �b� Maximal index change �n /n induced by
the pulse from part �a�. �c� Transmission energy and �d� maximal
induced index change for the pulse propagating through the struc-
ture depicted in Fig. 1�b�, for the instantaneous �black circles� and
noninstantaneous �grey triangles� models. The pulse is detuned
from the linear resonant frequency for the amount of
0.000 35�2�c /a�. The pulse shape and width are the same as in part
�a�. �e� and �f� describe the pulse transmission and relative index
change for a pulse propagating through the waveguide depicted in
Fig. 1�c�. The central frequency of the pulse is equal to the resonant
frequency of the cavity and the pulse shape and width are the same
as in part �a� �black circles�, while grey squares refer to a pulse with
twice longer duration ���=0.000 11�2�c /a��. Only the noninstan-
taneous model is considered. In all cases, the Kerr coefficient �see
text� is n2=1.5�10−17 m2/W.

FIG. 4. �a� Normalized output power of the pulse propagating
through the waveguide shown in Fig. 1�a� using the instantaneous
model �see text� of nonlinear Kerr response: �a� for the pulse energy
slightly below the threshold �Einp=5.3 pJ/�m�, �b� on the threshold
�Einp=9 pJ/�m�, �c� for the pulse having highest transmission
�Einp=11 pJ/�m�, and �d� for the pulse much above the threshold
�Einp=28 pJ/�m�. Here, the input pulse envelop is a Gaussian in
time with full width at half maximum ��=0.000 22�2�c /a� and
the Kerr coefficient is the same as in Fig. 3.

FIG. 5. �a� Normalized output power of the pulse propagating
through the waveguide shown in Fig. 1�a� using the noninstanta-
neous model �see text� of nonlinear Kerr response: �a� for the pulse
energy slightly below the threshold �Einp=8.5 pJ/�m�, �b� on the
threshold �Einp=16 pJ/�m�, �c� for the pulse having highest trans-
mission �Einp=19 pJ/�m�, and �d� for the pulse much above the
threshold �Einp=34 pJ/�m�. Here, the input pulse envelop is a
Gaussian in time with full width at half maximum ��
=0.000 22�2�c /a� and the Kerr coefficient is the same as in Fig. 3.
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major hindrance for applications in optical telecommunica-
tions. This pulse dispersion is a consequence of the temporal
and spatial profile of the nonlinear index change in the defect
cavity. In Fig. 6 we present the temporal behavior of the
relative index change at one point near the front surface of
the large rod shown on Fig. 1�a�. When the pulse arrives at
the cavity, a large part of the pulse energy is reflected be-
cause the pulse is off resonance. Only a small part of the
pulse energy, oscillating near the linear resonance, can reach
the cavity. As a result of nonlinearity, the incident light
changes the properties of the cavity �resonant frequency�,
allowing a more significant part of the pulse energy to reach
the cavity. The biggest part of the input pulse energy can
reach the cavity when the new resonant frequency reaches
the value �0. But the light intensity continues to increase,
because of cavity buildup time as well as because of the
increase of the amplitude of the incoming field. Accordingly,
the new instantaneous resonant frequency overshoots the tar-
get value of �0 and access to the input light can be prohibited
again. If the input light intensity is high enough, the instan-
taneous resonant frequency �induced by nonlinearity� will
exhibit oscillations. This ringing behavior in the nonlinear
cavity contributes to significant dispersion in the transmitted
spectrum and distortion of the pulse temporal profile. The
period of oscillation depends on the cavity buildup time and
input light intensity. If the input intensity is near the thresh-
old, the instantaneous resonant frequency will reach the
value �0, close to the time when the input amplitude is the
highest, allowing a large transmission of pulse energy. If the
input pulse intensity is even higher, oscillation of the induced
resonant shift is established around a value smaller than �0,
leading to a decrease of transmission.

