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Non-Markovian quantum fluctuations and superradiance near a photonic band edge

Nipun Vats and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 9 June 1998!

We discuss a point model for the collective emission of light fromN two-level atoms in a photonic band-gap
material, each with an atomic resonant frequency near the edge of the gap. In the limit of a low initial
occupation of the excited atomic state, our system is shown to possess atomic spectra and population statistics
that are radically different from free space. For a high initial excited-state population, mean-field theory
suggests a fractionalized inversion and a macroscopic polarization for the atoms in the steady state, both of
which can be controlled by an external dc field. This atomic steady state is accompanied by a nonzero
expectation value of the electric field operators for field modes located in the vicinity of the atoms. The nature
of homogeneous broadening near the band edge is shown to differ markedly from that in free space due to
non-Markovian memory effects in the radiation dynamics. Non-Markovian vacuum fluctuations are shown to
yield a partially coherent steady-state polarization with a random phase. In contrast with the steady state of a
conventional laser, near a photonic band edge this coherence occurs as a consequence of photon localization in
the absence of a conventional cavity mode. We also introduce a classical stochastic function with the same
temporal correlations as the electromagnetic reservoir, in order to stochastically simulate the effects of vacuum
fluctuations near a photonic band edge.@S1050-2947~98!04511-9#

PACS number~s!: 42.50.Fx, 42.50.Lc, 42.70.Qs
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I. INTRODUCTION

In recent years, photonic band-gap~PBG! structures have
been shown to lead to the localization of light@1# through
the carefully engineered interplay between microscopic s
tering resonances and the coherent interference of l
from many such scatterers@2#. Since the initial proposal o
photonic band gaps@3,4#, PBG materials exhibiting photon
localization have been fabricated at microwave frequen
@5# and more recently, large-scale two-dimensional PBG s
tems have been produced in the near-infrared@6#. The ulti-
mate goal for laser applications is a full three-dimensio
PBG at optical frequencies@7–10#. A PBG comprises a
range of frequencies over which linear photon propagatio
prohibited. Therefore, atoms with transition frequenc
within the gap do not experience the usual fluctuations in
electromagnetic vacuum that are responsible for spontan
decay. Instead, a photon-atom bound state is formed@11#.
Unlike the suppression of spontaneous emission from
atom in a high-Q optical microcavity@12#, the bound photon
may tunnel many optical wavelengths away from the at
before being reabsorbed. Near a photonic band edge,
photon density of states is rapidly varying, making it dr
matically different from thev2 dependence found in fre
space. This implies that the nature of vacuum fluctuati
and thus of spontaneous emission near a band edge is
cally different from the exponential decay found in fre
space@13#. More fundamentally, the correlation time of th
electromagnetic vacuum fluctuations near a band edge is
negligibly small on the time scale of the evolution of a
atomic system coupled to the electromagnetic field. In fa
the reservoir exhibits long-range temporal correlations, m
ing the temporal distinction between atomic system and e
tromagnetic reservoir unclear. This renders the usual Bo
Markov approximation scheme invalid for band ed
systems. Studies of single atom spontaneous emission n
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photonic band edge@14,15# have shown that this non
Markovian system reservoir interaction gives rise to ph
nomena such as oscillatory behavior and a fractional ste
state population for a single excited atomic state, as wel
vacuum Rabi splitting and a subnatural linewidth for atom
emission.

We consider the Dicke model@16,17# for the collective
emission of light, or superradiance, fromN identical two-
level atoms with a transition frequency near a photonic ba
edge. The study of superradiant emission is of interest
only in its own right, but also because it provides a valua
paradigm for understanding the self-organization and em
sion properties of a band-edge laser. Of late, there has be
resurgence of interest in superradiance in the context of
perradiant lasing action@18#, and due to the experimenta
realization of a true Dicke superradiant system using las
cooled atoms@19#. A low threshold microlaser operatin
near a photonic band edge may exhibit unusual dynami
spectral, and statistical properties. We will show that su
effects are already evident in band-edge collective sponta
ous emission. A preliminary study of band-edge superra
ance for atoms resonant with the band edge@20# has shown
that for an atomic system prepared initially with a sm
collective atomic polarization, a fraction of the superradia
emission remains in the vicinity of the atoms, and a mac
scopic polarization emerges in the collective atomic ste
state. In addition to this form of spontaneous symme
breaking, it has been demonstrated that superradiant e
sion can proceed more quickly and with greater intens
near a photonic band edge than in free space. In the abs
of an initial atomic polarization, the early stages of sup
radiance are governed by fluctuations in the electrom
netic vacuum near the band edge. These fluctuations a
the dynamics of collective decay and will determine t
quantum limit of the linewidth of a laser operating near
photonic band edge.
4168 ©1998 The American Physical Society
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The organization of the paper is as follows. In Sec. II,
present the quantum Langevin equations for collect
atomic dynamics in band-edge superradiance. In Sec. III,
calculate an approximate, analytic solution for the equati
that describe theN-atom system with low initial inversion o
the atomic population. We show that the atoms can exh
novel emission spectra and a suppression of population
tuations near a band edge. Sections IV and V treat the ca
high initial inversion. In Sec. IV, the mean-field results
Ref. @20# are extended to the case of atoms with reson
frequencies displaced from the band edge. It is shown
the phase and amplitude of the collective atomic polariza
can be controlled by an external field that Stark shifts
atomic transition relative to the band edge. The dissipa
effect of dipole dephasing is also included in the framew
of our non-Markovian system. Section V describes supe
diant emission under the influence of vacuum fluctuations
exploiting the temporal division of superradiance into qua
tum and semiclassical regimes. We find that the system
hibits a macroscopic steady-state polarization amplitude w
a phase precession triggered by band-edge quantum flu
tions. In Sec. VI, we describe a method for generating
classical stochastic function that simulates the effect of ba
edge vacuum fluctuations. We show that, for a sufficien
large number of atoms, this classical noise ansatz agrees
with the more exact simulations of Sec. V, and may thus
useful in the analysis of band-edge atom-field dynamics
Appendix A, we give the details of the calculation of th
electromagnetic reservoir’s temporal autocorrelation fu
tion for different models of the photonic band edge. Th
correlation function is central to determining the nature
atomic decay.

II. EQUATIONS OF MOTION

We consider a model consisting ofN two-level atoms
with a transition frequency near the band edge coupled to
multimode radiation field in a PBG material. For simplicit
we assume a point interaction, that is, the spatial exten
the active region of the PBG material is less than the wa
length of the emitted radiation. This is often referred to
the small sample limit of superradiance@17#. We neglect the
spatially random resonance dipole-dipole interaction~RDDI!
near the band edge, which may have a more important
pact on atomic dynamics when the atomic transition l
deep within the PBG@20,21#. Nevertheless, our simplified
model should provide a good qualitative picture of ban
edge collective emission. For an excited atomic stateu2& and
ground stateu1&, the interaction Hamiltonian for our system
can be written as

H5(
l

\Dlal
†al1 i\(

l
gl~al

†J122J21al!, ~2.1!

whereal andal
† are the radiation field annihilation and cr

ation operators, respectively;Dl5vl2v21 is the detuning
of the radiation mode frequencyvl from the atomic transi-
tion frequencyv21. gl5(v21d21/\)(\/2e0vlV)1/2el•ud is
the atom-field coupling constant, whered21ud is the atomic
dipole moment vector,V is the sample volume, andel

5ek,s , s51,2 are the two transverse polarization vecto
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The Ji j are collective atomic operators, defined by the re
tion Ji j [(k51

N u i &kk^ j u; i , j 51,2, whereu i &k denotes thei th
level of thekth atom. Using the Hamiltonian~2.1!, we may
write the Heisenberg equations of motion for the operators
the field modes,al(t), the atomic inversion,J3(t)[J22(t)
2J11(t), and the atomic system’s collective polarizatio
J12(t):

d

dt
al~ t !52 iDlal~ t !1glJ12~ t !, ~2.2!

d

dt
J3~ t !522(

l
glJ21~ t !al~ t !1H.c. , ~2.3!

d

dt
J12~ t !5(

l
glJ3~ t !al~ t !. ~2.4!

We may adiabatically eliminate the field operators by fo
mally integrating Eq.~2.2! and substituting the result into
Eqs.~2.3! and~2.4!. The equations of motion for the collec
tive atomic operators are then

d

dt
J3~ t !522E

0

t

J21~ t !J12~ t8!G~ t2t8!dt8

22J21~ t !h~ t !1H.c. , ~2.5!

d

dt
J12~ t !5E

0

t

J3~ t !J12~ t8!G~ t2t8!dt81J3~ t !h~ t !.

~2.6!

Here,h(t)5(lglal(0)e2 iDlt is a quantum noise operato
that contains the influence of vacuum fluctuations.G(t
2t8) is the time-delay Green function, or memory kern
describing the electromagnetic reservoir’s average effec
the time evolution of the system operators. The Green fu
tion is given by the temporal autocorrelation of the reserv
noise operator,

G~ t2t8![^h~ t !h†~ t8!&5(
l

gl
2e2 iDl~ t2t8!. ~2.7!

