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We illustrate a general technique for evaluating photonic band structures in periodicd-dimensional micro-
structures in which the dielectric constant«svd exhibits rapid variations with frequencyv. This technique

involves the evaluation of generalized electromagnetic dispersion surfacesvskW ,«d in a sd+1d-dimensional

space consisting of the physicald-dimensional space of wave vectorskW and an additional dimension defined by
the continuous, independent, variable«. The physical band structure for the photonic crystal is obtained by
evaluating the intersection of the generalized dispersion surfaces with the “cutting surface” defined by the
function «svd. We apply this method to evaluate the band structure of both two- and three-dimensional(3D)
periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude
conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk
metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into
semiconductor-based photonic crystals. We apply our method to two models in which«svd describes a reso-
nant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscil-
lators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that
for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the
full 3D photonic band gap(PBG) can be considerably enhanced. In the second model, we consider a coupled
resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic
interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielec-
tric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are coupled radiatively
through resonance dipole-dipole interaction are placed in a photonic crystal.
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I. INTRODUCTION

Photonic band gap(PBG) materials[1,2] are engineered
periodic structures which facilitate the localization of light
[3]. The study of PBG’s in three-dimensional(3D) periodic
materials has focused primarily on materials for which the
dielectric constant is independent of frequency. In this case, a
PBG arises from the interplay of two geometrical effects.
The first is a macroscopic(Bragg) scattering resonance asso-
ciated with periodicity of the dielectric microstructure. The
second is the microscopic scattering resonance of the dielec-
tric structure in a single unit cell of the periodic system. If
the refractive index contrast across the dielectric interfaces is
sufficiently large and the scattering geometry is carefully
chosen(so that both resonances occur at a common fre-
quency), a complete absence of electromagnetic wave propa-
gation in any direction over a finite frequency interval may
occur. The mathematical problem of band gap formation can
be solved as a linear eigenvalue problem obtained from Max-
well’s equations[4]. A minimum refractive index ratio of
about 2.0[4] is required for PBG formation in even the most
ideal geometries such as the diamond lattice. In less ideal
structures, the minimum index ratio may be closer to 3.0.
This places severe constraints on the types of materials and
geometries that are amenable to PBG formation. We demon-
strate, in this paper, that the photonic band gap of 3D PBG
materials can be enhanced when the underlying dielectric
constant is allowed to vary appropriately with frequency.

Electronic and vibrational excitations in a material may
interact resonantly with an electromagnetic wave and dra-

matically alter its propagation through the medium. A simple
example is that of electronic free carriers in a metal with a
bulk plasma frequency below which electromagnetic waves
are screened and cannot propagate. This can be described
using a frequency-dependent Drude dielectric function[5].
In a metallic photonic crystal with a connected air compo-
nent, it is possible for photons of certain narrow frequency
ranges below the plasma frequency to be guided through air,
resulting in pass bands. These effects have been studied in
2D photonic crystals by Maradudin and co-workers[6–9]
and Sakoda and co-workers[10–12]. Band structure results
for realistic 3D metallic photonic crystals are much less de-
veloped [13–15]. Recent experiments on a 3D tungsten-
based photonic crystal have suggested that the occurrence of
band gaps and pass bands may modify the blackbody radia-
tion emitted by the crystal when it is heated by passage of an
electrical current[16]. The observed redistribution of heat
into higher-frequency light may be very important for effi-
cient lighting technologies.

Another realization of free carriers in a semiconductor-
based photonic crystal occurs in photoelectrochemically
etched macroporous silicon[17–19]. Here, the fabrication
procedure itself leads to the presence of residual free carriers
whose concentration varies with the porosity(air to silicon
volume fraction ratio). Recently, ultrafast tuning of band
structure has been demonstrated in such photonic crystals
performed by optical injection of electron-hole pairs[20].
Band structure calculations in 2D[21,22] have likewise pre-
dicted the shift of certain electromagnetic dispersion curves
with free carrier concentration. In all these cases, the under-
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lying dielectric constant acquires a Drude-like frequency de-
pendence.

If certain electronic degrees of freedom in the photonic
crystal are confined rather than free, a different type of fre-
quency dependence to the dielectric constant can be ob-
tained. For example, a quantum dot can exhibit a ground to
electronic excited state transition in resonance with an elec-
tromagnetic wave in the photonic crystal. If the crystal is
impregnated with a high concentration of such resonators,
then the dielectric constant will exhibit rapid variations with
frequency in the vicinity of the resonance leading to dramatic
changes in the electromagnetic wave characteristics. For fre-
quencies slightly below the resonance, the real part of the
dielectric constant is enhanced whereas slightly above the
resonance the real part is suppressed. This effect is particu-
larly important when the resonance frequency is placed in-
side a stop gap of the photonic crystal. The higher dielectric
constant near the lower edge of the stop gap will tend to
move the band edge to lower frequency, whereas the lower
dielectric constant near the upper edge of the stop gap will
tend to move this band edge to higher frequency. The net
result is that the overall stop gap is enhanced. A similar effect
occurs in a material with an incipient photonic band gap. By
placing a carefully chosen concentration of resonators in pre-
cise locations, it is possible to open a complete PBG where
one would not appear otherwise. Alternatively, by adding
resonators in a prescribed manner to a material with a rela-
tively small PBG, it is possible to increase the size of the
overall 3D PBG considerably. This is illustrated through a
model in which colloidal quantum dots are coated on the
inner surfaces of a silicon-based inverse opal structure[23].
Similar effects may occur with the infiltration of dye mol-
ecules into photonic crystals[24,25]. Since the highly disper-
sive real part of the dielectric constant is accompanied by a
resonance peak in the imaginary part, it is important to care-
fully consider damping and absorption effects associated
with this mechanism for PBG enhancement. We suggest that,
if the absorption frequency of an isolated resonator falls
within the PBG, it leads to localized states of light within the
PBG [26]. If the resonators are sufficiently strongly coupled
to one another, energy transfer can take place within the PBG
through the “impurity band” created by the resonators. In our
computational approach based on a “cutting surface method”
(CSM), we neglect the imaginary part of the dielectric con-
stant. In the region of anomalous dispersion,
dRef«svdg /dv,0, this may lead to the phenomenon of
“wave vector gaps”(WVG’s) accompanied by dispersion
bubbles(closed curves in the band structure diagram) where
dv /dk appears unbounded at certain points. Causality, how-
ever, may be recaptured through an appropriate analysis of
the role of the imaginary part of the dielectric constant.