Similar numerical experiments were repeated with a
structure containing a cavity with higher Q factor �Fig. 1�b��.
However, in this case the pulse central frequency was tuned
closer to the linear cavity resonance ��res−�0

=0.000 35�2�c /a�� for good switching. We found qualita-
tively similar behavior as for the structure 1�a�. However, the
transmission for the higher-Q cavity is about half that of the
lower-Q cavity at the threshold �Fig. 3�c��. Working with
cavities with a higher Q factor has advantages and disadvan-

tages. A smaller bandwidth of the cavity means that we can
use a pulse oscillating closer to the resonant frequency with-
out undesirable high transmission below the threshold. For
example, transmission of the low-intensity pulse is almost 3
times smaller than in structure 1�a�. As a consequence of
smaller pulse detuning, we need a smaller index change to
shift the resonant frequency. In our simulations, the relative
index change on the threshold is 0.54% in the noninstanta-
neous model. Unfortunately, the large Q factor of the defect
cavity increases the switching time and magnifies the disper-
sion in transmitted pulse. This fundamental trade-off is
highly problematic for applications to switching in optical
telecommunications.

The structure shown in Fig. 1�c� is quite different from
those of Figs. 1�a� and 1�b�. Unlike the Fabry-Perot geom-
etry of Figs. 1�a� and 1�b�, the side-coupled cavity geometry
reflects only frequencies near the resonant frequency, while
all other frequencies are transmitted. In order to study
switching, in this case, we use a pulse with central frequency
equal to the resonant frequency of the cavity. In our numeri-
cal experiments we assumed noninstantaneous nonlinearity
in high-dielectric rods. In the low-intensity regime the trans-
mission is about 17% and this value can be reduced using a
more narrow pulse. For example, if we use the pulse with 2
times longer duration time or with FWHM ��
=0.000 11�2�c /a�, transmission in the low-intensity regime
is reduced to 6% �Fig. 3�e��. If we increase the input pulse
intensity, the resonant frequency changes and transmission
for different frequencies is allowed or prohibited. If the input
pulse has very large energy, a small part of this energy can be
enough to change the properties of the cavity while the major
part of the narrow pulse can pass through the waveguide
with negligible interaction with the cavity. Unfortunately,
this device does not have a sharp threshold like the Fabry-
Perot geometry. Such a sharp change in transmission as a
function of intensity may be required for many optical
switching applications.

IV. SWITCHING OF PULSE TRANSMISSION BY A
CONTINUOUS WAVE

In order to study the possible control of optical pulses by
the second laser beam, we consider a pulse propagating to-
gether with a continuous wave �cw� in structure 1�a�. We
launch the same pulses as in Sec. III, but now together with
a continuous wave oscillating with frequency equal to the
resonant frequency of the defect cavity. The cw laser acts as
a gate. By changing the intensity of the cw field it is possible
to modulate the transmission of the laser pulse. For very
intense cw fields, it is also possible to transfer energy from
the cw field to the pulse through oscillations in the nonlinear
refractive index of the microresonator. However, these ef-
fects involve almost prohibitively high field intensities. We
use two sets of Maxwell’s equations coupled through nonlin-
ear interaction to describe the state of each beam with time.
As mentioned earlier, this description is possible when the
pulse spectral components are well separated from that of the
cw field. Transmission of the pulse strongly depends on the
continuous-wave power. For very small continuous-wave

FIG. 6. Time dependence of refractive index change �n /n for
the instantaneous model of nonlinear Kerr response, measured at
one point, in the large defect rod, near its front surface and in the
middle of the defect line, �a� for the pulse below the threshold
�Einp=5.3 pJ/�m�, �b� on the threshold �Einp=9 pJ/�m�, �c� for the
pulse with highest transmission �Einp=11 pJ/�m�, and �d� much
above the threshold �Einp=37 pJ/�m�. The other characteristics of
the input pulse are described in the caption of Fig. 3�a�.
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power, the properties of the defect cavity are determined pre-
dominantly by the pulse energies and the continuous wave
does not have an influence on the transmitted spectrum. By
increasing the continuous-wave power up to a characteristic
value of 2.5 W/�m in the instantaneous model �or
18 W/�m in the noninstantaneous model�, transmission is
enhanced for all input pulse intensities. However, a further
increase of the continuous-wave power has the opposite in-
fluence on pulse transmission. At the threshold intensity of
the cw field and for low enough input pulse energy, trans-
mission is very high and there is no dispersion in the trans-
mitted spectrum �Figs. 7 and 8�. In the instantaneous model
we find that transmission can reach 115% in the low-input-
pulse-energy regime, while this value is slightly smaller
�93%� in the noninstantaneous model. Nonlinear properties
of defect cavity depend on the total field whose amplitude
oscillates with a period comparable to the cavity buildup
time. When the time-dependent oscillations of the nonlinear
refractive index �see Fig. 9�a�� contain spectral components
at the difference frequency between the pulse and the cw
laser field, it is possible to exchange energy between the
beams. If we increase the pulse intensity, the energy trans-