We have made use of the fact that^al
†(0)al(0)&.0, as we

are dealing with atomic transition frequencies in the opti
domain@13#. In essence,G(t2t8) is a measure of the rese
voir’s memory of its previous state on the time scale for t
evolution of the atomic system. In free space, the density
field modes as a function of frequency is broad and slow
varying, resulting in a Green function that exhibits Marko
ian behavior,G(t2t8)5(g/2)d(t2t8), whereg is the usual
decay rate for spontaneous emission@13#. Near a photonic
band edge, the density of electromagnetic modes varies
idly with frequency in a manner determined by the phot
dispersion relation,vk . We show that this results in long
range temporal correlations in the reservoir that affect
nature of the atom-field interaction.

In order to evaluateG(t2t8) near a band edge, we firs
make the continuum approximation for the field mode sum
Eq. ~2.7!:
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4170 PRA 58NIPUN VATS AND SAJEEV JOHN
G~ t2t8!5
v21

2 d21
2

2\e0~2p!3 E d3k

vk
e2 i ~vk2v21!~ t2t8!.

~2.8!

In this paper, we use an effective-mass approximation to
full dispersion relation for a photonic crystal. Within th
approximation, we consider two models for the near-ba
edge dispersion. The details of the calculation ofG(t2t8)
for each model and a discussion of its applicability is giv
in Appendix A. In an anisotropic dispersion model, app
priate to fabricated PBG materials, we associate the b
edge with a specific point ink space,k5k0 . By preserving
the vector character of the dispersion expanded aboutk0 , we
account for the fact that, ask moves away fromk0 , both the
direction and magnitude of the band-edge wave vector
modified. This gives a dispersion relation of the form

vk5vc6A~k2k0!2. ~2.9!

Here,A52c2/vgap, wherevgap is the frequency width of the
gap. The positive~negative! sign indicates thatvk is ex-
panded about the upper~lower! edge of the PBG, andvc is
the frequency of the corresponding band edge. This form
dispersion is valid for a gap widthvgap@cuk2k0u, meaning
that the effective-mass relation is most directly applicable
large photonic gaps and for wave vectors near the band e
Furthermore, for a large gap and a collection of atoms t
are nearly resonant with the upper band edge, it is a v
good approximation to completely neglect the effects of
lower photon bands. The band-edge density of states co
sponding to Eq.~2.9! takes the formr(v);(v2vc)

1/2, v
.vc , characteristic of a three-dimensional phase space.
resulting Green function forvc(t2t8)@1 is

GA~ t2t8!5
b3

1/2ei @p/41dc~ t2t8!#

~ t2t8!3/2 ,

t.t8 ~anisotropic gap!. ~2.10!

In addition to the anisotropic photon dispersion model
is instructive to consider a simpler isotropic model. In th
model, we extrapolate the dispersion relation for a o
dimensional gap to all three spatial dimensions. We thus
sume that the Bragg condition is satisfied for the same w
vector magnitude for all directions ink space. This yields an
effective-mass dispersion of the formvk5vc1A(uku
2uk0u)2, which associates the band-edge wave vector wi
sphere ink space,uku5k0 . Strictly speaking, an isotropic
PBG at finite wave vectoruk0u does not occur in artificially
created, face centered cubic photonic crystals. Howeve
nearly isotropic gap neark050 occurs in certain polar crys
tals with polaritonic excitations@22#. A simple example of
such a crystal is table salt~NaCl!, which has a polariton gap
in the infrared frequency regime. The band-edge density
states in the isotropic model has the formr(v);(v
2vc)

21/2, v.vc , the square-root singularity being chara
teristic of a one-dimensional phase space. For the Gr
function we obtain~see Appendix A!

GI~ t2t8!5
b1

3/2e2 i @p/42dc~ t2t8!#

~ t2t8!1/2 , t.t8 ~ isotropic gap!.

~2.11!
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In both Eqs.~2.10! and~2.11!, dc5v212vc is the detun-
ing of the atomic resonance frequency from the band ed
and ba is a constant that depends on the dimension of
band-edge singularity. In particular, for the isotropic mod
b1

3/25v21
7/2d21

2 /12\e0p3/2c3, while in the anisotropic model
b3

1/25v21
2 d21

2 /8\e0vc(Ap)3/2.

III. LOW ATOMIC EXCITATION: HARMONIC-
OSCILLATOR MODEL

In order to understand the effects of band-edge vacu
fluctuations, we begin by presenting a simplified model t
permits an analytic solution, and is applicable to a system
which only a small fraction of the two-level atoms are in
tially in their excited state. This discussion demonstrates h
light emission near a photonic band edge can give rise
atomic dynamics, emission spectra, and photon-number
tistics that are very different from those expected in fr
space. We write the atomic operators in the Schwinger bo
representation@23#:

J12~ t !→b1
†~ t !b2~ t !, ~3.1!

J3~ t !→b2
†~ t !b2~ t !2b1

†~ t !b1~ t !, ~3.2!

subject to the constraint on the total number of atom
b1

†(t)b1(t)1b2
†(t)b2(t)5N. The operatorsbi

†(t) and bi(t)
then describe transitions of the system between the exc
state (i 52) and the ground state (i 51). In the limit of low
atomic excitation, the stateu1& has a large population at a
times, meaning that we can replace the inversion operato
the classical valueJ3(t)'2N, and thatb1(t) can be ap-
proximated byb1(t)'AN. In this case, the initially excited
two-level atoms behave like a simple harmonic oscilla
coupled to the non-Markovian electromagnetic reservoir.
our model, the Heisenberg equations of motion~2.5! and
~2.6!, reduce to

d

dt
b2~ t !52NE

0

t

b2~ t8!G~ t2t8!dt82ANh~ t !. ~3.3!

Using the method of Laplace transforms, we can solve
b2(t) and find

b2~ t !5B~ t !b2~0!2AN(
l

Al~ t !al~0!, ~3.4!

where

B~ t !5L21$B̃~s!%, ~3.5!

B̃~s!5@s1NG̃~s!#21, ~3.6!

and

Al~ t !5L21H gl

s1 iDl
B̃~s!J . ~3.7!

L21 denotes the inverse Laplace transformation, andG̃(s) is
the Laplace transform of the general memory kernel,G(t
2t8). In this section, we consider the case of an isotro
band edge in the effective-mass approximation@Eq. ~2.11!#,
for which G̃(s) is written as
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G̃I~s!5
b1

3/2e2 ip/4

As2 idc

. ~3.8!

For this isotropic Green function, we denote the inve
Laplace transform of Eq.~3.5! by BI(t). BI(t) was computed
in Ref. @15# in the context of single atom spontaneous em
sion, and a detailed mathematical derivation may be fo
therein. Here, it describes the mean or drift evolution of o
Heisenberg operatorb2(t). The solution has the form

BI~ t !52a1x1eN2/3b1x1
2t1 idct1a2~x21y2!eN2/3b1x2

2t1 idct

2(
j 51

3

ajyj@12F~AN2/3b1xj
2t !#eN2/3b1xj

2t1 idct,

~3.9!

where

x15~A11A2!eip/4, ~3.10!

x25~A1e2 ip/62A2eip/6!e2 ip/4, ~3.11!

x35~A1eip/62A2e2 ip/6!ei3p/4, ~3.12!

A65H 1

2
6

1

2 F11
4

27

dc
3

b1
3G1/2J 1/3

, ~3.13!

yj5Axj
2, j 51,2,3. ~3.14!

The error functionF(x)5(2/Ap)*0
xe2t2dt.

The probability of finding the atoms in the excited state
given by^b2

†(t)b2(t)&5uBI(t)u2, and is plotted in Fig. 1. We
find that the excited-state population exhibits decay and
cillatory behavior before reaching a nonzero steady-s
value due to photon localization. These effects are due to
strong dressing of the atoms by the radiation field nea

FIG. 1. Normalized population of the excited atomic state n
an isotropic photonic band edge for low initial atomic excitatio
Various values of the detuning,dc[v212vc , of the atomic reso-
nant frequencyv21 from a band edge at frequencyvc are shown.
Dashed line,dc520.5; solid line,dc50; dotted line,dc50.5. dc

is measured in units ofN2/3b1 .
e

-
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photonic band edge, resulting in dressed atomic states
straddle the band edge. Light emission from the dressed s
outside the gap results in highly non-Markovian decay of
atomic population, while the dressed state shifted into
gap is responsible for the fractional steady-state popula
of the excited state. The consequences of this strong at
field interaction are discussed in detail for single-atom sp
taneous emission in Ref.@15#, and for superradiant emissio
in Secs. IV and V of this paper. We note that the degree
steady-state localization is a sensitive function of the det
ing, dc , of the atomic resonance from the band edge. T
decay rate scales asN2/3b1t for the isotropic model. How-
ever, there is no evidence for the buildup of interatomic c
herence, as very few of the atoms are initially excited.

Equation ~3.4! also allows us to calculate the system
emission spectrum into the modesv for an atom with reso-
nant frequencyv21 using the relation

S~v!5E
0

`

e2 i ~v2v21!t^b2
†~t!b2~0!&dt1c.c.