In Sec. II we define the problem of calculating the photo-
nic band structure in the presence of a frequency-dependent
dielectric and introduce the most frequently used models of
dielectric constants. This is followed in Sec. III by a detailed
description of our method for evaluating the corresponding
photonic band structure. We present results for various two-
dimensional photonic crystals in Sec. IV. This is followed by
results for three-dimensional photonic crystals in Sec. V. A
discussion and interpretation of wave vector gaps is given in
Sec. VI, followed by concluding remarks in Sec. VII.

II. PHOTONIC BAND STRUCTURE IN THE PRESENCE
OF FREQUENCY-DEPENDENT DIELECTRICS

The photonic band structure of a perfect photonic crystal
is determined by the eigenvalues of the following familiar
equation[27]:

¹W 3 f«−1srW,vd¹W 3 HW vsrWdg = Sv

c
D2

HW vsrWd s1d

where «srW ,vd is the dielectric constant of the crystal and

HW vsrWd is the monochromatic component(of frequencyv) of
the magnetic field, which satisfies the Bloch condition[27]

HW vsrWd = eikWbrWHW kWb,vsrWd. s2d

kWb is the Bloch vector lying in the first Brillouin zone of the

crystal’s reciprocal space andHW kWb,vsrWd has the same period-
icity as the underlying Bravais lattice. When regarded as an
eigenvalue problem for the frequencyv, Eq. (1) has a non-
linear character because the dielectric constant«srW ,vd, which
acts as a scattering potential, itself depends on the eigenvalue
v. We refer to this as a nonlinear eigenvalue problem. An
analytic solution of Eq.(1) for an arbitrary«srW ,vd is possible
in the case of a one-dimensional periodic grating(see the
Appendix for details). In two and three dimensions there has
been no general prescription up to now(nor a reliable nu-
merical method) for determining the solution of Eq.(1) for
an arbitrary«srW ,vd.1

A few commonly used dielectric functions are listed be-
low.

(1) The dielectric constant of a conducting solid can be
approximated very well[28] by the Drude formula

«svd = «0S1 −
vp

2

vsv + it−1d
D s3d

wherevp andt are the plasma frequency and relaxation time
of the conducting electrons, respectively.«0 is 1 for a pure
metal but can be different from 1 for a semiconductor.

(2) The dielectric constant of a dilute collection of reso-
nant absorbers(molecules, quantum dots, or other impuri-
ties) is given by

«svd = 1 +
4pNe2

m
o

j

f j

v j
2 − v2 − ivg j

s4d

whereN is the number of molecules per unit volume,Z is the
number of electrons per molecule, andf j is the number of
electrons per molecule which have the resonant frequency
and damping coefficientv j andg j, respectively.f j, the oscil-
lator strengths, satisfyo j f j =Z. Here it is assumed that the
damping ratesg j are larger than the rate of direct energy

1The determinantal approach described later can be used to solve
the general Eq.(1) but it requires a very large amount of computa-
tions. The transfer matrix method described in[13] can in principle
be used to calculate the photonic band structure for an arbitrary
«srW ,vd. However, the computational algorithm in this case is not
stable numerically.
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transfer between oscillators, so that each oscillator can be
considered independent.

(3) Insulating solids, without extrinsic impurities, can also
exhibit highly dispersive properties in the frequency range of
an intrinsic, elementary excitation which interacts strongly
with light. The elementary excitation is a specific case of
strongly coupled resonators which can exchange energy
among themselves within the solid. For instance, in polar
crystals the dielectric constant is given by[29]

«svd = «` + s«0 − «`d
vT

2

vT
2 − v2 − igv

s5d

wherevT is the transverse optical phonon frequency,g is the
absorption coefficient, and«0,«` are the dielectric constants
at low and high frequencies, respectively. If one neglects the
absorptionsg=0d Eq. (5) can be rewritten in the more famil-
iar form

«svd = «`

vL
2 − v2

vT
2 − v2 s6d

where vL
2=vT

2«0/«` (Lyddane-Sachs-Teller relation). This
strong resonance at the optical phonon frequency is associ-
ated with the formation of a polariton, a hybrid excitation
involving both the electromagnetic and vibrational modes of
the solid. Solids exhibiting this type of dielectric constant
include GaAs, InP, NaCl, and KCl.

In view of the variety of different frequency-dependent
dielectric functions, it is useful to develop a general method
to solve Eq.(1) for an arbitrary«srW ,vd. In the next section
we introduce such a method.

For a frequency independent dielectric(FID) constant Eq.
(1) can be mapped[4,30] directly into an ordinary eigen-
value equation for an infinite Hermitian(or symmetric) ma-

trix M̂hW =sv /cd2hW whereM̂ (independent ofv) is the matrix
representation of the left hand side of Eq.(1) in a plane wave

basis andhW is the eigenvector whose elements are the expan-
sion coefficients in this basis. This eigensystem(after trun-
cation to a finite size) can be calculated using well estab-
lished numerical algorithms. We call the band structure
obtained in this case anordinary photonic band structure.

If one is interested only in the eigenfrequencies of Eq.(1)
then a determinantal approach to calculating the photonic
band structure can be used[6]. The eigenfrequencies in this
case are obtained as the frequencies at which the determinant

of M̂svd−sv /cd21̂ is zero. The dependence ofM̂ on v comes
entirely from the dielectric constant. This approach to solv-
ing the eigenfrequencies of Eq.(1) is seldom used in practice
due to the large number of floating point operations required.

There are a few specific cases where specialized tech-
niques have been employed to evaluate the photonic band
structure of frequency-dependent dielectrics. For a 2D pho-
tonic crystal, in the absence of dissipationst=`d, the fre-
quency dependence given by Eq.(3) enables a mapping of
Eq. (1) to an ordinary eigenvalue problem[6,7], which can
be solved using the plane wave method. An extension to the
case of finitet is presented in Ref.[8]. The photonic band
structure of a fcc crystal made from spheres whose dielectric

constant is given by Eq.(3) was calculated in Ref.[6] using
a root finding technique and in Ref.[31] using a photonic
analog of the Korringa-Kohn-Rostoker method[32]. The
photonic band structure for 2D photonic crystals described
by the Drude model, Eq.(3), has been calculated in Refs.
[22,33,34]. Finally, the polaritonic frequency dependence
given by Eq.(6) also allows a special treatment in the 2D
case, leading to a generalized eigenvalue problem[35]. In
Ref. [36] the corresponding 2D band structure has been ob-
tained using a determinantal approach.

III. “CUTTING SURFACE” METHOD OF BAND
STRUCTURE CALCULATION

In this section we introduce a fundamental and general
method of calculating band structures of photonic crystals of
arbitrary structure, dimensionality, and frequency-dependent
functions«svd. We first illustrate our method using a one-
dimensional model and compare the results to a semianalyti-
cal solution. As we demonstrate below, our “cutting surface”
method extends straightforwardly to two- and three-
dimensional photonic crystals. In order to make the general-
ity of the method more apparent, we choose to display the
one-dimensional Bloch vector in bold faceskbd.