ferred from the continuous wave takes a smaller and smaller
part in the energy of the transmitted pulse and, at the same
time, the spectral intensity of the pulse with new frequencies
�0± ��res−�0� becomes visible. A further increase of the
pulse intensity makes the induced index change of the non-
linear cavity more dependent on the pulse intensity. The in-
dex oscillation amplitude increases and the oscillation period
changes. This influences the amount of exchanged energy
between the beams. At the same time, dispersion in the trans-
mitted spectrum becomes higher and higher and the pulse is
more and more distorted.

We calculated, numerically, the switching time for the
beam coupling device in the low-pulse-intensity regime, and
we found it to be comparable to the linear cavity decay rate.
A pulse propagating through the waveguide needs approxi-
mately the cavity buildup time in order to cross the cavity.
Consequently, a high-Q cavity device slows down the trans-
fer of information through the optical network. The same
time scale arises when we switch the pulse from a transmit-
ting state to a reflecting state by turning off the continuous
wave. Accordingly, we identify this time scale as the switch-
ing time of the device.

We perform similar simulations for a pulse propagating
through the waveguide with higher-Q-factor cavity in the
noninstantaneous model. In this case, the pulse is detuned by
a smaller amount from the linear cavity resonance as de-
scribed in Sec. III. Qualitatively, these two systems behave in

FIG. 7. �a� Transmission energy Eout relative to pulse input en-
ergy Einp as a function of input pulse energy of a Gaussian pulse
�with spectral FWHM, ��=0.000 22�2�c /a�� propagating through
the waveguide shown in Fig. 1�a�, together with a continuous wave
whose intensity acts as a control parameter. Input powers of con-
tinuous waves are �a� for the instantaneous model, 2.4 W/�m
�black circles� and 1.8 W/�m �grey triangles� and �b� for the non-
instantaneous model 18 W/�m �black circles� and 12 W/�m �grey
triangles�. In all cases the center frequency of the input pulse, �0

=0.2573�2�c /a�, is detuned from the Fabry-Perot resonance at
�res,1a=0.2581�2�c /a� and the cw laser is in resonance with the
microcavity.

FIG. 8. �a� Output power profile of the Gaussian pulse, with
input spectral FWHM ��=0.000 22�2�c /a�, propagating through
the waveguide depicted in Fig. 1�a�, in the presence of a continuous
wave whose input power is 18 W/�m. Input pulse energies are �a�
0.13 pJ/�m and �b� 30 pJ/�m. Here, we consider only the nonin-
stantaneous model �see text� for nonlinear Kerr response. In both
cases, the input pulse center frequency �0=0.2573�2�c /a� is de-
tuned from the Fabry-Perot microcavity resonance at �res,1a

=0.2581�2�c /a�, whereas the cw field is on resonance.
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a similar way. We find maximal transmission of 58% in the
low-input-pulse regime. However, the pulse is stretched in
time. The time required for the pulse to cross the cavity is
not the only parameter which determines the operation time
of the device. The cavity buildup time and low group veloc-
ity in the cavity provide a lower bound on the temporal du-
ration of a useful pulse. If we want the Gaussian pulse to
keep its profile in time, we require a Gaussian pulse with
characteristic parameter 	p a few times larger than the cavity
decay rate 	b. For example, using a Gaussian pulse with
characteristic parameter 	p=2.5	b�10 ps, the pulse remains
close to Gaussian with 	p enlarged by less than 10% relative
to the input pulse profile. Pulses with longer temporal dura-
tion have a stronger interaction with the defect cavity and
continuous wave. This is apparent in the transmitted energy.
Transmission of this pulse, supported by a continuous wave
of 4.8W/�m, is 90% in the low-input-pulse-intensity re-
gime. In this case, the relative index change is 0.3%, or
equivalently, the maximal electric field in the large dielectric
rod is near to 4 MV/cm. This is above the dielectric break-
down field strength for GaAs �26,27�. We conclude that
transistor-type “control of light with light” is impractical in
this device geometry with Kerr nonlinearity. The switching
field strength can be reduced by taking into account specific
characteristics of nonlinearity in the engineered vacuum of
photonic band-gap materials �5,11,28�.