;Re$B̃* @ i ~v2v21!#%, ~3.15!

where B̃(s) is defined in Eq.~3.6!. The spectrum for the
isotropic model is then

SI~v!.H 0, v<vc

Nb1
3/2

Av2vc

N2b1
31~v2v21!

2~v2vc!
, v.vc.

~3.16!

This spectrum is shown in Fig. 2, and differs significan
from the Lorentzian spectrum for light emission in fre
space. In fact, the emission spectrum is not centered a
the atomic resonant frequency, which is what one would
pect for an atom decaying to an unrestricted vacuum m
density. We see that for an arbitrary detuning,dc , of v21

r
.

FIG. 2. Collective atomic emission spectrumS~v! ~arbitrary
units! near an isotropic band edge for low initial atomic excitatio
Various values of the detuning,dc[v212vc , of the atomic reso-
nant frequencyv21 from an isotropic photonic band edge at fr
quencyvc are shown. Dotted line,dc521; dashed line,dc50;
solid line,dc51. dc is measured in units ofN2/3b1 .
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4172 PRA 58NIPUN VATS AND SAJEEV JOHN
from the band edge, the emission spectrum vanishes for
quencies at the band edge and within the gap,v<vc . This
is consistent with the localization of light near the atoms
electromagnetic modes within the PBG. Asv21 is detuned
further into the gap, spectral results confirm that a grea
fraction of the light is localized in the gap dressed state
the total emission intensity out of the decaying dressed s
is reduced. Conversely, asv21 is moved out of the gap, the
emission profile becomes closer to a Lorentzian in form a
the total emitted intensity increases. The spectral linewi
ratio between the isotropic band edge and free space is o
order ofb1 /(gN1/3), while for an anisotropic band edge it
;Nb3 /g. This corresponds to the fact that collective em
sion is much more rapid near an anisotropic band edge
in free space, whereas it is slower than in free space for
isotropic model.

It is also instructive to evaluate the quantum fluctuatio
in the atomic inversion in the context of the harmon
oscillator model. Variances in the atomic population can
written in terms of the MandelQ parameter@24#,

Q~ t !5
^n2~ t !&2^n~ t !&2

^n~ t !&
, ~3.17!

wheren(t)[b2
†(t)b2(t) is the number operator for the occu

pation of the excited state. Since both the free space
PBG solutions in our model can be written in the form of E
~3.4!, we can write theQ parameter in the general form

Q~ t !5uB~ t !u2Q~0!1N(
l

uAl~ t !u2. ~3.18!

Again, uB(t)u2 is the normalized probability of finding th
initially excited fraction of the atoms still in the excited sta
at time t. For an isotropic band edge,B(t)5BI(t) @Eq.
~3.9!#, whereas in free space,B(t);e2Ngt/2, representing the
exponential decay of the excited-state population. Using
identity N(luAl(t)u2512uB(t)u2, as derived in Appendix
B, we can write the population fluctuations as

Q~ t !5uB~ t !u2@Q~0!21#11. ~3.19!

For arbitrary initial statistics, atoms in free space decay
the vacuum state withQ(t)51; since the atoms decay fully
there are no meaningful atomic statistics in the long-ti
limit. Q(t) is plotted in Fig. 3 for the isotropic band edg
(dc50) for the casesQ(0)50, 1, and 2. Near the band edg
photon localization prevents the atomic system from dec
ing to the ground state. We find instead that the steady-s
statistics are sensitive to the statistics of the initial state
to the value ofdc . A system initially prepared with super
Poissonian statistics@Q(0).1# experiences asuppressionof
population fluctuations in the steady state. In a system th
initially sub-Poissonian@Q(0),1#, the fluctuations in-
crease, but are held below the Poissonian level by pho
localization. In both cases, the steady-state value of
atomic population fluctuations is controlled bydc . Our har-
monic oscillator model thus suggests that a PBG system
exhibit atypical quantum statistics in the absence of a ca
or external fields. It is important to extend the analysis
collective emission under the influence of vacuum fluct
e-
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tions to the high excitation~superradiant! regime. In this
case, the two-level nature of the atomic operators will b
come important and will modify the quantum statistics fro
that of the harmonic-oscillator picture. This generalization
considered in the next two sections.

IV. HIGH ATOMIC EXCITATION:
MEAN-FIELD SOLUTION

When the atomic system is initially fully or nearly fully
inverted, we expect interatomic coherences, transmitted
the atomic polarizations, to have a strong influence on em
sion dynamics. For such high initial atomic excitation, t
quantum Langevin equations~2.5! and~2.6!, paired with the
non-Markovian memory kernels~2.10! or ~2.11!, do not pos-
sess an obvious analytic solution. Moreover, conventio
perturbation theory applied to these equations fails to rec
ture the influence of the photon-atom bound state@11#, which
plays a crucial role in band-edge radiation dynamics. Ho
ever, when the superradiant system is prepared with a n
zero initial polarization@J12(0)Þ0#, the average dipole mo
ment dominates the incoherent effect of the vacu
fluctuations and the subsequent evolution is well descri
by a semiclassical approximation@17#. In this case, it is pos-
sible to factorize the atomic operator equations:

d

dt
^J3~ t !&524 ReH ^J21~ t !&E

0

t

^J12~ t8!&G~ t2t8!dt8J ,

~4.1!

d

dt
^J12~ t !&5^J3~ t !&E

0

t

^J12~ t8!&G~ t2t8!dt8. ~4.2!

The bracketŝO& denote the quantum-mechanical average
the Heisenberg operatorO over the Heisenberg picture atom
field state vector,uC&5uvac& ^ uc&, where uvac& represents
the electromagnetic vacuum state, anduc& represents the ini-

FIG. 3. Fluctuations in the excited-state atomic population
measured by the Mandel parameter,Q(t)5@^n2(t)&
2^n(t)&2#/^n(t)&, for low initial excitation for an atomic resonan
frequency tuned to an isotropic photonic band edge,dc50. Dashed
line, Q(0)52; solid line, Q(0)50. Double-dashed line denote
fluctuations for Poissonian population variance,Q(0)51.
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tial state of the atomic system. Clearly in this mean-fie
approach, the quantum noise contribution is neglected
^h(t)&50. Recently, Bay, Lambropoulos, and Mo” lmer @25#
found that, for a simpler Fano profile gap model, the dyna
ics of superradiant emission are affected by the choice
factorization applied to the full quantum equations. Ho
ever, the complete factorization used here retains the qu
tative features and evolution time scales of more elabo
factorization schemes. Equations~4.1! and~4.2! were solved
numerically in Ref.@20# for an atomic resonance frequenc
coincident with the band edge (dc50) and a small initial
collective polarization. The initial collective state was a
sumed to be of the form

uc&5)
k51

N

~Ar u1&1A12r u2&)k ~4.3!

with r !1, so that initially the atoms are almost fully in
verted. In this paper, we extend the previous analysis
atomic frequencies detuned from the band edge. Des
its neglect of vacuum fluctuations, mean-field theory illum
nates many of the interesting features of the system.
relationship between mean-field theory and a more comp
description including quantum fluctuations is discussed
Sec. V.

For clarity, we discuss separately the atomic dynamic
our isotropic and anisotropic dispersion models. Figure
and 5 show the inversion per atom and the average pola
tion amplitude per atom respectively for various values ofdc
near an isotropic band edge. We see from Fig. 4 that a f
tion of the superradiant emission remains localized in
vicinity of the atoms in the steady state, due to the Bra
reflection of collective radiative emission back to the atom
This localized light exhibits a nonzero expectation value
the field operator, which in turn leads to the emergence
macroscopic polarization amplitude in the steady state.
further note that the decay rate for the upper atomic stat
proportional toN2/3. Accordingly, the peak radiation inten

FIG. 4. Mean-field solution for the atomic inversion,^J3(t)&/N,
near an isotropic photonic band edge, starting with an infinitesi
initial polarization, r 51025. Various values of the detuning,dc

[v212vc , of the atomic resonant frequencyv21 from a band edge
at frequencyvc are shown.~a! dc51; ~b! dc50.5; ~c! dc50; ~d!
dc520.5; ~e! dc521. dc is measured in units ofN2/3b1 .
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sity is proportional toN5/3. This is to be compared with the
values N and N2 for the free space decay rate and pe
radiation intensity, respectively.