Consider a one-dimensional photonic crystal whose unit
cell consists of two layers characterized by[dielectric, thick-
ness] of f«1,d1g andf«2,d2g, respectively(see Fig. 26 in the
Appendix). The calculation of the photonic band structure in
this case is described in detail in the Appendix. For a given
Bloch vectorkb, the frequencies of all the modes are deter-
mined by the solution of Eq.(A5); this can be solved even
when the dielectric constant has an explicit frequency depen-
dence. For concreteness we assumed1/ uau=0.2, «2=1, and
«1svsd=10 sins4vsd where vs denotes the scaled frequency
introduced by Eq.(A6). The “unphysical” and extreme ex-
pression for«1svd is chosen to illustrate the mathematical
correctness of the method. Once this one-dimensional, math-
ematical, test case is explored in detail, the broad applicabil-
ity of the method to “physical” systems will become appar-
ent.

Figure 27 in the Appendix shows the photonic band struc-
ture of the one-dimensional photonic crystal described
above. The frequencies of the bands are the solutions of Eq.
(1) and Eq.(2) in the 1D case and have been determined by
the solutions of the transcendental Eq.(A5) with the proper
parameters in place. This is a practically exact photonic band
structure.

To illustrate our method, we consider a set of photonic
band structures for this 1D crystal in which the solid com-
ponent is replaced by a frequency-independent dielectric.
Each photonic band structure corresponds to the following
parameters:udu1/ uau=0.2, «2=1, and«1=« where« runs in a
finite range f«min,«maxg. The only parameter that changes
from band structure to band structure is«, the dielectric con-
stant of the solid component. The geometry of the photonic
crystal is identical to the one used in the Appendix. Figure 1
displays the first band of this photonic crystal calculated for
a discrete set of« values, running from −11 to +11 in steps
of 1, with the exception of the intervalf−6,−3g where the
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step is 0.5. The functional form of the first band of the pho-
tonic band structure is denoted byvs

s1dskb ;«d which indicates
that vs

s1d is a continuous function ofkb and depends para-
metrically on «. G and M correspond tokb=0 and kb
=p / uau, respectively. The cutoff frequency at theG point that
is visible in Fig. 1 appears when«,−4 [see Eq.(A10)].

As seen in Fig. 1 the dependence ofvs
s1d on « for a given

kb is relatively smooth. The only area in theskb ,«d space
where this dependence is not as smooth is for the first band
aroundG and« where the cutoff sets in. For the higher bands
or the rest of theskb ,«d space the frequency of the band is a
slowly varying monotonically decreasing function of«.
Based on this observation, we can now extend by interpola-
tion the one-dimensional, parametric functionvs

s1dskb ;«d to a
two-dimensional functionvs

s1dskb ,«d which now depends
continuously on bothkb and«. We call this function the first
band surface.

In order to find the frequencies of the first band for, say,
«=7.25, we interpolate between the frequencies calculated
for «=7, vs

s1dskb ,7d, and«=8, vs
s1dskb ,8d. This procedure is

equivalent to calculating the intersection between the band
surfacevs

s1dskb ,«d and the plane defined by«=7.25 in the
skb ,« ,vsd space. Figure 2 shows the first four band surfaces
and their intersection with the plane«=7.25. The surfaces
are slightly transparent and have different colors. By sweep-
ing the “cutting” plane along the« axis in Fig. 2 we obtain
(with very good accuracy) the photonic band structures of
the family of FID’s for all the values of« in the range of
available data(which in this case is −11ø«ø11).

In order to treat a frequency-dependent dielectric(FDD)
we use a different surface to “cut” through the band surfaces.
The new “cutting” surface is defined implicitly by the func-
tion «svs,kbd=10 sins4vsd. The dependence of this implicit
function onkb is trivial but it illustrates that we are dealing
with a surface in a 3D space[the space defined by the pa-
rametersskb ,« ,vsd]. Figure 3 displays this “cutting” surface
together with the first two band surfaces of our model pho-

tonic crystal. The intersections between the “cutting” surface
and the bands are also highlighted. The essence of our
method of calculating photonic band structures of frequency-
dependent dielectrics is the following: the projection on the
skb ,vsd plane of the intersections between the “cutting” sur-
face and the band surfaces consists of pointsskb ,vd which
satisfy Eqs.(1) and (2) when the dielectric constant has the
corresponding frequency dependence. In this particular case
the skb ,vd pairs satisfy Eq. (1) when «1svs,kbd
=10 sins4vsd, «2=1, andudu1/ uau=0.2.

Calculating the photonic band structure for a different di-
electric function requires only the replacement of the “cut-
ting” surface defined by «svs,kbd=10 sins4vsd with
«svs,kbd=«svsd, where«svsd is an arbitrary real function.
This function need not have a simple analytic form but could
be taken from an experimental data set. The amount of com-
putation required to calculate these intersections is negli-
gible, and therefore studying the change of the photonic band
structure caused by a change in«svd becomes an almost
real-time process. In the case of a 1D photonic crystal, the
cutting surface method produces a band structure projected
on the skb ,vsd plane that is practically indistinguishable
from the exact analytical calculation, Fig. 27 below.

We mention briefly the factors that affect the overall ac-
curacy of the calculations involved in the procedure de-
scribed above. There are two sources of potential numerical
errors. First is the interpolation error used to generate the
band surface from the separate bands(see Fig. 1). This error
can be controlled easily by calculating the FID bands for
more« values in regions wherevs

sndskb ,«d displays a strong
variation with«. The second source of error comes from the
calculation of the intersection between the “cutting” surface
and the band surface. As long as the functional form of the
frequency dependence of the dielectric constant is known
accurately, this type of error can easily be reduced to an
order of magnitude lower than the other errors.

The extension of the CSM to the case of 2D and 3D
photonic crystals is straightforward. Consider a two-
component photonic crystal characterized by dielectric con-

FIG. 1. 1D bands for a series of FID’s. The photonic crystal is
characterized by«1=«, «2=1, and udu1/ uau=0.2. The value of the
dielectric constant of the first layer varies from −11 to +11 in steps
of 1 with the exception of the intervalf−6,−3g where a step of 0.5
was chosen. In each case the lowest band of the 1D photonic band
structure was calculated(i.e., vs

s1d versuskb). The kb=const lines
are displayed as a visual guide for the reader.

