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Charged bosons in a doped Mott insulator: Electronic properties of domain-wall solitons
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We demonstrate from first principles that when a charge carrier is added to a spin-1/2 antiferromagnetic
Mott insulator in either a one- or two-dimensional lattice, the self-consistent, Hartree-Fock ground state
consists of a magnetic soliton texture with a doubly degenerate electronic level at the center of the Mott-
Hubbard charge gap. This model is appropriate to systems with weak interchain or interlayer magnetic cou-
plings in which long-range antiferromagnetic order is observed in the absence of charge ¢daéng.

These magnetic solitons mediate the destruction of the magnetic order as the charge carrier concentration is
increased. In a one-dimensional lattice with nearest-neighbor hoppioig-site Coulomb repulsiot, and
self-consistent, antiferromagnetic moment amplit&jeve find that a chargedermionic magnetic domain

wall soliton with a weakly ferromagnetic core, centered between two sites, has lower Hartree-Fock energy than
a corresponding charged quasiparticle in one of the Mott-Hubbard bands. Howevdi$/tor 2, this soliton

is unstable to the formation of a lower energy chardexonicdomain wall soliton, centered on a single site.

For US/t< 2, both of the above solitons are charged bosons. The self-consistent structure of these solitons
exhibits no rotation of the local magnetic moments, but only a local suppression of the local moment amplitude
in the vicinity of the hole. In the absence of doping, charge neutral domain wall solitons exhibit spin rotation
within their core region. The equilibrium core sipds determined by the degree of magnetic anisotropy. The
ferromagnetic core soliton exhibits a pair of nondegenerate near-midgap electronic states. The antiferromag-
netic core soliton exhibits a pair of nondegenerate electronic states that are symmetric about the midgap energy
and that merge into the continuum as the anisotropy effects are made small and the soliton corp radius
becomes very large. The two-dimensional antiferromagnetic Mott insulator exhibits analogous behavior to the
one-dimensional model. This analogy is precise for a 2D antiferromagnet exhigtinglux For the undoped

Mott insulator, the ferromagnetic core meron vortéotus flower” configuration of local magnetic moments
exhibits a doubly degenerate electronic midgap state in the continuum model and is the analog of the 1D
neutral domain wall soliton. We demonstrate that a hole added to the 2D system can form a charged bosonic
collective excitation, in which the spin background around the hole forplarzar vortexwith local antifer-
romagnetic correlations at infinity and vanishing local-moment amplitude at the core of the soliton.
[S0163-182608)01015-1

[. INTRODUCTION is lowered in the purely two-dimension&D) system. 3D
magnetic order occurs at a dle temperature
The occurrence of the high; superconductivityin lay-  kgTy~J, (£/a)?, wherea is the 2D lattice constant. This,
ered perovskite materials has sparked broad infeieshe  however, is inconsistent with the observed insensitivity of
quantum properties of magnetically correlated electron sysTy to changes in the interplane couplifiSubstitution of
tems. At low temperature all parent compounds exhibit arions that decrease the interplane coupling or changes in the
antiferromagnetic Mott-Hubbard charge ghfs charge car- interplane spacing itself lead to a negligible changd in
riers are introduced by doping, this long-range antiferromagThis suggests thafy is driven largely by a 2D effect. In-
netic (AFM) order disappears, leading to a metallic phasedeed, in the presence of a smAlY anisotropy,AJ, of the
with striking non-Fermi-liquid properties® Superconductiv-  in-plane exchange interaction, it is plausible that the 2D cor-
ity emerges from this unconventional metal as the system igelation length¢ diverges at a finite Kosterlitz-ThouléSs
cooled. The development of a microscopic model of this uniransition temperatur&,+>0. In this case, an infinitesimal
conventional metal is one of the outstanding issues in quan}, between planes could drive a transition to a 3D ordered
tum many-body theor. AFM at a temperaturd@ only slightly larger thafl ;. The
The magnetic behavior of underdoped highsupercon- observed insensitivity of y to J, is then quite natural.
ductors is consistent with strong antiferromagnetic Heisen- Another surprising experimental feature of highsuper-
berg exchange within the CuO planes and weak conductors is that hole doping is much more detrimental to
anisotropy, which favors in-plane AFM order. Long-rangethe long-range AFM order than substitution of<Ctby non-
AFM order at finite temperature is sustained by an interplanenagnetic ions such as Zh. The reduction of the N tem-
Heisenberg exchangk , which is 2—5 orders of magnitude perature with doping is accompanied by a reduction of the
weaker than the intraplane exchange interaclioHowever, local magnetization amplitude, or a magnetic twist near the
semiclassical spin-wave thedris insufficient in describing holes. The measurements show that there is a large local
this system when it is doped with charge carriers. Withinmodification of the magnetic properties near the localized
spin-wave theory, the in-plane AFM correlation length holes, and that up to 100 Cu sites are affected by the pres-
diverges exponentially/a~expd/ksT) as the temperature ence of a single hol®.
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Our hypothesis is that upon doping, charge carriers arés localized in their core, they contribute to the charge trans-
cloaked by mobile magnetic vortex solitons with electronicport. Our study indicates that these charged merons are
energy levels near the center of the Mott-Hubbard chargebosons. As such, it is natural to expect non-Fermi-liquid be-
transfer gap. This is analogous to the behavior of the onéehavior from such charge carriers in the normal phase of high-
dimensional compound polyacetylene, with doping. In bothT. superconductors for temperatures T,.
polyacetylene and higii; superconductors, doping is ac- In addition to a quantum plasma phase of meron vortices,
companied by the emergence of a midinfrared absorptiomat special charge carrier concentrations merons may form
band in the optical conductivit}*? ordered arrays such as stripes and domain wall ff@hese

In this paper we show that the scenario described abovatates may suppress superconductivity at specific doping
and the detailed analogy with polyacetylene, can be preciselfractions!’ It has been noted earlier that in models that com-
realized using a recently introduc@dvariant of the AFM  pletely neglect the long-range part of the electron-electron
ground state of the undoped material. We refer to this variantoulomb repulsion, theresia a tendency for charge carriers
as thespin-fluxstate of the AFM. This state differs from the in an antiferromagnet to phase Sepalléféhe incorporation
standard spin-density-wau&DW) description of the AFM o realistic Coulomb interactions, however, tends to frustrate
only in that the one-electron wave functions which constituteg ., phase separation. In our model, nearest-neighbor Cou-

the spin-flux SDW exhibit a  rotation of the interal co- o mp repulsion plays a crucial role in the generation of spin
ordinate frame of the electrofdescribed by three Eulerog

| he el ircl | | flux and the subsequent stabilization of meron-vortex soli-
angles as the electron encircles any elementary plaquette qf, o '\, this sense our model provides a specific, microscopic
the two-dimensional lattice. It was sho¥rhat in the pres-

. mechanism for the frustration of phase separation, which in
ence of thespin flux the ground-state energy of the mean-, " e central to the emergence of superconductbit
field AFM is lower than in the absence of the spin flux, for a y 9 P Y-

large range of doping concentration and on-site Coulomb VYe begglr:hwf[h ad(jetalled st:de of theT%ne-dmenjlona!
repulsion strengthJ. In our view, quantized spin flux is a 2n3/09s of the two-dimensional merons. These are domain

new quantum degree of freedom for a many-electron systen‘f‘,’a”S on an_AFM chain. We show, using a Slmple_ continuum
corresponding to a hidden “law of nature.” This law of na- approximation, that the corresponding 1D domain walls and

ture is hidden in models, such as the Hubbard model, tha#D merons have similar electronic spectra. The advantage of
neglect the finite range of the screened Coulomb interactiof'® one-dimensional study is that it is much more simple to
between the electrons. However, by including nearestPerform self-consistent calculations on the lattice. Moreover,
neighbor Coulomb repulsion effects, it is possible for inter-the 1D results may be directly relevant for the 3D high-
nal electric fields in the many-electron system to promotesuperconductors. Higliz cuprates such as YB&u;O; and
internal spin rotation of an electron as it encircles a closedts close relatives have quasi-one-dimensional CuO chain
path. It was shown previousfyithat dynamical generation of structures. Unlike other classic one-dimensional quantum
spin flux in this manner is accompanied by the nucleation o&pin chains® which exhibit 3D AFM order at temperatures
a pair of magnetic skyrmion structures in the AFM back-on the order of 1 K, the CuO chains reveal AFM ordering at
ground. The presence of these spin-flux-carrying skyrmiongemperatured,~10-80 K. Experiments measuring the dc
leads to a lowering of the average local magnetic momenfyqiqsivit 20 the ‘infrared and optical conductivity,and the
Z;npl':gg?i\s,gt?frtﬁzyclgmf:ﬂ% ;r;(le,;ggtrgglemany—electron €N henetration depth in untwinned crys@lsand ceramicd
gI}rll a recent papér we suggested that Wﬁen charge carriershave rev_ealed large gnlsotroples bgtwe_en dhelirection
erpendicular to chaifsand theb direction (parallel to

are added to the antiferromagnet described above, new types ™. )
aing. These results suggest that substantial currents are

of magnetic solitons textures appear, which lead to furthef

disordering of the magnetic background. While it is energetiC&/ied along the chains in both the normal and supercon-

cally favorable for a single charge carrier to nucleateoa- ducting_states. The source of superconducting condensate on
spin-flux-carryingskyrmion (conventional spin polarorand fthe chalns4has nqt yet been elucidated. On the other hand, it
thereby occupy a state deep into the Mott-Hubbard chargdS knowrf* that in RB&Cu;O¢., compounds(R=rare
transfer gap, in the presence of many charge carriers it i€arth at low temperaturesT<Ty,), there is a magnetic
entropically favorable for such spin polarons to dissociatestate in which not only the planes, but also the chains, have
into pairs of merongvortexlike solitong. This in turn may  AFM order, with large ordered magnetic moments. It is pos-
lead to the quantum analog of a Kosterlitz-Thoulesssible that pairs of 1D charged domain walls are relevant to
transitioﬁ'o characteristic of 2D SyStemS. As the Charge Car'superconductivity on these chains.

rier concentration increases, the Kosterlitz-Thouless transi- Consider a strongly interacting quasi-two-dimensional
tion temperatureT rapidly decreases, eventually driving electron gas described by the tight-binding Hamiltonian,

the Neel temperaturdy to zero.