As in single-atom spontaneous emission near an isotro
band edge@15#, the dressing of the atoms by their own r
diation field causes a splitting of the band of collecti
atomic states such that the collective spectral density v
ishes at the band-edge frequency. The strongly dres
atomic states are repelled from the band edge, with so
levels being pulled into the gap and the remaining lev
being pushed into the electromagnetic continuum outside
PBG. In the long-time~steady-state! limit, the energy con-
tained in the dressed states outside the band gap de
whereas the energy in the states inside the gap remains i
vicinity of the emitting atoms. It is the localized light ass
ciated with the gap dressed states that sustains the frac
alized steady-state inversion and nonzero atomic polar
tion. For the isotropic model, this splitting and fraction
localization persist even whenv21 lies just outside the gap
(dc.0), and the fraction of localized light in the steady sta
increases asv21 moves towards and enters the gap. In t
dressed-state picture, the self-induced oscillations in both
inversion and the polarization that occur during radiat
emission can be interpreted as being due to interference
tween the dressed states. The oscillation frequency is pro
tional to the frequency splitting between the upper and low
collective dressed states. This is the analog of the collec
Rabi oscillations ofN Rydberg atoms in a resonant high-Q
cavity @26#. From Fig. 4, we see that a dressed state outs
the band gap decays more slowly for atomic resonant
quencies deeper inside the gap, causing the collective o
lations to persist over longer periods of time. Clearly, th
decay is nonexponential and highly non-Markovian in n
ture. Figure 5 confirms that, as required, the polarization a
plitude for large negative values ofdc is constrained by the
condition,^J12(t)&/N<1/2.

In Fig. 6, we plot the phase angle of the collecti

al FIG. 5. Mean-field solution for the atomic polarization amp
tude, u^J12(t)&u/N, near an isotropic photonic band edge, starti
with an infinitesimal initial polarization,r 51025. Various values
of the detuning,dc[v212vc , of the atomic resonant frequenc
v21 from a band edge at frequencyvc are shown.~a! dc51; ~b!
dc50.5; ~c! dc50; ~d! dc520.5; ~e! dc521. dc is measured in
units of N2/3b1 .
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4174 PRA 58NIPUN VATS AND SAJEEV JOHN
atomic polarization in the isotropic model,u(t)
5tan21$Im^J12(t)&/Rê J12(t)&%. Prior to atomic emission
this phase angle rotates at a constant rate, and in the vic
of the decay processu(t) exhibits the effects of collective
Rabi oscillations. When the emission is complete, the rat
change of phase angle,u̇(t), attains a new steady-state valu
u̇(ts), that depends sensitively on the detuning freque
dc . u̇(ts) is a measure of the energy difference between
bare atomic state and the localized dressed state,\(v21
2v loc). Such a polarization phase rotation implies that
collective atomic Bloch vector of the system exhibits prec
sional dynamics in the steady state. Unlike the conventio
precession@27# of atomic dipoles in an ordinary vacuum
driven by an external laser field, Bloch vector precession
PBG occurs in the absence of an external driving field.
stead, the precession is driven by the self-organized sta
light generated by superradiance, which remains locali
near the emitting atoms. We see in Fig. 6 that for values
dc such thatv212v loc,0, u̇(ts) is negative, while forv21

2v loc.0, u̇(ts) is positive, i.e., the phase is rotating in th
opposite direction. At a detuning corresponding to a cons
phase in the steady state@ u̇(ts)50#, the dressed and bar
states are of the same energy; this occurs for a detu
value of dc520.644N2/3b1 . At this value ofdc , we also
find that^J3(ts)&50, implying that there is no net absorptio
of light by the atomic system. This is, in essence, a collec
transparent state@27#.

Collective emission dynamics near an anisotropic ba
edge are pictured in Figs. 7 and 8. Forv21 coincident with
the band edge or slightly within the gap (dc<0), we again
find a fractional atomic inversion in the steady state~Fig. 7!.
Rabi oscillations in the atomic population are much less p
nounced than in the isotropic model, even forv21 detuned
into the gap. This demonstrates that the dressed atomic s
outside a physical photonic band gap decay much more
idly than the isotropic model would suggest. Furthermo

FIG. 6. Mean-field solution for the phase angle~in radians! of
the atomic polarization,u(t), near an isotropic photonic band edg
starting with an infinitesimal initial polarization,r 51025. Various
values of the detuning,dc[v212vc , of the atomic resonant fre
quencyv21 from a band edge at frequencyvc are shown.~a! dc

50.5; ~b! dc50; ~c! dc520.75; ~d! dc521. dc is measured in
units of N2/3b1 .
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in contrast with the isotropic model, we see that photon
calization is lost for even a small detuning ofv21 into the
continuum of field modes outside the band gap. Therefo
while we find a macroscopic steady-state polarization a
precessional dynamics of the Bloch vector fordc<0 ~Fig. 8!,
for dc.0 the polarization dies away after collective emissi
has taken place. Photon localization from an atomic le
lying just outside the gap in a three-dimensional PBG ma
rial may, however, be realized through quantum interfere
effects if there is a third atomic level lying slightly inside th
gap@28#. These results point to the greater sensitivity of t
atomic dynamics to the more realistic anisotropic band ed
Because the isotropic model overestimates the momen
space for photons satisfying the Bragg condition, photon

FIG. 7. Mean-field solution for the atomic inversion,^J3(t)&/N,
near an anisotropic photonic band edge, starting with an infinit
mal initial polarization,r 51026. Various values of the detuning
dc[v212vc , of the atomic resonant frequencyv21 from a band
edge at frequencyvc are shown. Dashed line,dc50.1; solid line,
dc50; dotted line,dc520.3. dc is measured in units ofN2b3 .

FIG. 8. Mean-field solution for the atomic polarization amp
tude,u^J12(t)&u/N, near an anisotropic photonic band edge, start
with an infinitesimal initial polarization,r 51026. Various values
of the detuning,dc[v212vc , of the atomic resonant frequenc
v21 from a band edge at frequencyvc are shown. Dashed line,dc

50.1; solid line,dc50; dotted line,dc520.3. dc is measured in
units of N2b3 .
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calization effects and vacuum Rabi splitting are exaggera
in the isotropic model relative to an engineered photo
crystal. In the anisotropic model, the phase space avail
for propagation vanishes as the optical frequency approa
the band edge. As a result, vacuum Rabi splitting pushes
collective atomic dressed state into a region with a lar
density of electromagnetic modes. Consequently, the de
rate of the atomic inversion is proportional toN2 near the
anisotropic band edge, and the corresponding peak radia
intensity is proportional toN3. Clearly, superradiance nea
an anisotropic PBG can proceed more quickly and can
more intense than in free space. As a result, PBG super
ance may enable the design of mirrorless, low-threshold
crolasers exhibiting ultrafast modulation speeds.

From polarization phase and amplitude results, we c
clude that~i! unlike in free space, the atoms near a photo
band edge attain a fractionally inverted state with cons
polarization amplitude and rate of change of phase an
This corresponds to a macroscopic atomic coherence in
steady state analogous to that experienced in a laser. In
case, however, ‘‘lasing’’ occurs in the band-edge continu
rather than into a conventional cavity mode.~ii ! By varying
the value ofdc , one may control the direction and rate
change of the steady-state polarization phase angle. This
be realized by applying a small external dc field to t
sample that Stark shifts the atomic transition frequency
the atoms. This type of control over the collective atom
Bloch vector may be of importance in the area of inform
tion storage and optical memory devices@29,30#.

The above analysis makes it clear that collective spo
neous emission dynamics in a PBG are significantly differ
from those in free space. In a real PBG material, the dep
ing of atomic dipoles due to interatomic collisions
phonon-atom interactions may also have a significant ef
on the evolution of our system over a large range of temp
tures. In the free space Markov approach, dipole dephasin
described by a phenomenological polarization decay c
stant@31#. Since the Markov approximation does not app
near a band edge, one cannot account for dephasing by
ply adding a phenomenological decay term to Eq.~4.2!.
However, we expect that the atomic resonant frequency
experience random Stark shifts due to atom-atom or at
phonon interactions. This effect can be included in the
scription of our system by adding a variationD to the detun-
ing frequency dc at each time step in a computation
simulation of Eqs.~4.1! and~4.2!. D is chosen to be a Gauss
ian random number with zero mean. The width of the Gau
ian distribution is determined by the magnitude of the ra
dom Stark effect. Such a simulation in free space wo
include a randomD only in the equation for the atomic po
larization. This is because the slowly varying photon dens
of states seen by the atoms at the frequencyv211D does not
change significantly with typical homogeneous line broad
ing effects. In contrast, we have seen that near a phot
band edge, slight variations indc may drastically change th
atomic inversion. Therefore we includeD in both system
equations. In Fig. 9, we plot the evolution of the collecti
inversion and polarization under the simulated collisi
broadening described above. The random Stark shifts lea
the loss of macroscopic polarization and the loss of ato
inversion in the long-time limit. The latter effect can be u
d
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derstood by noting that the random frequency shifts are s
metrically distributed about the mean resonant frequen
Frequency shifts into the gap promote photon localizati
while those away from the gap cause further decay of
atomic inversion. Over time, the net result is that the f
quency shifts away from the gap encourage the decay of
atomic population. This is true even in atomic systems
which the mean resonant frequency lies within the gap. Fr
the above considerations, it is clear that dephasing is a
nificant perturbation on photon localization near a photo
band edge. As in the case of a conventional laser, the eff
of dephasing may be partially compensated for by exter
pumping.

Although a superradiant system can be prepared in a
herent initial state of the type described by Eq.~4.3! @27#,
collective emission is typically initiated by spontaneo
emission, a random, incoherent process. Over time, spo
neous emission leads to the buildup of macroscopic co
ence in the sample. The effect of vacuum fluctuations is t
of considerable importance in the full description of sup
radiance, both from a fundamental point of view, and
potential device applications, such as the recently propo
superradiant laser@18#. In the next section, we present
more detailed description of PBG superradiance that ta
into account the role of quantum fluctuations.