Finally, we study the influence of a continuous wave on
pulse propagation through the side-coupled cavity structure
of Fig. 1�c� in two different ways. In the first case, we con-
sider a continuous wave oscillating on the cavity resonant

frequency, passing through the waveguide. Afterwards, we
launch a pulse detuned to �0=0.264�2�c /a�. For very low
continuous-wave power, almost all pulse energy bypasses the
cavity because the pulse oscillates out of resonance with neg-
ligible interaction between the pulse and cavity. As we in-
crease the continuous-wave power, the nonlinear shift of the
cavity resonant frequency enables the cavity to resonate with
the pulse at frequency �0 �see Fig. 10�. This device enables
light to be switched from pulse transmission to pulse reflec-
tion. Unfortunately, this device needs large continuous-wave
power �10 W/�m� since the nonlinear effect dislocates the
continuous wave from the cavity resonance and only a small
part of the continuous wave enters the cavity. In the second
case, we exchange frequencies of the continuous wave and
the pulse. In this case, the pulse energy is mostly reflected
before the nonlinearity takes effect because the pulse oscil-
lates on resonant frequency. For an incident pulse of 5.2 ps
duration,1 we have a transmission of 17% �in the absence of
the continuous wave� because of the large bandwidth of the
pulse. This ambient transmission can be reduced if we use
pulses of longer time duration. The continuous wave oscil-
lates out of resonance, and only a small part of it enters the
cavity. When the resonant frequency reaches the frequency
of the continuous wave, the cavity will absorb and accumu-
late the light energy, leading to a significant change of the
resonant frequency. As a result, the pulse can pass through
the waveguide without reflection �Fig. 11�a��. There is no
interaction of the pulse with the defect cavity, so the trans-
mission on threshold jumps to 97% and the pulse identity is
retained �Fig. 11�b��.

V. CONCLUSIONS

In summary, we have investigated all-optical switching in
nonlinear two-dimensional photonic crystal waveguides,

1We define the pulse duration as a time for which the amplitude of
the pulse remains above 1/2 of its maximum.

FIG. 9. �a� The time dependence of the refractive index change
at one point, in the large defect rod, near its front surface and in the
middle of defect line of the structure depicted in Fig. 1�a�. The
pulse with input energy �a� 0.1 pJ/�m and �b� 37 pJ/�m propa-
gates together with a continuous wave whose input power is
12 W/�m. Here, we consider only the noninstantaneous model �see
text� for nonlinear Kerr response. The input pulse amplitude is
Gausian with FWHM ��=0.000 22�2�c /a� and central frequency
�0=0.2573�2�c /a�, while the cw laser field oscillates at the linear
resonance of the defect cavity, �cw=�res,1a=0.2581�2�c /a�.

FIG. 10. �a� Transmission energy Eout relative to pulse input
energy Einp of the pulse with very low input energy, propagating
through the waveguide shown in Fig. 1�c�, together with a continu-
ous wave, as a function of the continuous-wave power measured
per 1 �m of the length normal to the 2D microchip plane. The input
pulse is Gaussian with FWHM ��=0.000 22�2�c /a� and central
frequency of the pulse is dislocated to �0=0.264�2�c /a�, from the
linear resonance �res,1c=0.2646�2�c /a�, whereas the continuous
wave is on resonance. Here, we consider only the noninstantaneous
model �see text� for nonlinear Kerr response.
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coupled to resonant defect cavities. For comparison pur-
poses, we considered the PC waveguide structure introduced
in Ref. �13�. We analyzed the detailed temporal and spectral
features of the switching phenomenon. We compared the
specific properties of three different types of defect cavities
and two types of Kerr nonlinear response.