Above the transition temperatufig, the merons should
dictate the behavior of the system. Using a simple continuum
model we showeld that the ferromagnetic-core merons have H=— 2 tij(af;aj(,nL H.c)+ 2 Vijnin;, (1.9
a doubly degenerate localized level at the midgap of the i) '

Mott-Hubbard gap. This is consistent with the emergence of

a broad midinfrared optical absorption band with doping,

indicating the existence of electronic levels deep within thewherea;), creates an electron at sitavith spin o, t;; is the
gap. Furthermore, since the merons are mobile and the holeopping amplitudes from siteto sitei on the square lattice,

(o8
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A=3’2_,a}a,, andV;; is the Coulomb interaction. For

nearest-neighbor hoppingd;{(=t,) and purely on-site Cou-
lomb repulsion ¥;;=U), this reduces to the Hubbard model.

Finally, denoting the expectation value of the spin at the

sitei by éz(é) and the number of electror(glensity of

In order to capture the effects of spin rotation during thecharge by Q;=n;=(Q;), we obtain the mean-field Hubbard

process of electron hopping, we retain thearest-neighbor
Coulomb repulsion Vj;=V). It is convenient to define the
bilinear combina_tioq of electron operatmszﬁzgitpgﬁam,
u=0,123, fori#j, as well as the on-site operators
Si= 12, ¢, p8:5 and Q= =a;" 09 4ip. Hereo® is the

la” «

2 2 identity matrix andr=(o!,02,0°) are the usual Pauli

spin matrices. The quantum expectation vajueof theéi

andQ; operators in mean-field theory signifies the presence -u > al

of spin- and charge-density, while those of thg operators
are associated with charge currents<0) and spin current
(#=1,2,3). In the spin-flux modéf**we adopt the ansatz
that there is no charge current in the ground sm‘i@o but

circulating spin currents exist and take the form

Af= (2to/V)iAjjh,, a=1,2,3, whergA;j|=A for all i and
j, andf is a unit vector. In order to keep this article self-

Hamiltonian,
H=He+Hconst
where

Heo= —t(%}aﬁ (af ,Tiga; g+H.C)

= u
(S Gupipt 32 (1-Q)al 8.

i,a,B

1.9

Heonst UZ (SP+ 2Q7- 1Q)), (1.5

contained, we briefly recapitulate the derivation of the spinyhereS = %<é;ra&aﬂéi ) andQ;=(a/ & ,) must be calcu-

flux from the above mean-field considerations.

Using the Pauli spin-matrix identity; o’ 4(o%, 5)*
= 84q'0pp, it is possible to rewrite the electron-electron
interaction terms as AonIIows: ninj=2ni—%Aﬁ(Aﬁ *
if i#j, andn;;n;;=n,—(SS+3&,Q)). Using the Hartree-
Fock factorization, AL(AK)"—(AL)(AL)T+AL(AL*
H(ALAL) ") —2(Af)(AL)*, we obtain the mean-field
Hamiltonian,

la " «

ij

Here, T} ;=(8,p+iAijA- G,4)/1+A? are spin-dependent !

lated self-consistently.

It was shown previoush/ that the ground state energy
depends on the rotation matricég’ only through the
plaquette matrix producT*?T2T3*T41=exp(fA-od). Here,
® is the spin flux that passes through each plaquette dnd 2
is the angle through which the internal coordinate system of
the electron rotates as it encircles the plaquette.

We use the ansatz that a spin fluxd@# 7 penetrates each
plaquette, i.e., TY2T2*T34T4=—1 around each plaquette.
This means that the one-electron wave functions are forced
to be antisymmetric aroundeach of the elementary
plaguettes of the square lattice. This uniform spin-flux phase
may be regarded as an alternative mean-field ground state of
the Hubbard model, which describes spin-dependent scatter-

SU(2) hopping matrix elements defined by the mean-fieldnd and the resulting many-body correlations.

theory, andt=t,1+AZ In deriving Eq. (1.2 we have
dropped constant terms that simply change the zero of e
ergy in Eq.(1.1) as well as terms proportional ®;n; that
simply change the chemical potential.

The on-site interaction term can be rewritten in theac)
form

aC

U niny=-UX §-§- 72 QQ+uX .

(1.3

We emphasize, however, that this mean field is a “false

(ground state® at finite doping, analogous to the “false

vacuum” in early models of quantum chromodynanfién

the presence of charge carriers this mean field is unstable to
the proliferation of topological fluctuationgnagnetic soli-
tong, which eventually destroy the LRO. In this sense, our
model goes beyond simple mean-field theory.

We begin by presenting the self-consistent results for the
1D lattice model using the above mean-field factorization for
the on-site interaction term. These results are recaptured us-
ing a simple continuum approximation. We show that this
continuum model can be mapped onto the corresponding

The approximation for this term is obtained by making continuum model of domain walls in polyacetyletfezrom

the usual mean-field factorizations keeping the expectatioan energetic point of view, isolated domain walls in a quasi-

values of the fluctuation terms. These fluctuation terms willone-dimensional magnet and single vortices in a quasi-two-

play an important role in the self-consistent magnetic solitordimesional magnet have linearly and logarithmically diver-

energies in the 1D model. We write gent creation energies, respectively. Consequently, these
solitons must be created in pairs in a real system.

22 a2z S L Our study of the 2D spin-flux model demonstrates a strik-

Si-$=25-(S)+(S)~2(S) ing correspondence between the spectra of the domain wall
solitons and polarons of the 1D system, with merons and
skyrmions, respectively, of the 2D system. This analogy is

o A A - A facilitated by the relativistic one-electron dispersion relations

QiQi=2Qi(Qi) +(QY) —2(Q)*. of the 2D spin-flux model. These calculations lend support to

and
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a physical picture of the 2D CuO planes in which skyrmion TABLE I. Number of states per site, per spin direction, in the

fluctuations reduce the magnitude of the ordered local AFMvalence and conduction bands.

magnetic moment at low doping. With increased doping, the

charged spin polarons may lower their energy by forming n=even n=even n=odd n=odd

bound meron-antimeron pairs. With further doping, these” states o=1 o=\ o=1

meron pairs dissociate through a Kosterlitz-Thouless transij- AERC (E)= +S

tion into a quantum liquid of free meroR&which destroy . " £.0 (B —

the long-range order. The time scale for electronic excita—fv bandl Epn, (E) = ~S

tions across the Mott-Hubbard charge gap is very small com-

pared to the time scale of magnetic fluctuations so that a A self-consistency of the antiferromagnetic background

well-defined, instantaneous Mott-Hubbard gap structure ex- ) ) )

ists even within the spin-liquid phase. The.LDQS(I_ocaI (;IenS|ty of _state)sprOJected onto sit@
The charged merons are mobile planar vortex configuraand spin dlreqtlom, is defined in terms of the one-electron

tions of the spin background. We demonstrate that they ar&réen’s function:

spinless bosons. Charge transport mediated by bosonic 1

meron vortices exhibits highly non-Fermi-liquid behavior pﬂ(,(E)=sgr(E)—Im G?m(n,n;E). (2.2

and non-Drude behavior in the low-frequency conductivity. ™

Also, the midgap states of such carriers are consistent with

the appearance of the broad midinfrared band upon doping.

i
a

Nl Nl
NI NI
r\—:‘:_p—- NI
NI- l\j:_H

So
So

L
L

+

It is shown in Appendix A that

_ sgnE)[E+(—1)"0US]
~ m[EZ=(US)Z[(US)?+ 42— E7]

for US<|E|=<\/(US)?+4t? and 0 otherwise.

The total number of states per site per spin direction in
ach one of the bands can be calculated by integrating the
DOS over the corresponding ranges of energies. The results

are shown in Table I.

2.3

Il. QUASI-ONE-DIMENSIONAL AFM CHAIN poo(E)

For intuition purposes, we first consider the electronic
structure of topological defects in a 1D antiferromagnet with
long-range ordefLRO). This LRO is induced by the mag-
netic interaction of electrons in the chain with other electron
in the 3D crystal in which the chain is embedded.

The Hamiltonian of the 1D chain with nearest-neighbor
hopping contains no nontrivial closed loops through which Here,
spin flux can penetrate. Therefore, we 3&t=1 in this US— 1
model. For a half-filled chain, we s&;=1, since we do not So=m -
consider charge-density-wave states. ko Bk

Our model 1D Hamiltonian becomes

(2.9

In the ground state, at half-filling, there is one electron per
site:
Hmf: _tZ (aIUéi+1,o+ é1|Jr+ 1,0’ai,0')

' Qn= f dE(pp;(E)+pp (E))=1.
v band

—U D & (S-ap)a s+ UZ (§P+1/4),

ia,p Also, the spin at each site is given by
(2.1
+ e > szz—f dE(pp; (E) = pp (E))=(—1)"" s,
where S=(—1)("1Se and e, is a unit vector of some " 2)\ band (P (B) = pny (B)=(~1" 7S
arbitrary direction. The value ofS is determined self-
consistently. S=0, S=0.