FIG. 2. (Color online) The frequency of the lowest four bands
for «=7.25 can be determined by the intersection of the«=7.25
plane in theskb ,« ,vsd space with the four lowest band surfaces
obtained by interpolating between the«=const bands previously
calculated. For a description of the axes see the caption of Fig. 1.
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stant«1svd=1 in the first component and«2svd=«svd in the
second. By using Eq.(2) in Eq. (1) we obtain the following
eigenvalue problem for theH field:

sikWb + ¹W d 3 f«−1srW,vdsikWb + ¹W d 3 HW kWb,vsrWdg = Sv

c
D2

HW kWb,vsrWd.

s7d

We definevs
sndskWb;«d as thenth eigenfrequency of Eq.(7)

corresponding to Bloch vectorkWb when«srW ,vd=1 in the first
component and«2srW ,vd=«, a constant independent ofv, in

the second component.vs
sndskWb;«d can be calculated using

standard photonic band structure methods since we have
temporarily replaced«srW ,vd with a FID. The dashed line in
Fig. 4 shows the frequency of this particular band,vs

snd

3skWb;«d, as a function of« when bothn andkWb are fixed. The
continuous curve represents the value of the dielectric of the

second component«2 as a function ofv. The intersections
between the two curves provide a set of frequencies that
satisfy Eq. (7) when the dielectric constant of the second
component has an explicit frequency dependence given by
«2svd. We note that, in general, more than one intersection
between the band surface and the “cutting” surface is pos-
sible. This is clearly illustrated in Fig. 3 where the intersec-
tion between the “cutting” surface and the second band sur-
face gives rise to the wave-vector gap of band 2 in Fig. 27.

IV. METALLIC AND POLARITONIC PHOTONIC
CRYSTALS IN 2D

Our first nontrivial illustration of the CSM introduced
above is for a 2D photonic crystal made from metallic cyl-
inders placed on a square lattice. The dielectric function of
the metallic component is modeled by Eq.(3). Here we con-

sider only the TM polarization(EW field is parallel to the
cylinders). The optical properties of 2D photonic crystals
with one metallic component have been the subject of vari-
ous theoretical studies[6–9,11,37–41]. This interest in the
2D case was facilitated by the possibility of solving Eq.(1)
using similar techniques to those used for FID’s provided
that the 2D FDD has certain specific expressions for«svd.

We consider a photonic crystal consisting of metallic cyl-
inders of radiusr =0.472uau placed in air on a square lattice
of lattice constantuau. The volume filling fraction of the cyl-
inders is 0.7. Figure 1(b) of Ref. [7] displays the photonic
band structure as calculated using a “modified plane wave
method.” The plasma frequency in this case was chosen such
that vpuau /2pc=1 and the electric scattering timet=` (c is
the speed of light). Figure 5 illustrates the CSM construction
of the photonic band structure of this photonic crystal. The
lowest ten band surfaces corresponding to the Brillouin zone
pathG-M-X-G are shown together with the “cutting” surface
defined by Eq.(3). The intersections of the band surfaces

with the “cutting” surface projected onto theskWb,vd plane,
represent the photonic band structure of the FDD. Figure 6,

FIG. 3. (Color online) The solution of the
band structure calculation for a FDD. Here we
use the “cutting” surface defined implicitly by
«svs,kbd=10 sins4vsd whose intersections with
the lowest two band surfaces are calculated. The
projection of these intersections on theskb ,vsd
plane is identical with the lowest three bands dis-
played in Fig. 27 below. For a description of the
axes see the caption of Fig. 1.

FIG. 4. (Color online) Graphical solution of Eq.(7). The dashed
curve represents the frequency of a certain bandnb for a fixed

Bloch vectorkWb as a function of the dielectric constant of the second
component. The continuous curve represents the dielectric constant
of the second component as a function of frequency. The intersec-
tions between the two curves are the frequencies of allowed modes

of Bloch vectorkWb which all satisfy Eq.(7) when«2svd=«svd.
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obtained by the CSM, accurately reproduces Fig. 1(b) of Ref.
[7], obtained by more restrictive methods.

Using the intuitive construction shown in Fig. 5, we now
consider the evolution of the photonic band structure asvp
changes. Whenvpuau /2pc decreases below 1 the intersec-
tions between the “cutting” surface and the band surfaces
move toward larger« values, implying an overall lowering
of the band frequencies. WhentÞ` the “acoustic branch” of
the photonic band structure is expected to appear eventually
as the free carrier density(implicit in vp) is further reduced.
An increase ofvpuau /2pc leads initially to upward move-
ment of the bands’ frequencies. However, as a consequence
of the flatness of the band surfaces in the negative« area
(clearly visible in Fig. 5) the lowest band becomes insensi-

tive to this increase invp. This happens in turn to the higher
bands. Figure 7 shows the TM photonic band structure ob-
tained in the casevpuau /2pc=3. At low frequencies this pho-
tonic crystal remarkably behaves like a “photonic pass gap”
material due to the presence of the flat photonic bands
clearly visible forvuau /2pc&2.5 in Fig. 7. Here, the plasma
gap that would normally appear forall frequencies belowvp
is now punctured by the presence of the narrow bands of
propagating radiation. Physically, these flat bands describe
EM modes in which the field energy is able to percolate
through the “air” fraction of the photonic crystal and avoid
significant concentration in the metal fraction. In the case of
3D metallic PBG materials, this type of band structure can
have profound implications for blackbody radiation emitted
from the interior of a 3D periodically structured metal such
as tungsten[16]. In particular, it is possible to redistribute
blackbody radiation from the frequency regions forbidden by
the plasma gap into higher-frequency “photonic pass bands”
for high-efficiency light filaments.

As another example we discuss the case of ionic crystals
with polaritonic dielectric function. The dielectric constant in
this case is given by the real part of Eq.(5). A typical plot of
the real part of Eq.(5) (for smallg) is shown in Fig. 8. In the
2D case, this particular«svd also facilitates a mapping of Eq.
(1) to an ordinary eigenvalue problem[35,42,43]. Special
geometries can also be treated in this case[44]. Figure 9
displays the TM band surfaces of a photonic crystal made
from cylinders of radiusr =0.472uau placed on a square lat-
tice of radiusuau. The band surfaces(determined entirely by
the geometrical structure of the photonic crystal) shown in
Fig. 9 are identical with the ones displayed in Fig. 5. Before
showing a specific numerical example of a photonic band
structure for a particular choice of FDD parameters in Eq.
(5), we discuss some of the important qualitative features
that emerge in this case. In the limitg→0, the dielectric
function increases to arbitrary positive values asv ap-
proachesvT from below and decreases to arbitrary negative
values as it approachesvT from above(see Fig. 8). In these
circumstances each band surface intersects the “cutting” sur-
face three times, with two of the intersections(for positive«)

FIG. 5. (Color online) The band structure of a FDD consisting
of metallic cylinders of radiusr =0.472uau on a square lattice of
lattice constantuau is calculated using the method introduced in Sec.