Our numerical simulations, made on waveguides contain-
ing nonlinear Fabry-Perot resonators, confirm that a laser
pulse with high enough intensity can change the resonant
frequency of the structure, allowing switching from pulse
reflection to transmission. But a more detailed investigation
reveals that this device suffers from fundamental limitations
and trade-offs for applications in optical telecommunica-
tions. For realistic choices of the cavity quality factor, we
find an unreasonably large refractive index change in the
cavity region near the switching threshold. For the instanta-
neous model of Kerr nonlinear response, we calculated maxi-
mal relative index change of 4.4% on the threshold. For the
more physically realistic noninstantaneous model of Kerr
nonlinear response, the relative index change �of 0.87%� is
about 5 times smaller, but still extremely large. This maximal
index change is about 2 times larger than estimated by the
simple physical picture provided in the Introduction. This is
because the defect rod is not illuminated evenly. Instead, the
borders of the defect rod are intensely illuminated, while the
center of the dielectric rod is weakly illuminated. We con-

clude that the simplified model described in the Introduction
estimates the average index change in the defect rod and
provides only a lower bound on the peak value of the index
change. Additional reduction of the threshold field intensity
and index change can be achieved by smaller detuning of the
pulse from the linear resonance. However, in this case we
have to use a defect cavity with higher Q factor, leading to
longer switching and pulse duration times. For example, our
simulations on the high-Q, Fabry-Perot, resonator structure
of Fig. 1�b� gave a maximal relative index change of �n /n
=0.5% for the noninstantaneous model and �n /n=3% for
the instantaneous model. These are nevertheless extremely
high for the typical semiconductors used in optoelectronics.
For an ideal switching device, we require a nonlinear shift of
the entire cavity bandwidth from the spectral range of the
pulse. At the same time we need a short switching time.
These two conditions can be satisfied only with the use of
materials with extraordinarily large nonlinear response. This
is unlikely with nonlinear materials described by the instan-
taneous Kerr response model. Most significantly, our study
shows that the switching mechanism consists not only of a
steady-state nonlinear shift of the band structure by the sig-
nal beam, but rather it is dominated by an active interaction
and feedback between the microcavity and the laser pulse.
As a consequence of this interaction, we detect dispersion in
the transmitted pulse for all simulations with input pulse in-
tensity above the threshold. In the side-coupled microcavity
structure of Fig. 1�c�, a high-intensity laser pulse keeps its
frequency profile after crossing the cavity, but this type of
cavity does not have a sharp threshold as desired in switch-
ing devices. For these various reasons, nonlinear self-
switching of pulse in photonic crystal waveguides with a
Kerr-nonlinear microcavity faces serious challenges for prac-
tical deployment in optical telecommunications. A new para-
digm may also be required for all-optical transistors to be-
come competitive with their electronic counterparts.

Finally we analyzed switching of a pulse by a secondary
continuous wave detuned from the pulse spectrum, but
propagating through the same PC waveguide. For light
propagation in the nonlinear Fabry-Perot structure of Fig.
1�a�, we found that the transmitted energy of the laser pulse
can, in some cases, exceed 100%, due to nonlinear exchange
of energy from the continuous-wave laser to the pulse. This
is a direct consequence of nonlinear “ringing” effects in the
cavity refractive index. For low enough input pulse intensity,
dispersion in the transmitted pulse can be very small. While
this property is advantageous for practical applications, this
requires cw laser intensities that are near the threshold for
dielectric breakdown in the semiconductor. In the structure
of Fig. 1�c�, the cavity is physically dislocated from the
waveguide. Here, the weak interaction between the pulse and
defect cavity �when they are spectrally detuned from each
other� implies that the cavity does not distort the transmitted
pulse. However, as in the previous structures, the power of
the continuous wave and the maximal induced nonlinear in-
dex shift is exceedingly high. These results suggest the im-
portance of considering alternative forms of nonlinear re-
sponse �such as that arising from the embedding of resonant
quantum dots within or near the photonic crystal waveguide�
�8–11,28� in the quest for practical “control of light with
light” in photonic band-gap materials.

FIG. 11. �a� Transmission energy Eout relative to pulse input
energy Einp of a Gaussian pulse �with spectral FWHM, ��
=0.000 22�2�c /a�� with very low input energy, propagating
through the waveguide shown in Fig. 1�c�, together with a continu-
ous wave, as a function of input cw power in the waveguide chan-
nel, measured in units of watts per 1 �m of the length normal to the
2D microchip plane. In this case the center frequency of the input
pulse, �0=0.2646�2�c /a�, is the same as the linear Fabry-Perot
resonance, whereas the cw field is detuned to �cw=0.264�2�c /a�.
�b� Transmitted power profile of the pulse on threshold. Here, we
consider only the noninstantaneous model �see text� for nonlinear
Kerr response.
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