The electronic part of the undoped AFM mean-field _ _ o )
Hamiltonian consists of two electronic bands characterized This mean-field solution is made self-consistent, by re-

by the dispersion relations quiring that the resulting spi§, in Eq. (2.4) is equal to the
assumed spin amplitude
ECY=+./e+(US)?2 ke (—ml2a,m/2a], SinceE, depends only or$?, we can see thahe ground
K state is doubly degenerateoth + S and — S satisfy Eq.(2.4)
wheree, = — 2t coska) anda is the lattice constant. and give rise to self-consistent ground states that differ from

Each of these levels is doubly degenerate, correspondingach other only through the fact that all the spins are flipped
to spin “up” and spin “down” degrees of freedom: if the from one ground state to the other one.
wave function corresponding to spin up is concentrated From Fig. 1a), we can see that the dependenceSadn
mainly at the odd sites, then the degenerate wave functiot/t is as expected. In the weak interaction lirbift<1, S
corresponding to spin down is concentrated mainly at the-0. The electrons have the same probability of spin up or
even sites, and vice vergaee Appendix A At half-filling, down at any sitésee table, fo6—0); the gap is closed and
all the states in the valence ban&;0) are occupied, the electronic band is very broadt(4 showing that the elec-
while all the states in the conduction ban8;>0) are trons move freely(are delocalizedalong the chain. In the
empty. The two bands are separated by a Mott-Hubbardtrong interaction limitU/t>1, S—3. The bands become
charge gap of magnitudels. very thin [\(US)?+4t?—US—2t (t/US)], showing that
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(@)

(b)

FIG. 2. (a) A sharp boundary soliton created by juxtaposition of
regions found in the two AFM mean-field ground-statés. The
electronic structure of the sharp boundary soliton consists of two
i spin-paired bands and four discrete nondegenerate levels within the
a4t . gap. In the largeU/t limit, the two strongly localized electrons
o s m 1 20 occupying the gap levels corresponds to the two spins bordering the
®) o sharp boundary.

FIG. 1. (a) MagnitudeS of the spin at a site as a functionldft, o ] )
in the AFM mean-field backgroundb) Energy per sitdin units of ~ kKnown that in this limit, the Hubbard model is equivalent to

t) of the AFM mean-field background as a function Wft (full an AFM Heisenberg mod& with a coupling constant
line). The dotted line shows the prediction of the exact Lieb-WuJ= 4t?/U, and that its ground state energy per Sighould
solution of the Hubbard model. The dashed line shows thebe Eqf2Nt— — (J/t) In2=—2.77(/U). This confirms that
asymptotic behavioE/2Nt— —2t/U. our mean-field method is a good starting point, from which
to incorporate fluctuation corrections that lower the energy.
the electrons are strongly localized each at one site, each
having its3 spin in theOz direction. The AFM structure is
energetically favorable since it allows a lowering of the en-

ergy by virtual hopping of electrons on their neighboring A sharp-boundary soliton is a domain wall consisting of a
sites. simple juxtaposition of two halves of the chain found in the

two mean-field ground statésee Fig. 2 We treat this case
in some detail, since it serves as “reference case” for more
general extended solitons. Also, analytic calculations are
Since all the states of the valence band are occupied, thsossible and one can gain insight into the charge, spin, and
energy of the AFM mean-field ground state is simply givenstatistics of such solitons.
by The Green’s functions for the Hamiltonian of the sharp-
boundary soliton can be calculated analyticdége Appen-
1 dix B). We summarize our results below.
Egs=22k (t2NU(S*+ 2), 29 In addition to the two Mott-Hubbard bands of the AFM
mean-field background, there are also four nondegenerate
whereS=S; in Eq.(2.4). The magnitude of the ground-state discrete levels appearing in the gaps. Two of them occur
energy per site, in units of, is plotted in Fig. 1b) as a inside the Mott-Hubbard gagd&|<US),
function of U/t (the full line). For comparison, the value

C. Neutral domain wall solitons

B. The energy of the antiferromagnetic background

predicted by the exact solutiGhof the 1D Hubbard model is ET+ =—t+(US)?+t°>0,
also shown(dotted ling. The following features can be ob-
served: in theU/t—0 limit (noninteracting electronsthe E = +t— (US)Z+12<0

energy of the ground state has, indeed, the expected value

Egf2Nt — — (4/m). In the strong interaction limit/t—oo, and the other two occur in the two external gaps
the energy of the ground state goes to zero as expésiteck [|E|> J4t2+ (US)2:

in this limit every site is single occupiedThe asymptotic '

value of our mean-field energy is found to be given by - S—

Eqd2Nt— —2(t/U) [see dashed line in Fig(1)]. It is well Ef=+t+y(US)"+t°>0,
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E =-t—(US?+t’<0.

The spin projections for these nondegenerate levels are
indicated in Fig. 2). This soliton preserves charge-
conjugation symmetry: for each level of enefgyand spino L
there is another level of energyE and spin—o.

The spatial probability of localization on each of these
four discrete levels is given bisee Appendix B T

>
T

1 os |
|¢a(n)|2=2\/?)\,2[v)\2+1—7\]m”), (2.6
wherex=US/t, and %o i 2 s 7 ; . :

US/t

n if n=0 is even FIG. 3. Excitation energyin units oft and measured with re-
n+1 ifn=0isodd. spgct to the AFM mean-field backgrou_ndf the sharp-boundary_
soliton, as a function df) S/t. The dotted line shows the asymptotic
value predicted by the Heisenberg model with 4t%/U.

N(n)=N(—-n—-1)=

Using the LDOS for the sharp-boundary chaif, (E),
derived in Appendix B, it follows, by straightforward inte-

tion. that This means that the entire contribution to the spin of these
gration, tha

two sites comes from the two electrons in the occupied gap
levels. The total spin at sites1 and O is given bysee Eq.

—-Uus
| dEGS, (B)+ o5 (EN=1-2 g, (20]
—V(US)2+4t2
Si th tly two di te levels Eor 0, thi S(—1)=5(0) us
ince there are exactly two discrete levels , this -1)= =,
equation can be rewritten as 2V(US)*+t7
0 In the largeU S/t limit this approaches- S=1/2, and the
f dE(pn(E)+pp (E))=1. (2.7  picture becomes self-consistent. In this limit, the wave func-

tions of the gap levels are very strongly localized near the
. . . boundary, and the two spins from the gap levels may be
This shows that although the electronic structure iSgenified with the spins on either side of the boundgsge
changed in the presence of the soliton, at half-filling all theFigs. 2a) and 2b)]. This excitation is a boson, made up of
electrons will occupy levels wittE<O (lowest energies o electrons occupying the gap levels.
availablg and the sharp-boundary soliton is charge neutral: The excitation energy necessary to create a sharp-
there is an average of one electron per site, exactly as in thg,ndary soliton is given by the difference between the soli-

grou_nd state. . _ . ton energy and the AFM background energy. This difference
It is apparent from the above discussion that two localized, 55 two components, one coming from differences between

states split off from each of the two bands and that there argypectation values of the electronic paty;, and one com-
an even number of states in the band after the creation of oqﬁg from differences between the constants g, [see

sharp_ boundary soli_ton. T_he undoped soliton has all the IevKs_(1_4) and (1.5)]. For the sharp-boundary parameteriza-
els withE<O occupied. Since the valence band has an eveflo, the difference between the corresponding values of
number of states, half of which are spin up and half of whic wonstiS Z€T0, SO that the excitation energy is given by

are spin down, the contribution of the band to the total spin is

zero. There are also the two down spins that occupy the 0

discrete levels. It follows that the total spin of the neutral SHEDY f dEEApn(E)
soliton is an integer multiple of. e

The sharp-boundary soliton provides a reference state -us o
from which we calculate self-consistent soliton structures. In = JﬁdEEAPna(E)Jr E +E| .
the absence of anisotropy, the sharp-boundary soliton is un- no JoNUsTa
stable. Self-consistency for this reference state occurs only in (2.9

the limit of U/t—oo.