III. The ten lowest TM(EW parallel to the cylinders) band surfaces
corresponding to the Brillouin zone pathG-M-X-G are “cut” with
the surface defined by Eq.(3) wherevpuau /2pc=1 andt=`. The
intersections of the band surfaces with the “cutting” shape are also
illustrated.« runs from −30 to +10.

FIG. 6. (Color online) TM FDD photonic band structure of a
photonic crystal which consists of metallic cylinders whose dielec-
tric constant is given by Eq.(3) wherevpuau /2pc=1 andt=`. The
cylinders are placed on a square lattice of lattice constantuau and
have a radiusr =0.472uau.

FIG. 7. (Color online) TM FDD photonic band structure for a
metallic photonic crystal with the same geometry as the one de-
scribed in the caption of Fig. 6, except withvpuau /2pc=3. The flat
“pass bands” now appear below the plasma frequency.
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located close tovT. Because the frequency of any band is a
monotonically decreasing function of«, in the absence of
damping an infinite number of “intersections” will accumu-
late aroundvT. This leads to a large accumulation of flat
bands located aroundvT in the region where« is positive.
No such accumulation is expected for frequencies near or
abovevL. For v@vL the photonic bands quickly approach
those of a FID photonic crystal with dielectric constant«`.
The qualitative features described above are evident in Ref.
[35] and are independently confirmed in Fig. 10 using the
CSM. The TM photonic band structure shown in Fig. 10
corresponds to the following set of parameters:«0=12.66,
«`=10.9, vT=0.4, andg=0.01. The accumulation of the
bands just belowv=0.4 is clearly evident. IfvT and/orvL
can be tuned, significant changes in the photonic band struc-
ture occur only in the regionvT,v,vL and the most sen-
sitive area is nearvT.

Our calculation of the FDD photonic band structure using
the CSM is based on initially obtaining a family of FID band
structures, to generate the band surfaces. In this section we
used the plane wave method[4] to perform these FID calcu-
lations. This method converges rapidly in the case of a posi-
tive dielectric constant. However, in the case of a negative
dielectric constant its convergence can be reliably verified
only in the case of a 2D TM field. In the case of a 2D TE
field we find that the plane wave method performs well only
when the volume filling fraction of the component with
negative dielectric constant is small.

V. THREE-DIMENSIONAL PHOTONIC CRYSTALS

Unlike other specialized approaches to solving the photo-
nic band structure of a FDD, the method introduced in Sec.
III applies straightforwardly to three-dimensional photonic
crystals. As a first example we consider the case of a close
packed fcc crystal assembled from polystyrene spheres
whose surfaces have been doped with an organic dye. This
structure does not exhibit a 3D photonic band gap, but it
does illustrate certain key concepts underlying FDD’s in
which a direct comparison between theory and experiment is
already available. This particular type of photonic crystal has
been studied in Ref.[24] where a large enhancement of a
particular stop gap was reported due to the addition of the
dye. Here, we present a model which interprets and explains
this observation. The fcc lattice constant is denoted byuau
and the close packed radius byrcp= uau /2Î2. The polystyrene
spheres are modeled as a spherical core of radius 0.9rcp
coated with a shell of thicknessdcoating=0.1rcp. The core is
made from polystyrene and has a dielectric constant
«coresvd=ncore

2 =s1.592d2 which is frequency independent. For
the coating we choose the frequency-dependent dielectric
constant given by

«coatingsvd = «0 + V2 v0
2 − v2

sv0
2 − v2d2 + v2g0

2 s8d

where«0, v0, g0, andV are numerical parameters. Equation
(8) represents the real part of the dielectric constant of a

FIG. 8. (Color online) Real part of the polaritonic dielectric
constant given by Eq.(5). The function is negative forvT,v,vL.

FIG. 9. (Color online) TM photonic band structure of a FDD
crystal with a polaritonic resonance described by Eq.(5). The ge-
ometry of the crystal is identical with the one used in Fig. 5.

FIG. 10. TM photonic band structure for a polaritonic photonic
crystal with solid cylinders of radius 0.472uau on a square lattice of
radius uau. The cylinders are made from a polar crystal material
whose dielectric constant is given by Eq.(5). The parameters used
in this case are«0=12.66,«`=10.9,vT=0.4, andg=0.01.
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material which includes a resonant component as well as
other contributions to the dipole moment[45]:

«svd = «0 +
4pNe2

m

f0

v0
2 − v2 − ig0v

where f0 is the fraction of the electrons in a molecule
coupled resonantly at frequencyv0 and«0 is the contribution
to the dielectric from the rest of the electrons.

Figure 11 illustrates the construction of the band structure
of the photonic crystal described above. The “cutting” sur-
face is defined by Eq.(8) with the following parameters:
«0=7, v0=0.489,g0=0.3, andV=Î1.9 (where all the fre-
quencies are measured in units of 2pc/ uau). Figure 12 shows
the photonic band structure obtained by projecting the inter-
sections between this “cutting” surface and the band surfaces

on the skWb,vd plane. The origin of the unusually shaped

bands(wave-vector gap) near theL point can be understood
from the graphical solution displayed in Fig. 11. We also
note the significant increase of theG-L stop gap illustrated in
Fig. 13. This occurs because the edges of the stop gap are
located at different« values. Figure 14 illustrates the forma-
tion of the band frequencies at theL point. The dashed
curves represent the frequency of the lowest two bands
(which are doubly degenerate in this case) at theL point as
calculated with a frequency-independent method. The con-
tinuous curve is defined by Eq.(8) (the functional inverse to
be more precise). As seen in the figure there are four inter-
sections generated by these two bands and the “cutting”
curve. These points are also visible in Fig. 12 or Fig. 13. The

FIG. 11. (Color online) The “cutting” surface is defined by Eq.
(8). The band surfaces correspond to a photonic crystal which con-
sists of a fcc close packed arrangement of spheres whose surfaces
have been infiltrated with an organic dye. We assume that the dye
penetrated only a 10% radial distance inside the spheres.« runs
from 0.2 to 20.

FIG. 12. FDD photonic band structure obtained by projecting
the intersections between the “cutting” surface and the band sur-
faces shown in Fig. 11. A large stop gap(see Fig. 13) opens in the
G-L direction.

FIG. 13. (Color online) A section of the photonic band structure
displayed in Fig. 12 which illustrates the stop gap in theG-L direc-
tion. The relative size of the stop gaps.20%d is much bigger than
the one obtained in the absence of the dispersion and is entirely
attributed to the placement of the “cutting” surface relative to the
band surfaces in Fig. 11. See also Fig. 14.