V. BAND-EDGE SUPERRADIANCE
AND QUANTUM FLUCTUATIONS

In order to describe the evolution of the superradiant s
tem’s collective Bloch vector under the influence of quantu
fluctuations, we consider atomic operator correlation fu
tions of the form@32#

gpq5^~J12!
p~J21!

q&. ~5.1!

Here the operators are evaluated at equal times. As in
space, we expect vacuum fluctuations to drive the sys

FIG. 9. Mean-field solution for the atomic inversion~solid line!
and polarization amplitude~dashed line! under the influence of col-
lision broadening for an atomic resonant frequency at an isotro
photonic band edge,dc50. The system is given an infinitesima
initial polarization,r 51025. The simulated Stark shift is a Gaus
ian random distribution with zero mean and standard devia
0.5N2/3b1 .



a
icu
ic
an
se

o
ex
b
e

te

rt

u

te
n
n

ag
i

er

ti
ce

cter
etic
oise
d

he
pic

ys-

can
of
e
ter-
of

ough
he
to

the
lly.
n

ial
der

he

heir

ve

4176 PRA 58NIPUN VATS AND SAJEEV JOHN
from its unstable initial state with all atoms inverted to
new stable equilibrium state. Such fluctuations are part
larly relevant prior to the buildup of macroscopic atom
polarization. Indeed, they provide the trigger for superradi
emission. In the early-time, inverted regime, we may
J3(t)5J3(0) in Eqs.~2.5! and ~2.6!, giving

d

dt
J12~ t !5E

0

t

dt8J3~0!J12~ t8!G~ t2t8!1J3~0!h~ t !.

~5.2!

The resulting equation remains nonlinear, and involves pr
ucts of atomic and reservoir operators. We may simplify
pressions containing operators in this inverted regime
considering operator averages over only the atomic Hilb
space. For an arbitrary Heisenberg operatorO(t), we denote
the atomic expectation value for an initial fully inverted sta
uI & by ^O&A[^I uOuI &. We denote by the set$ul&% a complete
set of 2N normalized basis vectors for the atomic Hilbe
space includinguI &, such that̂ luI &5dl,I , whereda,b is the
Kronecker delta function. Clearly,̂ I uJ3(0)ul&5Nd I ,l .
SinceJ3(0) acts as a source term forJ12(t) in Eq. ~5.2!, we
also have the propertŷI uJ12(t)ul&50 for lÞI in the in-
verted regime. This can be shown by considering the eq
tion of motion for ^I uJ12(t)ul&:

d

dt
^I uJ12~ t !ul&5E

0

t

dt8(
m

^I uJ3~0!um&^muJ12~ t8!ul&

3G~ t2t8!1^I uJ3~0!ul&h~ t !

5NE
0

t

dt8^I uJ12~ t8!ul&G~ t2t8!1Nd I ,lh~ t !,

~5.3!

where m labels a complete set of atomic states. This in
grodifferential equation satisfies the initial conditio
^I uJ12(0)ul&50, sinceJ12(0) acts as a raising operator o
the fully inverted bra vector̂I u. ForlÞI , the source term in
Eq. ~5.3! is also absent, leading to the solution^I uJ12(t)ul&
50. Using this property, we may replace the atomic aver
over products of atomic operators with products of atom
averages, provided thatJ3(t)5J3(0). Forexample,

^J12J21&5(
m

^vacu ^ ^I uJ12um&^muJ21uI & ^ uvac&

5^^J12&A^J21&A&R . ~5.4!

Here,^O&R[^vacu Ouvac& denotes an expectation value ov
the reservoir variables. For an arbitrary momentgpq, we
have

gpq5Š^J12&A
p^J21&A

q
‹R . ~5.5!

We note that such a factorization is valid only for an an
normal ordering of the polarization operators, sin
^I uJ21(t)ul& does not vanish in general.

Taking the atomic expectation value of Eq.~5.2!, we ob-
tain
-

t
t

d-
-
y
rt

a-

-

e
c

-

d

dt
^J12~ t !&A5NE

0

t

^J12~ t8!&AG~ t2t8!dt81Nh~ t !.

~5.6!

This is a linear equation that has lost its operator chara
over the atomic variables but not over the electromagn
reservoir, as evidenced by the presence of the quantum n
operator,h(t). Equation~5.6! can be solved by the metho
of Laplace transforms. The solution has the form

^J12~ t !&A5D~ t !^J12~0!&A1N(
l

Cl~ t !al~0!, ~5.7!

where

D~ t !5L21$D̃~s!%, ~5.8!

D̃~s!5@s2NG̃~s!#21, ~5.9!

and

Cl~ t !5L21H gl

s1 iDl
D̃~s!J . ~5.10!

Again, L21 denotes the inverse Laplace transform. T
Laplace transformation of the memory kernel for an isotro
band edge,G̃I(s), is given in Eq.~3.8!. Despite the fact that
^J12(0)&A50, we retain the first term in Eq.~5.7! for later
notational convenience.

The early-time quantum fluctuations in a superradiant s
tem prevent us from predictinga priori the evolution of any
single experimental realization of the atoms. Instead, we
only determine the probability of a particular trajectory
the collective atomic Bloch vector. In order to obtain th
statistics of a band-edge superradiant pulse, we first de
mine the statistics of the collective Bloch vector for a set
identically prepared systems after each has passed thr
the early-time regime governed by vacuum fluctuations. T
relevant time scale will be referred to as the quantum
semiclassical evolutioncrossover time, t5t0 . Our approach
is to calculate the phase and amplitude distributions of
polarization at the crossover time quantum mechanica
The subsequent (t.t0) evolution of the ensemble is the
obtained by solving the semiclassical equations~4.1! and
~4.2! using the polarization distribution function att0 . In
other words, the distribution of values of^J12(t0)& obtained
from the early-time quantum fluctuations provide the init
conditions for subsequent, semiclassical evolution. In or
to implement this approach, we must first identifyt0 for our
system@17,33#. One expects such a transition to occur in t
high atomic inversion regime,̂J3(t)&.N. It is natural to
define t0 such that fort.t0 the expectation value of the
commutator of the system operatorsJ21(t) and J12(t) be-
comes very small compared to the expectation value of t
product@17#. This gives the condition

^J21~ t !J12~ t !&@^@J21~ t !,J12~ t !#&, t.t0 . ~5.11!

Evaluating the above commutator, we ha
^@J21(t),J12(t)#&5^J3(t)&, which is equal toN for full
atomic inversion. From Eqs.~5.5! and ~5.7!, we find that
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^J21~ t !J12~ t !&5^J3~ t !1J12~ t !J21~ t !&

5NF11N(
l

uCl~ t !u2G5NuD~ t !u2.

~5.12!

The last equality is obtained by use of the ident
N(luCl(t)u25uD(t)u221, as derived in Appendix B. In free
space, uD(t)u25eNgt, giving the crossover time,t0

free

.1/Ng. One can solve for the crossover time near a ba
edge,t0

PBG, computationally. In the isotropic model, fordc

50 we find that t0
PBG.1.24/N2/3b1 . The crossover time

maintains this 1/N2/3b1 dependence forv21 displaced from
the band edge. The corresponding time scale for the an
tropic gap is 1/N2b3 . The buildup of a macroscopic pola
ization then occurs more slowly near an isotropic band e
and more quickly near an anisotropic band edge than in
space.

Using a semiclassical approach, we may write the va
of the polarization at any timet>t0 in terms of an amplitude
k and a phase anglef, ^J12(t)&

Cl[J(k,f,t). The super-
script Cl refers to the fact that the expectation value^ &Cl is
taken in the semiclassical regimet>t0 . We defineP(k)dk
as the probability of finding the amplitude betweenk and
k1dk, andQ(f)df as the probability of finding the phas
angle betweenf and f1df. We may then write the mo
ments of the macroscopic polarization distribution as

^„J12~ t !…p
„J21~ t8!…q&Cl5E dkE dfP~k!Q~f!

3@J~k,f,t !#p@J* ~k,f,t8!#q.

~5.13!

For t5t0 , we assume that the polarization has the fo
J(k,f,t)5keif, giving for the moments

^„J12~ t0!…p
„J21~ t0!…q&Cl

5E dkE dfP~k!Q~f!kp1qei ~p2q!f.

~5.14!

The quantum analog,^ &Q, of Eq.~5.14! can be written in the
form of Eq. ~5.5! evaluated att5t0 . Substituting Eq.~5.7!
and its adjoint into Eq.~5.5! yields

^„J12~ t0!…p
„J21~ t0!…q&Q

5Np1qK F(
l

Cl~ t0!al~0!G pF(
l

Cl* ~ t0!al
†~0!GqL

R

.

~5.15!