In order to test the self-consistency of the soliton, we Here,
calculate the expectation value of the spin at every site, and 1
compare it with the initial parameters. The evaluation of the Apno(€)=pS (E)—pS,(E)=—sgrE)Im[GS (n,n;E)
corresponding integrals cannot be done analytically, except ™
for the two sites near the boundary. It can be shown that the
band contribution to these expectation values is exactly zero:
L represents the difference in the LDOS between the sharp-

s s 0 e boundary soliton and the AFM background. This integral is

J_\(US)2+4t2dE(PnT(E) P (E)=0, ifn=-10. evaluated numerically as a function bfS/t in Fig. 3. As

-G, (n,ME)]

2



57 CHARGED BOSONS IN A DOPED MOTT INSULATOR: ... 9527
expected, the energetic cost of exciting a sharp-boundary [ 1 U N
soliton decreases &$S/t—o; in this limit, the electronsare @ + | V | N N ~>=// [ [ 1]
strongly localized and the interactions between them become
very weak. From the equivalent Heisenberg madelid in
this limit), we know that the cost of exciting a sharp-
boundary soliton must beJ&*=J/2=2t%/U (a pair of anti-
parallel spins becomes parallel, 8¢ 1/2 in this limit). The T /\X/ AL T
. : . o LN ~ o N L

dashed line in Fig. 3 shows this asymptotic value, in agree-
ment with our mean-field theory. FIG. 4. (a) Structure of an AFM-core soliton. The spins on the

As in the case of Bloch walls that separate domains ofwo sublattices rotate from one mean-field ground state to the other
ferromagnetism in conventional materi#lsuch as iron, the one, preserving the local antiferromagnetic correlatiéhs Struc-
AFM domain wall described above has an equilibrium thick-ture of the FM-core soliton. The spins on the two sublattices rotate
ness determined by the crystalisotropyeffects on the local in_oppo_site directions, creating a ferromagnetic region in the core of
magnetic moment orientation. For the isotropic tight-bindingthis soliton.
Hamiltonian(1.1), the neutral sharp-boundary soliton is un-
stable to relaxation into a gradual boundary in which the b_ + + bi
local moments in the core of the soliton rotate slowly from  /tel _tGED (Xi X1+H'C)_Uszi xi ((=1)%cos oy
one AFM mean field at plus infinity to the other degenerate o
AFM mean field at minus infinity. Indeed, in the isotropic +(=1)'sin Gio)x;, (2.10
model, the minimum Hartree-Fock energy is realized when h t oAt At
the soliton core radius approaches infinity. Nevertheless, w&ne€rexi = (a5a;). , _
present a detailed study of the electronic structure of the Hconsthas the same expression as in Ef5 and has
neutral domain wall of the soliton. This provides a referencefXactly the same value as in the mean-field ground state case,
point for describingstable, chargeciomain wall solitons. ~ Since the magnitude of the spin at each site remaisd
The charged solitons have a finite equilibrium core radiudnere is one e’lectron_per site. _ _
that is determined by the subgap electronic structure that 1he Green's f“PCt'On associated with B8.10 is evalu-
they induce, rather than anisotropy in the magnetic exchang@€d using Dyson’s equation, with the sharp-boundary soli-
interactions. ton as a reference case.

Consider the local magnetic moments of the extended W€ Write
neutral soliton on one sublattigsublatticeA). We allow
these magnetic moments to slowly rotate from one AFM

state, (with S=—Se,, for instancg, to the second AFM  where % is the electronic part of the Hamiltonian of the
state, 6=Sg) in the (x0z) plane. Thex direction is along sharp-boundary soliton/® is a potential localized near the
the chain, and the rotation is characterized by an adgle core of the soliton, on a region characterized by the core
describing the expectation value of the spin at a site radius of the soliton. This potential is diagonal in the site
S,=S(cos e +sin 6,,). The angles,, varies from— (#/2)  Space, but not in the spin space. The Dyson equations for the
to (7/2) asn goes from—c to +, and is described by the Green’s functions are given by

ansatz 6,= (m/2)tanii(n+0.5/p)], where p is the soliton b

core radius(in units ofa). Here, the soliton is centered be- Ggq (MM E)=8,4/G5,(N,M;E)

tween the sites—1 and 0, as in the case of the sharp-

Ho=Ha+ VP,

boundary soliton. +> Gfm(n,p;E)Vi(,”(p)Gﬁual(p,m;E).
Due to the symmetry of the problem, the rotation of the po”
second sublatticgsublattice B) is described by the same 2.19)

angled,. However, we are free to choose the sense of rota-
tion. For the case that spins on the two sublattices rotate in Here, we have used the fact th@f is diagonal in spin

the same sendeee Fig. 48)], we obtain space. Once the values & _,(n,n;E) are known at any
site n, we can calculate physical quantities such as the

- b R ) . LDOS, the excitation energy of the soliton and the expecta-
Sh=S((—1)""cos bpe,+(—1)"sin ,e) (2.9  tion value of the spin at various sitésee Appendix B

with b=1. In this case the spins remain locally antiparallel D. Electronic states in the gap

everywhere along the chain, we call this excitationfd#M- In the presence of a sharp-boundary soliton, four elec-

core soliton tronic levels split from the valence and conduction band, and
The second possibility is when the spins on the two subbecome localized levels in the gap. For extended solitons, the

lattices rotate in opposite sendasge Fig. 4b)]. In this case  number of such gap levels and their energies vary as a func-

we use formula2.9) except with the choicd=0. In this tion of the soliton core radius. In Figs(&) and b) we plot

case spins in the core of the soliton become parallel and wihe electronic spectruifbands and discrete levelas a func-

call such an excitation BM-core soliton tion of the soliton core radius for the two types of solitons,
The corresponding mean field Hamiltonian is given by for a fixed value of the Mott-Hubbard gdpS/t.
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+t-]

-Us

valence band

-t ] pla

6
@) pla FIG. 6. The energy of the near midgag*¥0) level for the
undoped FM- and AFM-core soliton, faJS/t=1, 3, and 6, as a
Usiat function of the soliton core radius. For the FM-core soliton this
-US+

level approaches the midgap, while for the AFM-core soliton it
approaches the band edge. Eb®/t<2, the FM-core soliton level

N reaches the midgap. F&iS/t>2, this level goes tdJS—2t, the

+t |

band edge of the FM valence band.

a FM state can be easily calculated, and it is seen that it is
et made up of two bands with energiesE
- e[—-US—-2t,—US+2t] and Ee[US—2t,US+2t], the
lower (valence band consisting of nondegenerate levels with
" ] spins in the direction of the FM spins-(Ox direction, in this
case, while the upper(conduction band consists of nonde-
\ generate levels with spins in the opposite direction. This
U , . shows that ag increases, the initial AFM bands containing
(b) 0 2 o/ 4 6 doubly degenerate levels with up and down spins inQtze
direction will spread out into the broader FM bands with
FIG. 5. (@ The lower half of the electronic spectrum of an spins in theOx direction. This spreading of the bands @s
AFM-core soliton, as a function of the soliton core radiudn the increases is shown in Fig(15.
limit p—0, there are two discrete levels. In the limit-ce, this The most interesting gap levels are the pair of levels clos-
soliton becomes indistinguishable from the mean-field backgroundest tg the midgap, because these levels accommodate the
As the soliton core radiug increases, the discrete levels reenter thedoping electrons or holes. In Fig. 6 we show the behavior of
bands.(b) The lower half of the electronic spectrum of a FM-core o of these levelsH>0) for different values of)S/t, as a
soliton, as a function of the soliton core radipsIn the limit p function of p. There are two distinct types of behavior and
—0, there are two discrete levels. In the linit-<, the entire two different regimes for the FM soliton. I)S/t<2, the
ghain becomes ferromagnetic and the spectrum consis.ts of two COPéveI reaches the midgap, whileWfS/t>2 the level g(')es to
tlen[ufgs_b;niso sihzet] VHaﬁgce:[Z?Qi(uggﬁfzp?ndénf’:[g) some nonzero value gs—o. This is consistent with the
+(US)YM2 ’ ' Y band structure of the FM state. This state has an inner gap for
energieskE e[ —US+ 2t,US—2t], which is consistent with

. . the fact that if US/2t>1, the gap level goes to
In the p— 0 limit, both solitons show the same structure, +(US—2t)#0. If US/2t<1, the gap is closed in the FM

as the. sharp-boundary soliton. Howev_er,pa'mcreases, the core. Therefore the gap level goesHe-0 asp increases.
behavior of the two spectra is very different. For the FM-

core soliton, more and more levels split off from both bands o _ _
and go deeper into the gaps. For the AFM-core soliton the E. Excitation energies of the neutral solitons

tendency is opposite: the gap levels go toward and eventually \we now evaluate the total density of statB©9) and the
reenter the bands. These different behaviors can be undegs itation energy of the solitons. 5, and pS(E) are the
" (&

stood if we analyze thep—ce limit. In this limit, an AFM- 5 ikonian and total density of states, respectively, of the
core soliton is practically indistinguishable from the groundsharp-boundary soliton, then the difference between the total

state, because the rotation angle between spins on neighbofsngities of states of the chain with an extended soliton and
ing unit cells goes to zero. Therefore, the electronic structurg,o chain with a sharp-boundary soliton is giveriby
should become identical with that of the ground state, which

consists only of the two bands. This is exactly the behavior L q
seen in Fig. &8). On the other hand, in the presence of a _obiey sy e O  \/bs
FM-core soliton withp— o, all the chain is in the core re- Ap(B)=p (B)=p(B)= T IdeIn de{1-V'G(B)].
gion, which is a perfect FM state. The electronic structure of (2.12

-Us
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Since VP has nonzero matrix elements only for a finite
range of sites, the determinant can be calculated in the site- o7k
spin basis, and is equal to the determinant of the finite region
with non-vanishing matrix elements &f°. Introducing the
function

™ FM-core soliton

e

t

F(E)= Im{In[de(1—V"GS(E))]}, (2.13
the variation of the DOS is given by

1d
Ap(E)=——=F(E). (2.19
p anr dE AFM-core soliton
The difference between the energies of the ground states ofa) ° z “ pra g : "

Hg and Hg, can be expressed in terms B{E):

1 47
AEgs focc stateEAp(E)dE Wfocc statesF(E)dE. A
(2.15 '
In writing the last equality, we made use of the fact that the +
chemical potentials of both Hamiltonians are egya+0 in sl AFM-core soliton
both undoped casgdn the undoped case there is no contri-
bution to the excitation energy coming froly.spart, since 3

it has the same value for the extended solitons as for the
ground state. For the doped case, the gap levels that art
occupied(or empty have to be taken into account as well. an ‘ - - . ‘ .