FIG. 14. (Color online) Graphical solution for the calculation of
the lowest four frequencies atL point for the system discussed in
Fig. 11. The dashed curves represent the frequencies of the lowest
two bands as a function of« as calculated with a frequency-
independent method. The continuous curve represents Eq.(8) used
to define the “cutting” surface in Fig. 11. The four intersections
correspond to the lowest four frequencies at theL point in Fig. 12
or Fig. 13.
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apparent stop gap(as measured by reflectivity) at theL point
is dramatically stretched to about 20% of the center fre-
quency. In the absence of the dye molecules, this stop gap
would be below 1%.

The construction displayed in Fig. 14 is general and sug-
gests that band gaps(full or partial) can always be increased
around the area of anomalous dispersion(Ref«svdg decreases
with v). This occurs because the lower edge is pushed to-
ward larger« values(which also implies lower frequencies)
whereas the upper edge is pulled toward lower« values
(higher frequencies). Due to a scarcity of experimental pa-
rameters given in Ref.[24], we used a generic set of param-
eters for the dielectric function in Eq.(8). The parameters
were chosen based on plausibility to match the observed en-
largement of the photonic stop gap. Of crucial importance in
this case is the “matching” between the natural frequency of
the resonators and the geometry of the crystal. As this and
the remaining examples show, only carefully engineered
photonic crystals(with appropriate placement of resonators
in both frequency and spatial location) can take full advan-
tage of the potential to mold the PBG offered by the
frequency-dependent dielectrics.

As a second example of a 3D FDD, we consider the in-
verted opal consisting of a collection of resonators. We again
describe the resonator component using Eq.(8). The photo-
nic crystal consists of an assembly of spherical shells placed
on a fcc lattice of lattice constantuau. Each spherical shell is
modeled as an air spherical core of radiusuau /2Î2 (fcc close
packed radius) coated with a solid shell of thicknessdcoating
=0.08uau. This corresponds to approximately 25% volume
fraction of the solid component. Everywhere except the solid
shell, the dielectric constant is 1. A possible realization of
this model consists of densely packed PbS or PbSe colloidal
quantum dots embedded in a suitable polymer matrix. First
we illustrate the photonic band gap enhancement effect sug-
gested above. Figure 15 shows the photonic band structure of
this FDD obtained by using Eq.(8) with the following pa-
rameters:«0=12, V=Î2, v0=0.82, andg0=0.3. The param-
eters used here are chosen such that the full photonic band
gap is more than double the size of an inverted opal photonic
crystal made from a material with a frequency-independent
dielectric constant with«=12.

The most important parameter determining the character
of the photonic band structure isv0. Changing the resonant
frequencyv0 from 0.82 to 0.675 results in the combination
of band surfaces and “cutting” surface displayed in Fig. 16.
The projections of the intersections shown in Fig. 16 on the

skWb,vd plane and the FDD photonic band structure are shown
in Fig. 17. Here, we note the appearance of a set of unusually
shaped photonic bands. The closed curves appearing above
the fourth band surface have their origin in the intersection
between a single band surface and the “cutting” surface(see
Fig. 16). These “dispersion bubbles,” accompanied by wave-
vector gaps, maintain the same character along their contour
(dielectric or air band) and span a spectral region in which
the FDD component of the photonic crystal exhibits anoma-
lous dispersion. Accordingly, the imaginary part of the di-
electric constant is crucial in interpreting their physical con-
sequences.

VI. ANALYSIS OF WAVE-VECTOR GAP REGIONS

In this section we focus our attention on the spectral re-
gion around a “dispersion bubble” where a WVG occurs. As
a concrete example we use a 1D photonic crystal character-
ized by fn1, udu1g=fÎ«svsd ,0.2uaug and fn2, udu2g=f1,0.8uaug
where«svsd is defined by

«svsd = «0 + V2 1

v0
2 − vs

2 − igvs

s9d

with «0=12, V=2, v0=0.88, andg=0.35. The FDD photo-
nic band structure of this crystal[obtained from the real part

FIG. 15. (Color online) Photonic band structure corresponding
to a FDD inverted opal of core radiusuau /2Î2 anddcoating=0.08uau
where uau is the fcc lattice constant. The frequency dependence of
the solid material consisting of a dense collection of noninteracting
resonators(the shell of thicknessdcoating) is given by Eq.(8) where
the following parameters have been used:«0=12, V=Î2, v0

=0.820, andg0=0.3. v0 was chosen such that the dielectric “cut-
ting” surface intersects the lower and upper bands at widely sepa-
rated« values, thus pushing apart the two band edges.

FIG. 16. (Color online) The “cutting” surface is defined by Eq.
(8) with the following parameters:«0=12, V=Î2, v0=0.675, and
g0=0.3. The band surfaces correspond to an inverted opal of core
radiusuau /2Î2 anddcoating=0.08uau whereuau is the fcc lattice con-
stant. The “islands” created by the intersection between a single
band surface and the “cutting” surface give rise to the “closed”
bands in the photonic band structure displayed in Fig. 17 above the
fourth band.
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of Eq. (9)] is shown in Fig. 18. As illustrated in Fig. 19, the
“turning” band, which extends from approximately 0.88 to
1.08, is placed entirely on the abnormal region of the disper-
sion relation (defined as the spectral region in which
dRef«svdg /dv,0). The striking feature of this particular

band is the fact that aroundvs<0.965 u¹kWb
vskWbdu becomes

infinite. However, an infinite slope in the frequency disper-
sion relation does not directly imply an infinite speed for the
propagation of electromagnetic energy as this connection is
valid only in the case of smooth frequency dispersion rela-
tions [45]. Theoretical and experimental studies of pulses
tunneling or propagating through media which exhibit
anomalous dielectric dispersion are numerous[46–48]. Here
we analyze the combined effect of an anomalous dielectric
dispersion together with the existence of an infinite slope in
the frequency dispersion.

To this end we study the propagation of a pulse with a
finite duration through a finite 1D photonic crystal which
consists of ten unit cells described in the caption of Fig. 18.