As the reservoir expectation value is taken over the the
eratorsal , which satisfy a Gaussian probability distributio
Wick’s theorem@13# is applied in order to reduce the oper
tor averages of products of field operators to averages
products of pairs of field operators. We then have

^„J12~ t0!…p
„J21~ t0!…q&Q.dpqN

pp! uD~ t0!u2p. ~5.16!
d

o-

e
e

e

p-

er

This expression has corrections of orderNp21, meaning that
it is asymptotically valid for largeN. Equating Eqs.~5.14!
and~5.16!, we solve for the distributionsP(k) andQ(f) to
obtain the desired initial polarization distribution for th
semiclassical superradiance equations. The early time di
butions for free space and the band edge differ only in
form of the functionD(t), as the above analysis makes n
other distinction between the two cases. Thus in the ba
edge system, as in free space, the entire effect of the e
time atomic evolution can be recaptured using the distri
tion of initial conditions given att5t0 . The phase of the
polarization is given by the relation

E
0

2p

dfei ~p2q!fQ~f!5dp,q . ~5.17!

This shows thatQ(f) is uniformly distributed between 0
and 2p. The initial polarization amplitude distribution i
found from the relation

E
0

`

dkP~k!k2p5p! @NuD~ t0!u2#p. ~5.18!

The result is a Gaussian distribution of widthNuD(t0)u2 cen-
tered at zero,

P~k!5
1

ApNuD~ t0!u2
expF 2k2

NuD~ t0!u2G . ~5.19!

It has been shown via density matrix methods@17# that in
free space one may choose the crossover time anywhe
the inverted regime, the simplest choice beingt050. This is
due to the absence of temporal correlations of the reser
for tÞt8. Figure 10 shows the ensemble-averaged collec
emission in free space and at an isotropic band edgedc
50) for N5100 atoms. Both the free space and band e
systems are shown for two choices of initial polarization d
tribution. The solid lines correspond to the choice oft050 in
the amplitude distribution~5.19! for both free space and th
band edge. The dashed lines correspond to the choict0

5t0
free and t05t0

PBG for the free-space and band-edge sy
tems, respectively. As per Eq.~5.17!, the initial phase of the
polarization in all cases is chosen from a uniform rand
distribution. As expected, Fig. 10 demonstrates that
choice of t0 is unimportant in free space, so long as it
chosen in the inverted regime. Near a photonic band ed
we see that the choice oft0 affects the later evolution of the
system. In particular, it affects the onset time for collecti
emission. It is clear from these simulations that the details
the non-Markovian evolution in the quantum regime play
crucial role in the subsequent semiclassical evolution of
band edge superradiance. The long-range temporal cor
tions of the reservoir require that we treat the vacuum fl
tuations explicitly throughout the quantum evolution of t
system. A similar picture holds in the case of an anisotro
PBG material. In our anisotropic model, memory of the in
tial state is expressed through the Green function~2.10!. In
this case, superradiance is also highly sensitive to early s
quantum fluctuations.

Since ensemble averages of atomic observables are
perimentally measurable quantities, we consider these
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FIG. 10. Atomic inversion for superradiance driven by vacuum fluctuations in free space and for an atomic resonant frequency
an isotropic photonic band edge (dc50). Solid lines, result for initial polarization distribution att50 for each system; dashed lines, res
for initial polarization distribution att5t0 for each system.
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some detail. We use the notation̂&ens to denote an
ensemble-averaged quantum expectation value. For illus
tion, we focus on thedc50 and zero dephasing case for
system of 100 atoms in the isotropic effective-mass mo
The extension to non-zero detuning and finite dipole deph
ing follows from the discussion of Sec. IV. From Fig. 11,
is evident that the ensemble exhibits a fractional popula
inversion in the steady state. The steady-state value

FIG. 11. Ensemble-averaged atomic inversion,^J3(t)&ens/N,
and atomic polarization amplitude,u^J12(t)&ensu/N ~dot-dashed
line!, for a system ofN5100 atoms near an isotropic photonic ba
edge. The ensemble average is taken over 2000 initial polariza
values. Inversion: long-dashed curve,dc520.5; solid line, dc

50; short-dashed line,dc50.5. dc in units of N2/3b1 .
a-

l.
s-

n
of

^J3(t)&ensfor a given atomic detuning is unchanged from t
mean-field result,̂ J3(ts)&. Since the steady state is dete
mined by the atom-field coupling strength, and not by t
dynamics of the system, it is insensitive to initial condition
Fluctuations in the excited-state atomic population may
expressed in terms of the delay time for the onset of sup
radiant emission, defined as the time at which the system
exactly half excited, i.e.,̂J3&50. Vacuum fluctuations resul
in a distribution of delay times for the ensemble, asymme
cally centered about a peak value, as pictured in Fig. 12.
delay time distribution is qualitatively similar to that ob

on FIG. 12. Distribution of delay times for a system of 100 atom
at an isotropic band edge (dc50) for 4000 realizations of the su
perradiant system.
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FIG. 13. Atomic polarization distribution for a system of 100 atoms at an isotropic band edge (dc50), subject to quantum fluctuation
at early times. 5000 realizations of the superradiant system.~a! t5t0

PBG; ~b! t55; ~c! t511; ~d! steady state.t in units of 1/N2/3b1 .
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tained in free space@33#. However, the width of the distri-
bution scales with the relevant time scale for the isotrop
and anisotropic gaps, showing that, near a photonic ba
edge, atomic population fluctuations during light emissio
can be reduced from their free space value. Because of
variation in initial conditions, the Rabi oscillations in^J3(t)&
for the isotropic gap are much less pronounced than in me
field simulations. The differences in emission times due
fluctuations cause the ensemble average inversion to sm
out these oscillations. Therefore, one can no longer direc
relate the amplitude and period of the oscillations to the e
ergies of the collective dressed states.

More striking is the nature of the ensemble’s collectiv
polarization under the influence of vacuum fluctuations. F
ures 13~a!–13~d! show the evolution of the polarization dis
tribution from the initial distribution given by Eqs.~5.17!
and ~5.19! to the steady-state distribution. Initially, the dis
tribution is sharply peaked about zero. In the decay regi
the polarization amplitude is broadly distributed and has
c
d

n
he

n-
o
ear
ly
-

-

n,
a

random phase. This behavior is reminiscent of the fluct
tions of the order parameter in the vicinity of a pha
transition. In the steady state, the polarization amplitude c
lapses to a very well-defined nonzero value. This amplitu
is again accompanied by a random phase that is unifor
distributed between 0 and 2p. We may interpret our steady
state result in the following manner: A fraction of th
photons emitted near the photonic band edge remain lo
ized in the vicinity of the atoms, causing both the atom
dipoles and the electromagnetic field to self-organize int
cooperative steady state. However, vacuum fluctuati
cause this cooperative quantum state to have a ran
phase, resulting in a zero ensemble average polarization
plitude, u^J12(t)&ensu50, as shown in Fig. 11. Measuremen
of the degree of first- and second-order coherence of
electromagnetic field in a band-edge superradiance exp
ment would provide a probe of the nature of this se
organized state of photons and atoms near a band edge
further note that this state—well defined in amplitude b
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with random phase—is similar to the steady state of a c
ventional laser@34# with a well-defined electric field ampli
tude and random phase diffusion.

VI. SIMULATED QUANTUM NOISE NEAR A BAND
EDGE

We have shown that the statistical properties of a ba
edge superradiant system can be determined because th
lective behavior of the constituent atoms leads to a semic
sical system evolution, triggered by early-time quantu
fluctuations. However, a seamless quantum description
band-edge quantum optical systems is extremely difficul
obtain, due to the non-Markovian nature of the atom-fi
interaction. As a first step, we introduce a method by wh
to simulate their evolution computationally and include t
effects of quantum fluctuations. Unlike the semiclassi
simulations of Sec. IV, which neglected the effect of t
quantum noise operator, as^h(t)&5^h†(t)&50, we propose
to replace^h(t)& in our semiclassical equations by a com
plex classical stochastic function with the same mean
two-time correlation function as its quantum counterpa
This noise function then simulates the quantum noise in
system throughout the entire system evolution. We may
the validity of our simulated noise ansatz for band-edge
perradiance by comparing the results obtained to those
culated in Sec. V.