The total excitation energy relative to the uniform AFM (b) A
background is given by

FM-core soliton

FIG. 7. (a) Excitation energiesin units oft and measured with

1 respect to the AFM mean-field backgrouraf the undoped FM-
Eexe= f F(E)dE+ES,. (2.1  core soliton and AFM-core soliton, as a function of the soliton core
T Joce states radiusp. HereUS/t=5. In the absence of magnetic anisotropy the

. . . 1D neutral domain wall is unstable; the minimum energy occurs for
Wherengc 1S g_lV(_an In Eq.(Z.S). qu a fixed _valu_e olSit, p—x. (b) Excitation energiesin units oft and measured with re-
the typical variation ofEey With p is shown in Fig. 7a). In - gpect to the AFM mean-field backgroundf a doped FM/AFM-
the p—0 limit, both the FM-core and AFM-core solitons ¢ore soliton, as a function of the soliton core ragiudhis estimate
behave identically and their excitation energies equal that of optained by adding the energy of the level occupied by the dop-
the sharp-boundary soliton. As increases, the excitation ing electron(hole) to the excitation energy of the undoped soliton.
energy of the AFM-core soliton decreases, sincg-ase this  For US/t=5, a stable, charged FM-core soliton existpat=2.
soliton merges into the AFM background. On the other hand,

the .excitation energy lof t_he FM-core solitong increases with IIl. CHARGED DOMAIN WALL SOLITONS
p, since as the core size increases, more spins become paral-
lel instead of antiparallel. By adding the energy of the first available gap level of an

The instability of the neutral domain wall soliton is a undoped FM/AFM-core soliton to the total excitation energy
general characteristic of 1D systems. As in the classicabf the undoped FM/AFM-core soliton, we obtain a first esti-
theory of Bloch walls separating domains of magnetizationmate of the excitation energy of a doped FM/AFM-core soli-
in a ferromagnet, a stable finite-core-size soliton can exist ifon. The typical dependence with the core radius of this en-
crystal anisotropy energies are included in the model. Nevergy (in units oft), for a givenUS/t, is shown in Fig. ().
ertheless, the importance of these domain walls is apparernithis offers plausibility to the idea that a charged FM-core
For a doped system it is energetically more advantageous #pliton is stable at a finite-core radius. It suggests that the
pay the cost of creating a domain wall and lower the totaldoped soliton excitation energy is indeed less tha8
energy by allowing the doping electrdhole) to occupy a [which is the energetic cost of placing the electtbnle) on
deep gap level than it would be to let the doping electrorthe first available level in the conductidgmalence band, in
(hole) occupy the first available level in the conduction band.the absence of the solithrHowever, this elementary consid-

In the next section, we identify two types of charged solitonseration is not self-consistent. Adding an electitwle) on

on the lattice with different spin and statistics from conven-the first available level in the gaf.e., in a localized staje
tional charge carriers in a metal. The lowest-energy chargethodifies the expectation values of the spin in the core of the
soliton, which is centeredn a site, appears to be a spinless soliton. In order to get a self-consistent model, we proceed as
bosonic excitation. A charged soliton which is centebed  follows. We start with the initial parameters of an undoped
tweentwo sites has higher energy and appears to baren soliton and calculate the corresponding Green’s functigns
stablespin-1/2 fermion folUS/t>2, whereas folJS/t<2 it  the way described in the previous secjiofihe expectation
has the character of a spinless boson. values of the spin of the corresponding doped soliton at vari-
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ous sites are obtained by integrating, over the correct range o4
of energies, the trace of the imaginary part of the Green’s ol
function at that site multiplied by thé operator(in spin
spacé. This yields a new set of spin expectation values. 21
Once these new parameters are obtained, the next iteration orf
begins, and the process continues until it converges to a self-
consistent solution. ©e
A. Self-consistent charged solitons 0zt

Remarkably, the self-consistent, Hartree-Fock, structure 03t
of the charged soliton does not exhibit spiral twist of the N . . . ‘
magnetic background as suggested by the structure of the a) e o & o s 10 1

extended neutral solitons. Instead, the charged soliton con-
sists of a collinear spin alignment in which the magnitude of
the local magnetic moment is suppressed within the soliton os|
core. Using the procedure described above, we calculate the
self-consistent shape, electronic spectra, and excitation ener-
gies of the charged solitons. For both self-consistent solu- o1t
tions, the magnitude of the spin along the chain becomes
zeroS,=0, while the spin perpendicular to the chain is sup-
pressed in the core of the soliton. The vanishing of the com- oty
ponent parallel to the chain has a simple interpretation. In the o2l
neutral soliton, the main contribution to the spin parallel to
the chain was given by the electron on the deepest occupied
gap level, and it is exactly this level that becomes empty 04 . . i . .
upon hole doping. ® e ® aie ’ * *
The two self-consistent charged solitons are depicted in

Fig. 8. The magnitude of the spin perpendicular to the chain FIG. 8. (a) The self-cpnsistent spin distribution of a doped soli-
is well approximated bySﬁ=Stanhh+O.5/p) for a doped ton centered between sites. HetES/t=1.2. The magnitude of the

soliton centered between two sites, &jc= Stanhfvp) for a spin is suppressed in the core of the soliton, due to the localization
doped soliton centered at a site ’In Figaowe glot the of the doping particle in the coréb) Same aga) for doped soliton

. . ) . centered at a site.
self-consistent soliton core radius for both solitons as a func-

tion of US/t. In the largeU S/t limit, the localization length

of the gap levels is very small and accordingly the solitonany value of U&. Using symmetry arguments, it is easy to
itself is very small. In the small S/t limit, the bound levels see that this level is emptypr doubly occupiegfor the hole

are more extended, and the solitons are large. For large solielectron doped soliton. The spectrum of the doped soliton
tons, a continuum approximation that we discuss in the nextentered between two sites is more complicated: for
section recaptures the lattice results, and there is no distindd S/t<2, there are only two nondegenerate levels symmetric
tion between the two types of solitons. This can be seen frorwith respect toE=0, which go to zero a8)S/t—0. Since

02

03k

Figs. 9b) and 9c¢). In Fig. 9b) we plot the excitation ener-
gies of the two types of solitongn units oft, and defined
with respect to the undoped AFM mean-field backgrouasl
a function ofUS/t. In the smallUS/t limit, the two excita-
tion energies are practically equand very well approxi-
mated by the value o) S/+/2t predicted by the continuum

the soliton is doped, these levels are either both occupied or
both empty. FolUS/t>2, a new pair of nondegenerate lev-
els splits off the inner band edges and becomes localized.
The spin projections of these nondegenerate gap levels are
similar to those of the sharp-boundary soliton: the two lower
levels support down spingnore generally, spins pointing in

model (dotted ling]. In the intermediate and lardeS/t re-  the same direction as the expectation values of the spin at the
gimes the size of the soliton becomes comparable to the latwo sites near the center of the solifpwhile the two upper
tice constant. In this case the doped soliton centered at a sitevels have the opposite projection. The appearance of this
is energetically favorable to the doped soliton centered besecond pair of gap levels has important consequences, re-
tween sites. For any value &fS/t, the excitation energy of lated to the spin of such a soliton. We discuss this issue
both types of solitons is less th&hS, the energetic cost of below.
simply adding the doping electraiole) on the first avail-
able level in the conductiofvalence band. This suggests
that charged solitons must appear automatically on the chain
upon doping. The doped soliton centered at a site is a boson. This can
In Fig. 9Ac) we plot the lower half of the electronic spectra be seen from its electronic spectrum: all the states in the
of the two types of solitongthese doped solitons have dis- continuum bands are spin paired and filled, while the doubly
crete levels only in the internal gap, and they have the usualegenerate midgap level is either empty or doubly occupied.
charge-conjugation symmejryThe doped soliton centered This means that the total projection of the spin perpendicular
at a site has only a doubly degenerate level at the midgap foto the chain is zero. Therefore this soliton is a charged boson.

B. Spin of the charged soliton
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sharp-boundary model analyzed previously, and dope it. We
have argued that in the strongly localized limit, the two elec-
trons occupying the two discrete levels wilh<0 of the
sharp-boundary soliton contribute equally to the spins of the
two sites bordering the center of the soliton. The total spin of
the undoped soliton is an integer multiple of As we re-
el 1 move one of these electrons, in order to get a doped soliton
(@ ol : . — DU ——| centered between sites, the magnitude of the spin at the two
sites bordering the center decreases by half, leaving behind a
total spin of 1/2.

The bosonic charged soliton centered on a site is energeti-
cally favored and it can lower its energy further by quantum-

prazsf

= mechanical hopping along the chain. Since the structure of
S atiton centered at a site this soliton is unchange@dn the largeU S/t limit) as the hole
"N sotiton contered between sites 1 moves, this type of soliton is very mobile and its total energy
os|l continuum model 1 is lowered by an amount of the order bhs it moves. The
(b) °o ; : Toee S : . ; doped soliton centered between two sites is a charged fer-

mion. This soliton, however, is relatively immobile, since
motion requires changes in the magnitudes of the spins even
for large US/t.