Figure 20 displays the configuration used in the simulation.
For plane waves incident on the photonic crystal from the
left one has the following expressions for the field to the left
of xA, El, and to the right orxB, Er:

Elsx,td = e−ivt+iv/csx−xAd + Rsvde−ivt−iv/csx−xAd,

Ersx,td = Tsvde−ivt+iv/csx−xBd,

where T and R are the transmission and reflection coeffi-
cients which can easily be calculated for any 1D photonic
crystal using a boundary matching transfer matrix approach.
In order to simplify the notation we choose the speed of light
to be 1 from now on. We assume that atxS the time profile of
the incoming pulse is given by

EinsxS,td = e−ivctEstd

wherevc is the center frequency of the pulse andEstd is an
envelope function which vanishes outside the time interval
f−Dt /2 ,Dt /2g:

Estd = 5 0 for utu ù Dt/2,

sDt2 − 4t2d7

Dt14 for utu ø Dt/2.6 s10d

In our simulation we useDt=400,xS=−200uau, andxD=xB.
The clock is set such that the input pulse reaches its maxi-
mum at positionxS at t=0. Figure 21 displays the absolute
value of the amplitude of the input pulse as measured atxS. It
can be shown that the output pulse is written as

EoutsxD = xB,td =E
−`

`

dvFsvdTsvde−ivt s11d

whereFsvd is the Fourier transform of the input pulse and
Tsvd is the transmission coefficient through the finite photo-
nic crystal. We first study pulse propagation assuming that
the dielectric function is real and neglect completely the

FIG. 17. Photonic band structure obtained by projecting the in-

tersections shown in Fig. 16 on theskWb,vd plane.

FIG. 18. FDD photonic band structure which exhibits a disper-
sion bubble at frequencies aroundvuau /2pc=0.965. The crystal is
characterized by fn1, udu1g= [RefÎ«svsdg ,0.2uau] and fn2, udu2g
=f1,0.8uaug where«svsd is defined by Eq.(9) with «0=12, V=2,
v0=0.88, andg=0.35.

FIG. 19. (Color online) The first six band surfaces and the in-
tersections with the “cutting” surface defined by Eq.(9) with «0

=12,V=2, v0=0.88, andg=0.35. The band surfaces correspond to
the 1D photonic crystal described in the caption of Fig. 18.
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imaginary part of Eq. 9 in the calculation ofTsvd. By doing
so we obtain the output pulse(time profile measured atxB)
displyed in Fig. 22. The pulse is centered at frequency
vuau /2pc=0.90 which falls on the anomalous region of
«svd. The peak of the input pulse reaches the photonic crys-
tal at t=200. In vacuum, the peak of the pulse is expected to
reachxB (the end of the photonic crystal) at t=210. In the
presence of the photonic crystal we find that the peak of the
pulse emerges from the photonic crystal att=184. As we will
see later, the peak of the pulse cannot be used as a good
marker for the measurement of the transit time, therefore we
disregard for now the apparent superluminal transport sug-
gested by the tracking of the peak. However, in this case we
find the front of the peak to exhibit noncausal behavior. At
t=0 the front of the pulse just reaches the left boundary(xA
in Fig. 20) of the photonic crystal. Therefore causality im-
plies that fortø0 the pulse measured atxB will be 0 as well.
The time profile of the output pulse as predicted by Eq.(11)
at xB shows that in fact the intensity is not zero even for
t,0. The output pulse has been calculated numerically with
high accuracy and the values obtained att,0, although in-
visible on the scale of Fig. 22, are above the numerical error
used in calculations.

The unphysical prediction of noncausal propagation near
a WVG is due to the fact that in the calculations we have
neglected completely the imaginary part of the dielectric

constant. As is well known, the imaginary part of the dielec-
tric constant plays a crucial role in maintaining causality of
field equations. The Kramers-Kronig relations[45], which
stem from the causality connection betweenDW v andEW v, re-
quire the presence of the imaginary part for a dielectric con-
stant such as the one used in Eq.(9). Figure 23 displays the
absolute value of the transmission coefficient through the
same 1D finite photonic crystal described above. We use the
complex form of the dielectric constant[Eq. (9)]. Due to the
relatively large imaginary part present in this case we see a
low transmission aroundvuau /2pc=0.90. Figure 24 displays
the time profile of the output pulse as measured at positionxB
(see Fig. 20). The amplitude of the output pulse is clearly
reduced but the shape of the pulse is almost unchanged. Here
we also see that the peak of the output pulse emerges from
the photonic crystal before the peak of the input pulse
reaches the entry of the photonic crystal. However, in sharp
distinction to the case in which the imaginary part of the
dielectric constant was neglected, we now find that fort
ø0 there is no output, as required.

The fact that the peak of the pulse emerges from the pho-
tonic crystal before it enters is not a violation of causality.

FIG. 20. The setup used for studying the propagation of a pulse through a 1D photonic crystal. The photonic crystal extends from
xA to xB. The source pulse is given at positionxS and the outgoing pulse is detected at positionxD. The photonic crystal is completely
characterized by transmission and reflection coefficientsT andR, respectively.

FIG. 21. The absolute value of the amplitude of the input pulse
as measured atxS (see Fig. 20). This is a plot of the envelope
function given by Eq.(10) for Dt=400.

FIG. 22. The input pulse whose intensity profile is shown in Fig.
21 passes through a 1D photonic crystal made from ten unit cells
described in the caption of Fig. 18. The pulse is centered at fre-
quencyvuau /2pc=0.90. The peak of the input pulse reaches the
photonic crystal att=200 and emerges atxB at t=184. This plot
shows the absolute value of the amplitude of the output pulse as
measured atxB. In the calculation the imaginary part of Eq.(9) was
neglected.
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Consider for example an input pulse in vacuum which, at a
certain positionxD, exhibits the time profile displayed as a
dashed line in Fig. 25. The peak of this pulse reachesxD at
time t1 and has amplitudeA1. Suppose that after the input
pulse passes through the medium(photonic crystal or a me-
dium which exhibits anomalous dispersion) the output pulse
measured at the same position has the time profile shown as
filled in Fig. 25. The peak of this new pulse reachesxD at
time t2, t1 and has an amplitudeA2,A1. This illustrates that
the peak of the pulse cannot be used as a “marker” for the
speed with which information propagates.

VII. SUMMARY

We have presented a general method for calculating the
photonic band structure of photonic crystals with a
frequency-dependent dielectric constant. The method applies
equally well to 1D, 2D, and 3D structures. We find excellent
agreement with an exact 1D model and previously published
results on some special 2D cases. The flexibility and predic-
tive power of our method were illustrated with a few 2D and
3D examples. We showed how the photonic band gap in the
presence of a frequency-dependent dielectric can be en-
hanced by a careful match between the geometry of the
structure and electronic properties(such as resonant fre-
quency) of the frequency-dependent material. While already
extremely powerful, the method presented here can be fur-
ther improved by addressing its current limitations:(i) the
method does not treat(in a computationally efficient manner)
photonic crystals with more than one FDD component, and
(ii ) the method does not treat dielectric constants with both a
real and imaginary part.
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APPENDIX: PHOTONIC BAND STRUCTURE OF A 1D
PHOTONIC CRYSTAL

The simplest illustration of a photonic crystal band struc-
ture is provided by the multilayered structure consisting of
an alternating sequence of two materials. The unit cell has a

FIG. 23. (Color online) Dashed(black) line, the absolute value
of the transmission coefficient of the 1D photonic crystal made
from ten unit cells whose characteristics are described in the caption
of Fig. 18. The imaginary part of«svd was kept in the calculation.
Solid (red) line, the transmission coefficient for the unphysical case
in which the imaginary part of«svd was neglected.