The classical noise function required to simulate quant
noise near a photonic band edge involves a real stoch
function j(t) possessing the underlying temporal autocor
lation of our non-Markovian quantum noise operator,h(t).
In the effective-mass approximation, this means that@see
Eqs.~2.10! and ~2.11!#,

^j~ t !j~ t8!&5
1

~ t2t8!a/2 , ~6.1!
bl

re

re
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where againa51 and 3 for isotropic and anisotropic ban
edges, respectively. Problems in band-edge atom-field
namics, such as the present superradiant problem, often
volve nonlinear equations under the influence of colo
quantum noise. It is interesting to note that nonlinear pr
lems involving classical colored noise are of considera
interest in classical statistical physics@35#. In what follows,
we use the method first introduced by Rice@36# and elabo-
rated on by Billah and Shinozuka@37# in order to generate
colored noise satisfying Eq.~6.1!. For noise with a power
spectrumP(v), defined as the Fourier transform of the a
tocorrelation function̂ j(t)j(t8)&, their algorithm gives

j~ t !.2(
n51

N

@P~vn!Dv#1/2cos~vnt1Fn!, n51,2,. . . ,N,

~6.2!

with equality obtained forN→`. Here, vn5nDv, Dv
5vmax/N, andvmax is a cutoff frequency above which th
power spectrum can be neglected. EachFn is a random
phase uniformly distributed in the range@0,2p#. By use of a
particular set of random phases$Fn% to generate the noise
values at each time step, we obtain a single ‘‘experiment
realization of the quantum noise in our system. Since
cannot predicta priori the specific form of the quantum fluc
tuations in a particular experiment, we again average o
many realizations of the superradiant system, each gove
by a differentj(t), in order to obtain distributions and en
semble averages of relevant quantities. We note that
~6.2! clearly giveŝ j(t)&ens50, as desired, since the rando
Fn cause the ensemble to average to zero. To show that
~6.2! also gives the correct autocorrelation function, we wr
^j~ t !j~ t8!&ens5K 4Dv(
k

(
l

@P~vk!P~v l !#
1/2cos~vkt1Fk!cos~v l t81F l !L

ens

5K 2Dv(
k

(
l

@P~vk!P~v l !#
1/2$cos~vkt2v l t81Fk2F l !1cos~vkt1v l t81Fk1F l !%L

ens

~6.3!

5K 2Dv(
k

P~vk!cos@vk~ t2t8!#L
ens

. ~6.4!
e
me-
ela-
the

al-
-

n
rre-
In Eq. ~6.3!, only thek5 l components, in which the random
phasesFk and F l cancel each other, survive the ensem
average. AsN→`, Eq. ~6.4! becomes the Fourier transform
of P(v), which equalŝ j(t)j(t8)&ens. Studies have shown
that for values ofN as small as 1000, the desired autocor
lation may be obtained with as little as 5% error@37#, mak-
ing this a computationally feasible technique. Furthermo
unlike other methods for the generation of stochastic fu
tions ~see Ref.@35#!, the present method computes the d
sired function,j(t), using only a uniform random distribu
e

-

,
-
-

tion of phasesFk as input, rather than requiring th
computation of a Gaussian stochastic function as an inter
diate step. This decreases the likelihood of spurious corr
tions between our random numbers. Figure 14 shows
two-time correlation ofj(t) for a51, for an ensemble of
2000 realizations of the noise function generated by the
gorithm of Eq.~6.2!. In this calculation and in the simula
tions described below, we chose a power spectrumP(v)
5Ap/2v, in order to mimic the colored vacuum near a
isotropic band edge. We see good agreement with the co
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lation function~6.1!. The agreement between our simulatio
and the exact correlation function can be significantly i
proved by enlarging the size of the ensemble, at the expe
of increased computation time for atom-field simulations.

The ensemble$j(t)% is used to simulate the effect o
vacuum fluctuations in Eqs.~2.5! and~2.6!. Written in terms
of the dimensionless time variablet5N2/3b1t, these equa-
tions for the isotropic band edge become

d

dt
^J3~t!&

524 ReH e2 ip/4
^J21~t!&

Ap
E

0

t ^J21~t8!&

At2t8
eidc~t2t8!dt8

1
^J21~t!&e2 i ~p/82dct!

ANAp
j~t!J , ~6.5!

d

dt
^J12~t!&5e2 ip/4

^J3~t!&

Ap
E

0

t ^J21~t8!&

At2t8
eidc~t2t8!dt8

1
^J3~t!&e2 i ~p/82dct!

ANAp
j~t!, ~6.6!

with similar equations for the anisotropic gap. For both mo
els, the noise term scales as 1/AN; this is the same depen
dence of the noise term on particle number exhibited in f
space@32#. In Fig. 15, we show the average inversion for
ensemble containing 2000 realizations ofj~t! for N51000
andN510 000 atoms. We find that our stochastic simulat
scheme gives physical results only for systems ofN
.500 atoms. The stochastic simulations show good ag
ment with the atomic inversion obtained by the method
Sec. V. Other system properties, such as the ensem

FIG. 14. Solid line: ensemble-averaged autocorrelation funct
^j(t)j(t8)&ens, of the classical colored noise functionj~t! corre-
sponding to vacuum fluctuations near an isotropic band edge.
dashed line is a plot of the exact autocorrelation function in
effective-mass approximation, (t2t8)21/2.
-
se

-

e
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e-
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averaged polarization and the delay time distribution cal
lated by the present method also agree well with the quan
calculations of the previous section. This suggests that
stochastic approach may be a valuable tool in the analys
band-edge atom-field dynamics.

VII. CONCLUSIONS

In this paper, we have treated the collective spontane
emission of two-level atoms near a photonic band edge.
analytic calculation of the atomic operator dynamics in t
case of low atomic excitation was given. The results dem
strate highly atypical atomic emission spectra and show
possibility of reducing atomic population fluctuations. Th
in turn suggests that fluctuations in photon number are li
wise suppressed for light localized near the atoms. T
raises the interesting question of whether squeezed light@38#,
antibunched photons@39#, and other forms of nonclassica
light may be generated in a simple manner from band e
atom-field systems. For an initially inverted system prepa
with a small macroscopic polarization, a mean field fact
ization was applied to the atomic quantum Langevin eq
tions, giving a semiclassical system evolution. We found t
the atoms exhibit fractional population trapping and a m
roscopic polarization in the steady state. Collective Rabi
cillations of the atomic population were found, and we
attributed to the interference of strongly dressed atom-pho
states that are repelled from the band edge, both into and
of the gap. The degree of photon localization, the polari
tion amplitude, and the phase angle of the polarization in
steady state are all sensitive functions of the detuning of
atomic resonant frequency from the band edge. The ste
state atomic properties can thus be controlled by applyin
dc Stark shift to the atomic resonant frequency. In Sec.
we discussed the effect on band-edge superradiance of i

,

he
e

FIG. 15. Comparison of the ensemble averaged atomic in
sion, ^J3(t)&ens/N, at an isotropic band edge (dc50) as calculated
by the methods of Secs. V and VI. 2000 realizations of the sup
radiant system. Dashed line and double dashed line, inversion
culated using the computed polarization distribution att5t0

PBG as
initial conditions for a semiclassical evolution~Sec. V! for N
51000 and 10 000 atoms, respectively. Solid line and dotted lin
inversion calculated using the stochastic function of Sec. VI forN
51000 and 10 000 atoms, respectively.
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atomic and atom-phonon interactions~atomic dephasing!.
We showed that such linewidth broadening effects canno
treated by a phenomenological decay constant as in
space, and that near the band edge they will lead to the d
of atomic polarization and inversion. Therefore, the stea
state properties of the superradiant system described in
paper will be limited by the time scale of the atomic deph
ing effects. The effect of dephasing mechanisms is impor
to the description of almost all band edge atom-field syste
As a particular example, dephasing determines the thres
external pumping required to achieve atomic inversion i
laser operating near a photonic band edge. It also facilit
the emission of laser light from a photonic crystal.

The effect of quantum fluctuations for high initial excit
tion of the atoms was included by distinguishing regimes
quantum and semiclassical collective atomic evolution.
found that the early time quantum evolution must be trea
in detail, due to the non-Markovian electromagnetic res
voir correlations near a band edge. This is in contrast w
free space, where the atomic system’s evolution is inse
tive to the treatment of the full temporal evolution of th
early, quantum regime. Fractional localization of light w
shown to persist under the influence of vacuum fluctuatio
The atomic polarization exhibits a nonzero amplitude with
randomly distributed phase in the steady state. This is m
like the steady state of a conventional laser. Here, such la
characteristics are due only to the Bragg scattering of p
tons back to the atoms; there is neither external pumping
a laser cavity in our system. The time scales for all dyna
cal processes, such as collective emission and the buildu
collective atomic polarization are strongly modified fro
their free space values due to the singular photon densit
states near a photonic band edge. For an isotropic band e
the time scales asN2/3b1 , while in the more realistic aniso
tropic model, time scales asN2b3 . As a result, collective
emission phenomena can occur more rapidly near a b
edge than in free space. Throughout our calculations,
have employed an effective-mass approximation to the ba
edge dispersion. For materials with a very small PBG, it m
be important to include the effects of both band edges. Th
issues are raised in Appendix A.

We have demonstrated that band-edge superradiance
sesses many of the self-organization and coherence pro
ties of a conventional laser. Furthermore, we have shown
possibility for the generation of unusual emission spectra
photon statistics. These results suggest that a laser oper
near a photonic band edge may possess unusual spectra
statistical properties, as well as a low input power las
threshold due to the fractional inversion of the atoms in
steady state. It may further be possible to produce a P
laser in a bulk material without recourse to a defect-indu
cavity mode. Lending credence to this hypothesis, recent
servations@40# and theoretical studies@41# of lasing from a
multiply scattering random medium with gain have demo
strated that one may obtain light with the properties of a la
field in the absence of a cavity. A full description of th
statistics of a band-edge laser field will require a treatmen
the non-Markovian nature of the electromagnetic reserv
Current techniques for treating the atom-field interaction
the absence of the Born and Markov approximations@42,43#
cannot account for the van Hove singularity in the density
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states encountered at a photonic band edge, nor are the
directly applicable to externally driven atomic systems.