C. Charge density of the doped solitons

In the previous sections, we simplified the eigenvalue
spectrum of the charged solitons by neglecting the charge
density term in the mean-field Hamiltonigi.4). A self-
consistent treatment of the charge density leads to a loss of

FIG. 9. (a) Soliton core radius of a self-consistent doped soliton(Charge conjugationsymmetry of the soliton eigenvalue
centered at a sitéfull line) and centered between sitésashed Spectrum aboutE=0. However, the general conclusions
line), as a function ofJS/t. (b) The excitation energieén units of ~ concerning the charge and the spin of the solitons remains
t) of the self-consistent doped soliton centered between itls  the same as discussed earlier. In order to take into consider-
line) and centered at a sifdashed ling as a function ofJS/t. For  ation this extra charge localized in the core of the soliton, we
US/t<2, the soliton core radii are large and the two solitons be-use the Hamiltoniarnl.4) to describe the doped system. The
come indistinguishable, giving excellent agreement with the conself-consistent calculations once again yield two types of
tinuum model(dotted ling. For US/t>2, the soliton radius is com- doped solitons.
parable to the lattice constar(t) Electronic spectra of the self-  Although the charged soliton centered at a site continues
consistent doped solitons as a function UfS/t. The soliton to have a doub|y degenerate gap |eve|' the Charged solitons
centered at a site has a doubly degenerate midgap level 1084l centered between sites has only nondegenerate gap levels.
For US/t<2, the soliton centered between sites has a pair of noNHowever, their spectra are no longer symmetric with respect
degenerate levels which go towards the midgap &4 decreases. to E=0. Instead, this symmetry manifests in a more subtle

EZ;;JSS/bZ, a second pair of nondegenerate levels split from theway. Let Hgf"e be the Hamiltonian of a hole-doped soliton

defined by the paramete andQ,=1—Ap,, and "
In the smallUS/t limit this is confirmed by the continuum the Hamiltonian of an electron-doped soliton defined by the

model (see next section The fact that the total spin of the Parameters-S, andQ,=1+Ap,. (This is exactly the type
doped soliton is zero can be seen also from Figp).8By  Of correspondence expected in systems with charge-
symmetry, the sum of the spins to the left of the core must b&onjugation symmetry.t is straightforward to prove that if

e ®o Y 2 s ) s s 7
us/t

equal and opposite to the sum of the spins to the right of th&hoidN) is @ spinor such that(a *heidN) = E dpeidN), then
soliton, giving a vanishing total spin. the spinordeecrodN) = (—1)"PnoN) satisfies the equation

The situation of the doped soliton centered between site®&* ™ YeiecirofN) = — EdeiecroN). N other words, the

is more complicated. FOUS/t<2, this soliton is a boson, electronic spectrum of the hole-doped soliton is obtained by
because it has the same type of electronic structure as thieflection with respect t&=0 from the electronic spectrum
other soliton. On the other hand, forS/t>2, this soliton is  of the electron-doped soliton.

a fermion. Since a new nondegenerate level splits from the This loss of symmetry of the electronic spectrum makes
lower band edge, this lower discrete level is occupied by on¢he problem of determining the Fermi level nontrivial. It
electron. While this level was still in the valence bandturns out that the chemical potential remains fixed at zero, as
(US/t<2) its spin was delocalized over the whole chain.was the case for the undoped soliton. In other words, for a
Therefore it did not contribute to the spin of the soliton. Ashole (electron doped soliton all the R—1 (2N+1) occu-

this level goes deeper and deeper into the gap, the corr@ied stateswhereN is number of unit cells of the chgirare
sponding wave function becomes well localized in the corebelowE<0. This symmetry guarantees that the “shapes” of
of the soliton, and the 1/2 spin it carries becomes the spin afhe self-consistent electron- and hole-doped solitons are the
the soliton. Another way to understand the fermionic characsame. The spin distribution is not greatly modified by the
ter of this soliton for largeJ S/t is to start from the undoped charge term. The tanh function still gives a good fit, and the
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conduction band edge energy

soliton centered between sites

valence band

(b) ®usie !
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(b) us/t FIG. 11. (a) Excitation energie$in units oft) of static hole- and
electron-doped solitons centered at a site, as a functiod St,
with no compensating positive backgrourtd) Excitation energies
rein units of t) of static doped solitons centered at a iidl line)
and centered between sitédashed ling as a function ofUS/t,

FIG. 10. (a) Electronic spectrum of a hole-doped soliton cen-
tered at a site including charge redistribution effects, as a functio
of US/t (diamonds. All gap levels are doubly degenerate. The lines
Ehlow t:‘ﬁ app(;oxmate values_foun(;m the latgﬁ;“m't'hA:l I%velsd with a uniform, compensating positive background. The solitons

elow the midgap are occupieth) Same ad@) for a hole-dope centered at a site can move freely along the chain, and therefore

soliton centered between sites. All gap levels are nondegenera%eir actual energy is lowered by an amountr@lative to the static
The spectra of the corresponding electron-doped solitons are Ol%'oliton

tained by inversion with respect ©=0.

soliton core radii have the same qualitative behavior as in thd/2 spin that makes this soliton a fermion. Similarly, the
previous case. The electronic spectra of the hole-doped sol¢lectron-doped soliton centered between sites is seen to be a
tons centered between sites and centered at one site dfFmion for US/t>3, where there are three occupied gap
shown in Figs. 1(&) and 1@b) (the spectra of the corre- levels, and a boson beloWS/t<3, where there are four
sponding electron-doped solitons are obtained by reflectio@ccupied gap levels.
with respect t&E=0). All the gap levels of the doped soliton  In the largeU S/t limit, we find a simple analytic expres-
centered between sites are nondegenerate, while the gap Ieion to describe the approximate position of the discrete lev-
els of the doped soliton centered at a site are doubly dege!s of these solitons. For the hole-doped soliton centered at a
erate. site, the positions of the two doubly degenerate gap levels
From Fig. 1@a), we can see that the doped soliton cen-are well approximated b= J(US)?+t2+t, while for the
tered at a site remains a charged boson, since only levelle-doped soliton centered between sites, the two levels
belowE=0 are occupied. For a hole-doped soliton centerediear the midgap are att while the two upper levels are at
at a site, only the valence-band levels are occupied and therUS)?+t?=+t [see dotted lines in Figs. 4 and 1@b)].
is no possibility of a localized spin. For the electron-doped The total energies of the self-consistent electron- and
soliton centered at a site, all the degenerate gap levels atwle-doped solitons are shown in Fig.(&1 The resulting
doubly occupied, and once again there is complete spin camxcitation energy of the hole-doped solitoflswer ling),
cellation. which is lower than the excitation energy of the electron-
For the doped soliton centered between sites, we see agaitoped solitongthe upper ling is an artifact of our Hamil-
two distinct behaviors. For a hole-doped soliton centered at gonian that does not contain a term describing Coulomb at-
site, we see from Fig. 1D) that belowUS/t=1 there are no traction between the electrons and the positive background
gap levels withE<0. Therefore only the levels of the va- nuclei. This artificially favors a hole-doped soliton. An
lence band are occupied and this doped soliton must be @lectron-doped soliton costs more energy, in this oversimpli-
boson. FolUS/t>1, a discrete level splits off the band edge fied model, because the extra repulsive energy due to having
of the valence band and becomes a bound state, carryingraore electrons is not compensated by attraction between the
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extra electron and the nuclei. The contribution of a neutralto the site space. He®(x) is a four-component spinor de-

izing positive background may be estimated by simply tak-scribing the two components of electron spin on each of the

ing the average between the excitation energies of the holéwo lattice sites constituting a unit cell. Similarly, the inter-

doped soliton and the electron-doped soliton. This is showmction part of the Hamiltonian becomes

in Fig. 11(b) for the two types of doped solitons. The impor- N

tant observation about Fig. @ is that the average energy Si(x)-o 0

of the electron- and hole-doped soliton centered at a site,  H,= | dx®dT(x)| —U- 0 §,(x)- &

exceedsUS. However, it should be remembered that this

soliton can lower its energy by an amounby quantum-

mechanical hopping motion along the chétinis is one unit U

on the vertical scale of Fig. 14)]. This additional mobility +=[1-Q(x)] | ®(x), (4.1b

for the charged soliton centered on a site makes it energeti- 2

cally favorable compared to the soliton centered between .

sites. where S, (,) is the expectation value of the spin at the site
The increase in the excitation energy of the doped solitond(2) of the unit cell located ax, andQ(x) is the charge at a

when the charge terms are included is partly an artifact of theite.

purely on-site Coulomb repulsion of the Hubbard model. For In the undoped case, we can use the same parametrization

an electron-doped soliton centered at a site, the extra electra@s for the discrete cas®(x) =1 for both the AFM-core and

is basically localized on top of another electron, and thishe FM-core solitons. However,

costs an enormous amount of energy. A more realistic model . . R

should consider a longer-range Coulomb interactions as well S;(x) = S(cod 0(x) Jex+sin (x)]e,),

as a more realistic model for the positive background charge . . .

of the nuclei. S2(x)=S((—1)°cog O(x)Je,—sir[ 8(x)]e,).

For an AFM-core soliton, we choode= 1, whereas for the
IV. CONTINUUM MODELS FM-core soliton we choosb=0. Here #(x) describes the
direction of the local spin with respect to the chain axis. The
%ontinuum Hamiltonian for the AFM/FM-core soliton is
given by

The properties of lattice solitons, which we have de-
scribed so far, can be elegantly recaptured by means of
continuum model. The appropriate continuum model is con
structed in such a way that the local antiferromagnetic cor- d
relation between nearest-neighbor sites is treated exactly, but H= f dxCID(x)T[ —2tair,—
fluctuations from one unit cellconsisting of two spinsto dx

another have slow spatial variations. This also provides a

foundation for constructing the appropriate continuum model —USA7,(sin #Ac,+ cos ﬁax)] d(x), (4.2
for the two-dimensional antiferromagnétescribed in Sec.