FIG. 24. The same finite photonic crystal and input pulse as in
the case described in the caption of Fig. 22. The difference in this
case is the fact that in the calculation of the output pulse the imagi-
nary part of Eq.(9) is not neglected. In this case the amplitude of
the emerging pulse is greatly reduced and the peak of the pulse is
also seen to exit the photonic crystal before it enters. The intensity
of the output pulse is 0 fort,0.

FIG. 25. (Color online) Superluminal propagation? The dashed
curve shows the output pulse after passing through vacuum. The
filled pulse shows a fraction of the whole pulse. The peak of the
whole pulse has amplitudeA1 and occurs at timet1. The peak of the
fraction pulse isA2,A1 and occurs att2, t1.

O. TOADER AND S. JOHN PHYSICAL REVIEW E70, 046605(2004)

046605-12



thicknessuau and the two components are characterized by
[dielectric,thickness] of f«1,d1g andf«2,d2g, respectively(we
assume that the magnetic permeabilitym is equal to unity in
both components) (see Fig. 26). In the following we study
only the behavior of electromagnetic waves of well defined
real frequencyv propagating perpendicular to the layers:

EW sx,td = Esx,tdẑ= EW vsxdeivtẑ. sA1d

The equation satisfied by the field is

]2EW vsxd
]x2 = −

v2«sx,vd
c2 EW vszd. sA2d

Here we do not make any assumption about the frequency
dependence of the dielectric constant. The index of refraction
is defined bynsx,vd;Î«sx,vd. We denote byn1 andn2 the
indices of refraction of the two components, respectively,
and drop thev dependence of bothn1 andn2 in the expres-
sions below. We also note that the index of refraction can be
imaginary in a region where the dielectric constant is nega-
tive.

Due to the spatial periodicity of the dielectric constant,
the solution of Eq.(A2) can be written as[49]

EW vsxd = eikbxEvsxd sA3d

wherekb is the Bloch vector andEv is the Bloch function.kb
is restricted to the first Brillouin zone which in the 1D case
corresponds to −p / uauøkbøp / uau. The Bloch function sat-
isfies the periodicity condition

Evsxd = Evsx + ad ∀ x. sA4d

With the notationk0;v /c, by making use of Eq.(A3),
Eq. (A4), and the continuity of the solution, one finds the
following relation between the Bloch vector and the fre-
quency of the mode[49]:

cosskbad = cossk0n1d1dcossk0n2d2d

−
n1

2 + n2
2

2n1n2
sinsk0n1d1dsinsk0n2d2d. sA5d

In the following we will take n2svd=1 and n1svd
=Î«svd. In order to simplify the notation we measure the
distances in units ofuau and kb in units of uau−1. The fre-
quency is measured in units of 2pc/ uau by the introduction of
the scaled frequencyvs, defined by

vs ;
ns

2p
=

k0uau
2p

=
vuau
2pc

=
uau

lvac
, sA6d

wherelvac denotes the wavelength in vacuum. We note that
Eq. (A5) contains only real terms for both positive and nega-
tive «svsd.

For a given Bloch vectorkb, Eq. (A5) is satisfied only for
a set of frequenciesvs (equivalentlyns) which represent the
frequencies of the photonic bands at that particular Bloch
vector. The solution of the transcendental Eq.(A5) com-
pletely determines the photonic band structure of the 1D
photonic crystal. As an example we show in Fig. 27 the 1D
photonic band structure obtained for a photonic crystal char-
acterized byd1/ uau=0.2 (see Fig. 26), «1svsd=10 sins4vsd,
and«2=1. The frequency dependence of the first layer’s di-
electric constant has no physical significance and was chosen
just as an example.

This simple one-dimensional model exhibits features that
are shared by all the photonic crystals in general. For ex-
ample, the dispersion of the lowest band(also called the
acoustic branch of the band structure by analogy with the
propagation of elastic waves) at small kb is almost linear,
which indicates that at long wavelengths the photonic crystal
looks very much like a homogeneous medium for the propa-
gating electromagnetic waves[50]. However, the presence of
the acoustic band in the photonic band structure is not auto-
matically guaranteed. If components with negative dielectric
constant are present in the photonic crystal then the acoustic

FIG. 26. Spatial profile of the dielectric constant in a 1D pho-
tonic crystal. The lattice constant isuau and the two components are
characterized by[dielectric, thickness] of f«1,d1g and f«2,d2g,
respectively.

FIG. 27. Band structure of a 1D photonic crystal made from
alternating layers characterized by«1svsd=10 sins4vsd, «2=1, and
d1/ uau=0.2. The frequencies are calculated using Eq.(A5) andvs is
defined in Eq.(A6). kb runs from 0 atG to p / uau at M .
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branch can disappear(a cutoff frequency will appear at theG
point). In the case of 1D photonic crystals we can calculate
the exact conditions under which this cutoff appears.

kb=0, k0=0 is always a solution of Eq.(A5). By neglect-
ing the frequency dependence of«1 and«2 for v<0 then for
small deviations from 0 of bothkb and k0 we can approxi-
mate Eq.(A5) very well by

1 −
skbad2

2
= 1 −

1

2
fs«1 + «2dd1d2 + «1d1

2 + «2d2
2gk0

2.

sA7d

When s«1+«2dd1d2+«1d1
2+«2d2

2.0 Eq. (A7) gives a linear
relation betweenkb andk0:

kb = n̄
v

c
, sA8d

n̄2 = s«1 + «2d
d1d2

a2 + «1Sd1

a
D2

+ «2Sd2

a
D2

, sA9d

where n̄ is the effective index of refraction of the photonic
crystal.n̄ is a bounded quantity so that the assumption made
in approximating Eq.(A5) by Eq. (A7) is valid.

When s«1+«2dd1d2+«1d1
2+«2d2

2ø0 Eq. (A7) cannot be
satisfied for small, real,k0, hence the acoustic branch will
disappear. For a 1D photonic crystal with«2=1 this condi-
tion is equivalent to

«1 , −
1 − d1

d1
, sA10d

which shows that the greater the filling fraction of the nega-
tive epsilon componentd1, the smaller the required threshold
for the occurrence of the cutoff atG point. This feature of the
photonic band structure is present in higher dimensions as
well and is important for FDD photonic band structure cal-
culations.
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