Finally, we note that the steady state atom-field proper
described here are a result of the effect of radiation locali
in the vicinity of the active two-level atoms. This leads to t
question of how to pump energy into and extract energy
of these states, which lie within the forbidden photonic g
One possibility is to couple energy into and/or out of t
system through a third atomic level whose transition ene
lies outside the gap@15#. There is also the possibility o
transmitting light into the gap through high intensity u
trashort pulses that locally distort the nonlinear dielect
constant of the material and thus allow the propagation
light in the form of solitary waves within the forbidden fre
quency range@44#. Such issues must be addressed in orde
fully exploit the very rich possibilities of quantum optica
processes near a photonic band edge.
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APPENDIX A: CALCULATION
OF THE MEMORY KERNEL

We first present the calculation of the memory kernel
the isotropic model in the effective-mass approximatio
GI(t2t8). Starting from Eq.~2.8! and the isotropic disper
sion relation near the upper band edge,vk5vc1A(uku
2uk0u)2, GI(t2t8) can be expressed as

GI~ t2t8!5
v21

2 d21
2

4\e0p
eidc~ t2t8!E dVE

k0

L

dk
e2 iA~k2k0!2~ t2t8!

vc1A~k2k0!2 .

~A1!

Again, dc5v212vc is the detuning of the atomic resona
frequency from the band edge.L5mc/\ is a cutoff in the
photon wave vector above the electron rest mass. Photon
energy higher than the electron rest mass probe the rel
istic structure of the electron wave packets of our reson
atoms@45#. Because the isotropic model associates the b
edge with a sphere ink space, there is no angular depe
dence in the expansion ofvk about the band edge. We ma
thus separate out the angular integration over solid anglV
in Eq. ~A1!. We may also make a stationary phase appro
mation to the integral, as the nonexponential part of the
tegrand will only contribute significantly to the integral fo
k.k0 . The resulting integral is

GI~ t2t8!.
v21

2 d21
2

4\e0p

k0

vc
eidc~ t2t8!E

k0

L

dke2 iA~k2k0!2~ t2t8!.

~A2!
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As L is a large number, we extend the range of integration
infinity in order to obtain a simple analytic expression f
GI(t2t8) @46#:

GI~ t2t8!5
v21

2 vcAvgapd21
2

12\e0p3/2c3

e2 i @p/42dc~ t2t8!#

At2t8

5b1
3/2e2 i @p/42dc~ t2t8!#

At2t8
. ~A3!

Because the relevant frequencies in Eq.~A3! are roughly of
the same order of magnitude near a band edge, we ma
write the prefactor asb1

3/2.v21
7/2d21

2 /12\e0p3/2c3, in agree-
ment with the value given in Sec. II. We emphasize that
stationary phase method yields the correct asymptotic be
ior for the memory kernel for largeut2t8u. At short times,
the integral must be evaluated more precisely using the
photon dispersion relation, as discussed below.
te
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For an anisotropic band-gap model, we must account
the variation in the magnitude of the band-edge wave ve
as k is rotated throughout the Brillouin zone. We associa
the gap with a specific point ink space that satisfies th
Bragg condition,k5k0 . In the effective-mass approxima
tion, the dispersion relation is expanded to second orderk
about this point,vk5vc6A(k2k0)2. Making the substitu-
tion q5k2k0 and performing the angular integration,GA(t
2t8) is expressed as

GA~ t2t8!5
v21

2 d21
2

4\e0p2 eidc~ t2t8!E
0

L

dq
q2e2 iAq2~ t2t8!

vc1Aq2 .

~A4!

Extending the wave-vector integration to infinity, the Gre
function is @46#
GA~ t2t8!5
v21

2 d21
2

8\e0p2 eidc~ t2t8!HA p

ivc~ t2t8!
2

p

2
Avc

A
eivc~ t2t8!@12F„Aivc~ t2t8!…#J . ~A5!
on

u-
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q.
F(x) is the probability integral,F(x)5(2/Ap)*0
xe2t2dt.

For vc(t2t8)@1, a condition satisfied for all but thet8→t
limit ~as vc;1015 s21 for optical transitions!, taking the
asymptotic expansion ofF(x) to second order gives

GA~ t2t8!5
v21

2 d21
2

8\e0~pA!3/2vc

ei @p/41dc~ t2t8!#

~ t2t8!3/2 ,

vc~ t2t8!@1. ~A6!

As t2t8→01 , Eq. ~A5! reduces to

GA~ t2t8!5
v21

2 d21
2

8\e0p2A3/2 FA p

ivc~ t2t8!
2pAvcG ,

t2t8→01 . ~A7!

GA(t2t8) possesses a weak~square root! singularity at t
5t8. This is an integrable singularity and can thus be trea
numerically@47#.

The effective-mass dispersion relation used in the ev
ation of G(t2t8) is, strictly speaking, valid only near th
photonic band edge, as it fails to give the required lin
photon dispersion relation for largeuk2k0u ~far away from
the gap!. Therefore, the integration of the effective-mass d
persion for large wave vector in Eqs.~A1! and ~A4! intro-
duces a spurious contribution toG(t2t8). This difficulty
may be overcome for an isotropic gap model by using
dispersion relation that has the correct wave-vector dep
dence for allk. The simplest model dispersion with the co
rect form is

vk /c5Ak0
21g21sgn~k2k0!A~k2k0!21g2. ~A8!
d

-

r

-

a
n-

The double-valued nature ofvk at k0 is made explicit by the
function sgn(k2k0)51 for k.k0 , and sgn(k2k0)521 for k
,k0 . This gives a gap of widthvgap52gc, centered about

the midgap frequencyv05cAk0
21g2. Note that Eq.~A8!

gives the correct linear dependence ink for both large posi-
tive and negativek, and gives the effective-mass dispersi
for k;k0 . Like the effective-mass model, Eq.~A8! gives a
singular density of states at the band edges,vc5v06cg.
The full dispersion relation allows us to evaluate the infl
ence of both band edges for arbitrary gap width and ato
resonant frequency. Preliminary numerical calculations sh
a stronger reservoir memory effect than demonstrated in
effective mass model for the isotropic band edge. This m
have a significant effect on theoretical predictions regard
the atom-field interaction in the vicinity of a PBG. A furthe
simplification has been made in the anisotropic model,
that we have not included the dependence ofvk on the sym-
metry of a specific photonic crystal. In a real thre
dimensional PBG material, the Bragg condition is satisfi
for different values ofk as the wave vector changes directio
in k space. This directional dependence may lead to a m
stronger dependence of the localization of light on the det
ing of v21 away from the band edge. The impact on t
atom-field interaction in a PBG of both the full isotrop
dispersion model and more realistic dispersions for thr
dimensional photonic crystals will be treated elsewhere.

APPENDIX B: EVALUATION OF (lzAl„t…z2

We outline the evaluation of(luAl(t)u2, used to obtain
the low excitation population fluctuations in Sec. III, E
~3.19!. A similar procedure is used to arrive at Eq.~5.12! in
Sec. V. Starting from the Laplace transformÃl(s) @Eq.
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~3.7!#, we may use the properties of a convolution of Lapla
transforms in order to write

Al~ t !5glE
0

t

dt8B~ t8!e2 iDlt. ~B1!

Therefore, we have

(
l

uAl~ t !u25E
0

t

dt8E
0

t

dt9B~ t9!B* ~ t8!G~ t82t9!,

~B2!

with G(t2t8) defined as in Eq.~2.7!. We may rewrite this
double integral in the form

(
l

uAl~ t !u25E
0

t

dt8E
0

t8
dt9B~ t9!B* ~ t8!G~ t82t9!

1E
0

t

dt8E
t8

t

dt9B~ t9!B* ~ t8!G~ t82t9!

5I 11I 2 , ~B3!

where I 1 and I 2 are the first and second double integra
respectively. By changing the order of the integrations inI 2 ,
we obtain
e-

v.

s.

-

.
v,
h,

n

hy
e

,

I 25E
0

t

dt9E
0

t9
dt8B~ t9!B* ~ t8!G~ t82t9!5I 1* . ~B4!

Therefore,(luAl(t)u252 Re$I1%, and we need only explic-
itly evaluateI 1 . The Laplace transform ofB(t), B̃(s) @Eq.
~3.6!#, is equivalent to the Laplace transform of the equat

d

dt
B~ t !52NE

0

t

dt8G~ t2t8!B~ t8!. ~B5!

Substituting Eq.~B5! into I 1 and its complex conjugate, w
obtain

2I 152
1

N E
0

t

dt8
d

dt8
uB~ t8!u2

5
1

N
@ uB~0!u22uB~ t !u2#5(

l
uAl~ t !u2, ~B6!

as I 1 is real. Substituting the initial conditionuB(0)u251
into Eq. ~B6! gives the result quoted in Sec. III.
y-

S.

el

ett.
.

ys.

s

ys.
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