V) where the lattice model is very cumbersome. where A=1 for the AFM-core soliton andA= 7, for the

One of the difficulties of a discrete model is that the FM-core soliton.
eigenequation$l ¢(n) =E¢(n) are recurrence relations. In The electronic structure of the mean-field, AFM back-
the continuum model, these recurrence relations are replacegiound statef6(x) = = «/2] of this Hamiltonian is made up
by differential equations, which in turn have analytical solu-of two bands whose dispersion relations are
tions. The simplest continuum approximation consists of exg{*) = + \[(US)?+4a’t’k?, and a Mott-Hubbard gap of
panding the dispersion relations near the Brillouin-zone edggnagnitude 2JS. In the presence of a soliton, the angiex)
ko= = m/2a. If we expand the free-electron dispersion rela-describes the rotation between the two ground states, and is

tions €,= 2t coska) near this point, we get the approximate characterized by a soliton core radijpsWe choose
value ¢, = — 2ta(k—Kg). Changing the reference point from

- =Kq i i i T X
k=0 to k=kq in the reciprocal space, we can write B(x) = Etanl‘(; _ 4.3
€ — —2tak=2tai 5. Introducing the dimensionless variables,
k—ko X
The hopping Hamiltonian can then be approximateddme g:XE, e= E and pczp§'
Appendix A;' 2at us 2at
the soliton spectrum is obtained by solving the eigenvalue
0 —2tak bl
+ problem,
Hye= _; Q| —2tak 0 |k

d
_iTxd_é«_ 7,Sin 6({)o,+ A cosO({)ay) | p()=ed({),

=f dx dDT(x)(—ZtaiTX%()(I)(x). (4.1a (4.4
where 6(¢) = (m/2)tanhg/p;). Unlike the lattice model, in
In what follows, the Pauli matrices, , , are associated to which there are two independent parameté&'t andp/a,
the spin space, while the Pauli matricgs, , are associated here we have just one parameger.



9534 MONA BERCIU AND SAJEEV JOHN 57

1 . . . T . T T B. FM-core soliton

Since the FM-core soliton Hamiltonian commutes with
the operatoP = 1,0 (with eigenvaluest 1), the eigenfunc-
tions ¢(¢) can be chosen such that they are eigenfunctions
of P as well. We perform a unitary transformation with
U=exd —i(n/4) r,0] such thatu "'PU=r,. Once again,
labeling the eigenvalues of, by s=+1, we obtain the dif-
ferential equation for the new two-component function

7(§)=U(J):

d
—iS«rxd—g—[cos 0(L)ox+ssin (L) o,]|n(d)=en({).
(4.6)

p US/ 2at

For the FM-core solitor{unlike the AFM-core solito))
the matrix oy anticommutes with the Hamiltonian. There-
fore, if there is a stateb with the quantum numbers(s),
then there is another statg ¢ with the quantum numbers
(—e,s) as expected by charge-conjugation invariance. An-
other difference is that for the FM-core soliton, levels with
energies in the different halves of the gap have the same
Since the AFM-core soliton Hamiltonian commutes with parity (instead of opposite parity for AFM solitgnUsing the
the operatolP= 1,0, the eigenfunctiong({) can be cho- same argument as before, there are no degenerate discrete
sen to be eigenfunctions &f as well. SinceP?=1 andP is  levels, except ab=0. This is verified by numerical calcula-
hermitian, its eigenvalues ar&1. We perform a unitary tions. Numerically, we find only a doubly degenerate level at
transformation withU = exd —i (#/4) ryo] such thatP be-  e=0, and the corresponding wave function is given by
comes diagonal, i.el) "'PU=r,. Labeling the eigenvalues

FIG. 12. Dependence of the energy of the discrete gap level o
p.=pUS/2at, predicted by the continuum modgll line), and by
the discrete models witd S/t=1, 2, and 6, for an AFM-core soli-
ton.

A. AFM-core soliton

of 7, by s=*+1, we obtain the differential equation for the 1 ¢
new two-component functiom({) =U ¢({): 7)=C| _; eXp( _f dZ'(sin 0(¢")+is cos6(Z))|,
0
. d ,
—Wyd—g—[cosﬁ({)aﬁsm 0(5)02]}77(5):%77({)- s==1. (4.7

(4.9 Here, C is a normalization constant.

This shows that if there is a level with the quantum numbers
(e,s) there is another level with the quantum numbers
(—e,—s), as expected for charge-conjugation invariance.
Clearly, the discrete levels on either side of the midgap have N the case of doped solitons, a self-consistent solution for
different parities. We can see from the structure of @)  the spin degrees of freedom is possible if we taie)=1.
that the levels are nondegenerate, since there is no matrike self-consistent solution of the discrete case suggests a
that anticommutes with all three Pauli matrices. parametrization of the forr,(x) = — S,(x) = S tanh{/p)e, .
Using the method presented in Ref. 13, we numericallMt turns out that with this parametrization, the continuum
evaluate the gap structure. There are only two levels in thenodel has a simple analytical solution. In fact, it maps onto
gap, with energies varying from 0 to the band edgespas the continuum polyacetylene modél.The total “elec-
varies from zero to infinity. In Fig. 12 we present a compari-tronic” Hamiltonian is given by
son between the results of the continuum model with that of
the discrete AFM-core soliton model for various values of
US/t. In the largep. limit the agreement is very good for

C. Self-consistent theory of the doped soliton
in the continuum model

d X
He= f dX(DT(x){ —2tai7'xd—x — USTZaZtanhﬁ;] d(x).

many choices ol S/t. For smallp. values, the agreement is (4.9
best whenUS/t is small as expected, since for a givep,
smallerUS/t values correspond to biggera values. Using the dimensionless variables defined earlier, the ei-

The excitation energy of the continuum AFM soliton is genvalue problem reduces to
similar to that of the lattice AFM soliton. The band contri-
bution to the total soliton energy varies slowly wih, leav- . d {
ing the main contribution to the discrete levels. For the un- _'Txd_g_tanl‘(p— .0, $({)=ed(). (4.9
doped soliton, only the discrete level wii< 0 is occupied, ¢
and the energy of this level decreasepaicreases. As the Using the fact that the Hamiltonian commutes width, and
soliton expands, its excitation energy diminishes, until it bedintroducing the quantum numbers [defined by
comes indistinguishable from the AFM mean-field back-o,¢s({)=sds({)], Eq. (4.9 reduces to a pair of two-
ground. component equations:



) tam‘(pi) Tz} ¢s(§):e¢s(§)15: +1.
¢ 4.10

o d
_ITXd_§

This equation can be written in a more familiar form if we

perform a rotation byr/2 about theDy axis in the site space.
This rotation is implemented by the matrix
U=exd —i(m/4)7,]. The rotated Hamiltoniark{=U"H,U
and the rotated wave functiong(¢)=UT¢4(¢) satisfy the
equation
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Rotating these wave functions back to the initial represen-
tation, we obtain the band wave function:

1
(4.12
* 1 * * * *
P10 = E[Ovuk(§)+Uk(g),O,Uk(g)_Uk(g)]-

The wave functions of the two midgap levels are given by

. d {
[ gt tanl‘(g) Tx] () =eyy(). (41D

* B .
¢ 18(X) 2\/;COS|’(X/p)( 1,0-i,0),

For s=1, this equation is identical to the corresponding (4.13

equation for charged solitons in polyacetyldifs. (7) from

Ref. 27. From Eg. (4.1) we can see that ¢* 1 g(X)= —=—(0,i,0,1).

_1(0)= 10 1(L). Therefore, fors=—1 we obtain the ' 2\p costix/p)

same spectrum.

The above considerations demonstrate that the spectrum In the doped solitqn, all the levels in 'the valence band are
of this doped soliton is identical to the spectrum of the soli—OCCUP'ed' and the midgap levels are either empty or doubly

ton in polyacetylene. In the polyacetylene case, the spin is ccupied. Therefore, the only contribution to the expectation

trivial degree of freedom and consequently each level is dou\-/alue of the spins comes from the band. Using these wave

bly degenerate. The soliton structure induces phase shifts E‘antlons, the expectation value of the spin in teirection
the band wave functions and, therefore, the calculation of th& 9IVen by
excitation energy of the doped FM-core soliton follows ex-
actly the same steps described in Ref. 27. This yields the
result that the doped soliton is stable whep=1 or
pla=2t/US. In this particular case, the spectrum of the soli-
ton is made up of a doubly degenerate level at the midgap
plus the two bands. The soliton excitation energy is given by
US/\/2. The results of the continuum model are in goodwhere S= (1/2|_)EK[US/\/(US)2+4a2t2k2] and L=2Na
agreement with the results of the lattice model in the smalls the length of the chain. This demonstrates the self-
US limit [see Figs. @) and 9b)]. consistency, since we have shown previously that the mag-

It is straightforward to verify that this calculation is self- nitude S satisfies this conditiorfrecall the self-consistency
consistent with respect to the expectation value of the spirequation for the AFM mean-field backgroyn@he expecta-
The band wave functions are given by tion values for the spin in the andy directions are zero.

It is straightforward to verify that this doped soliton has

S({)= %1<Tzaz>band:%§ ¢§,k(§)7'za'z¢s,k(§)

—; REUF (ve(()]=Stank(), (4.14

uk({) uk(¢) no spin, but carries the charge of the doping electtuie).
Yo D=\ v(0)| and -1 (D= -y ()| For each energy level in the band, there are an equal number
of eigenfunctions with upg=+1) and down §=—1) spin

o,. Since all the levels in the band are occupied, the total
spin is zero. On the other hand, the doped soliton has a
charge+ e, which is localized in the core region with a prob-
ability density given by that of the midgap level. For a hole-
doped soliton only the valence band is occupied and the
expectation value of the probabilifgharge density is given

by

where the detailed expressions fag({) andv,({) in the
casep.=1 are given in Ref. 27. Explicitly, we have even
solutions,

U +ive(9) = Em[k cosk{—tanh{ sink{],

. 2 [1-ik
U () —iv (= \[EI \/msm k¢,

and odd solutions,

p<x>=k25 ¢:,k¢s,k=22k (Jugl2+vi?)

1

a

1 tan 17 (t/US)
2cost(xlp) ~ m(/US)

. (419

u(O)+ive(9) = [k sink{+tanh{ cosk{],

L1+ik

. 2 1-ik
Uk(é)—lvk(§)=\/g(—l) T iRCoske.

Here, the dimensionless wave vectoe0 is measured in
units of US/2at.

The total chargéin units of the electron chargat one site is
given byQ(x) =ap(x). The total number of electrons in the
chain is given by

L2 dxe2 2 . t
fﬁuzp(x) X= N—;tan vk



9536 MONA BERCIU AND SAJEEV JOHN 57

whereL=2Na is the length of the chain ar is the num- $6 O 0 0
ber of unit cells. In the limitJS/t—0 (weak coupling, this .
goes indeed to 98— 1, as expected for one extra hole. . 0 S 0 O (5.25
| o o &g ’ '
V. TWO-DIMENSIONAL ANTIFERROMAGNET: S R
ELECTRONIC STRUCTURE OF MERON VORTICES 0 0 0 s

In this section we demonstrate the analogy between 1@vhereS describes the expectation value of the spin atithe
domain walls and polarons, and 2D merons and skyrmionsite of the unit cell.
respectively, in the continuum approximation. In order to In the AFM mean-field reference state we hare Sr,0,
keep the article self-contained, we review the main points ifassuming that the spins are oriented in thdirection, and
the derivation of the 2D continuum Hamiltonian. the dispersion relations are given by

As discussed in Sec. |, we assume that the 2D lattice
Hamiltonian is given by Eq(1.4). The mean-field back-
ground consists of antiferromagnetically aligned local mag-
netic moments whose Hartree-Fock energy has been lowered L ) . .
by the inclusion of uniform spin flux. This is expressed for- Du_e to the relat|V|st|9 f_orm of the dispersion relations, the
mally by setting the product of the electron hopping matriced €'Mi surface at half-filling £r=0) collapses to the four
T2T237T34T41= —1 around any elementary plaquette. Wecorner points of the Brillouin zonek°=[=(n/2a),
choose the simplest spin-independent gauge in whicht: (7/2a)]. The continuum approximation consists, as in the
T=—1 for one link of each plaquette, biit/=1 for the 1D case, in linearizing the electron-dispersion relations about
remaining three links. The spectrum is independent of th@ne of these isolated Fermi points, by replacing kapith
choice of the gauge. For undoped solitons we cha@sel  (ki—k{)a— —iad;, i=x,y.
and, since we are interested only in the electronic spectra, we Using the dimensionless variablex—x(US/2at),
drop the constant terms. y—y(US/2at), andE— (E/US), the Schrdinger equation

We introduce an eight-component annihilation operatotbecomes

d)(F) for up- and down-spin electrons at the four sites of the
square unit cell located at, and the corresponding eight-

component Bloch operatapg=N~Y25 e~ % $(r). Here N

is the number of unit cells and the sum is performed over all, . . . . .
. L ) i o ) As in the case of the domain walls in one dimension, there
the unit cellsk is restricted to the first Brillouin zone, which

. : X ; are two distinct types of meron-vortex configurations in two
in this case is defined byk,e[—m/2a, m/2a], kye

. dimensions. For a meron with an AFM core we may param-
[—m/2a, w/2a]. In terms of the Bloch operators, the Hamil- otrize the interaction matrig by the relations

tonian can be rewritten as

Ei== /(e + eﬁy) +(US)2. (5.3

i aydxt+iaydy+ %3 P(r)=E(r). (5.4)

i §,=-5,=5,=-5,=Sh (5.5

H=2 ¢ [enact e ay+UBldx, (5.1) 1= "% 5
k Here,

where €,= — 2t coska, a is the lattice constant, and, ,

andp are 8x< 8 matrices whose structure is dependent on our A=[sin O(r)coq we),sin (r)sin(we),coso(r))

. . il = . . 14
choice for the mean-field parametdrs andS; . Explicitly, plays the role of a plaquette director field, around which

0 (T®H* o 0 there are four antiferromagnetically correlated local mo-
1 ments. For the FM-core meron, the required parameterization
T 0 0 0 is given by
“ o 0 0 (T3 | T rEn@L s s
o 0 T* o0 A (5.6
(5.29
0 0 0 T4 S,=S,=—S(h—2A,).
0 0 (T¥* o Here, u is the vortex winding number and we choose the
Xy= 0 723 0 o | =1® @l angle (r)=2tan (r/p) for r<p and 6(r)= (w=/2) for

r>p. The angle of the plaquette director field with respect to
the z axis varies from 0, in the core of the meron,#d2, in

the asymptotic region, as shown in Fig. 13.

where we choos&'?=—1, T®=T%= TM:}- Herel is the It is straightforward to see that the two merons have the
2X 2 identity matrix in the spin space, andand 7 are two  same asymptotic structure, but their cores are very different:
sets of 2< 2 Pauli matrices describing hopping in tk@andy  while for the AFM-core soliton the spins are antiferromag-

directions, respectively. We will use thie Pauli matrices to  netically aligned on each unit cell and rotate slowly in the

describe the internal spin-space of the electron. These matisame direction as the plaquette vector, for the FM-core soli-
ces appear in the interaction term, ton spins on the two sublattices rotate in opposite directions,

(T*H* 0 0 0
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FIG. 13. The 2D analog of the neutral domain wall is a meron
texture depicted as a lotus-flower configuration of the local directol

field ﬁ(F). As ﬁ(F) varies smoothly from one unit cell to the next,
it makes a half-covering of the unit sphe8. If the meron is

doped, all the components of the spin perpendicular to the plan
become zero, and therefore the magnitude of the spin vanishes

the core of the charged meron vortex.

such that they become parallérromagnetitin the core of
the soliton. With these parametrizations we have

B=Sr;sin (r)[co pep) oyt sin(ue)oy]

+SAr,cos 0(r)o,=SALUT(Na,U(r), (5.7

where U(r) = ' (NA%y/2gindo72 Here, A=1 for an AFM-
core meron, whileA= 7, for a FM-core meron.
In polar coordinates, the kinetic energy terms reduce to

. dgl| .
i dxtiaydy=e" (PP g+ —|+ia —2lgi(012) oy,

2r

wherea,= — y,. With this choice, the three matrices sat-
isfy the cyclic algebrd «;,a;]=1¢xa. We introduce a
radial wave function  5(r), defined by
&(r)=e'laxtrot2)42,,1)1 [y to obtain the radial Schro
dinger equation,

- Xy M ;
Iaxz?r-l—T Ea'z-f-/ +Ar,o(r) | n(r)=en(r).

(5.9

10A0, /2

Here, o(r)=e '%A%24 el %A%y/2 and / is an angular mo-
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FIG. 14. (a) Electronic gap structure of the FM- and AFM-core
2D merons as a function of the continuum parametdS/2at, as
predicted by the continuum modeb) Electronic gap structure of
the FM- and AFM-core 1D domain walls as a function of the con-
tinuum parametepU S/2at, as predicted by the continuum model.

/ZO'Z—I—/

;
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Ex. (5.9

For either the FM-core or AFM-core solitons, 4f is an
eigenfunction of Eq(6) with quantum numbersH,s;,/), it
follows that oy is another eigenfunction with quantum
numbers E,—s;,— /). Therefore the spectrum is always
symmetric abouE=0. For the AFM-core solitonA=1), it
follows that 7% is another eigenfunction with quantum
numbers E,—s;,/). As a consequence, th€+0 levels
of the AFM-core solitons are doubly degenerate whereas the
/=0 levels are nondegenerate. For the FM-core soliton
(A=1,), the stater,o,7 is another eigenfunction with quan-
tum numbersE, —s;,/). As a consequence, all of the levels
of the FM-core soliton are doubly degenerate. We can see

mentum quantum number. Since we are using the dimensionhat for /=0 the structure of the levels and the quantum

less variables —r (US/2ta) and E—e= E/US, the only
independent parameter js(US/2ta), as in the 1D case.

numbers associated with them are analogous to the 1D case.
In the AFM structure, for every state labeled by quantum

Since the meron does not carry additional spin flux, onlynumbers E,s;) there is another state<(E, —s;). In the FM

integer values of” are allowed. The solution of this equation

structure, for every stateE(s;) there is another state

can be simplified by noting that the plaquette parity operato( —E,s;).

P=r,y, commutes withH, . It follows that the eigenfunc-
tions ofH, can be labeled according to the eigenvalueB of
which we denote as;= *=1. Introducing the unitary matrix
U,=e ("7 and noting theU; PU;=1v,, the trans-
formed radial equation becomes

Numerical calculations also give a very similar gap struc-
ture, as shown in Fig. 14. The AFM-core meron has two
nondegenerate gap levels with opposite parity, which go to-
wards the midgap ag (US/2at)—0 and towards the band
edges in the limiip (US/2at) —. The FM-core meron has
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FIG. 15. (a) A pair of charged merons with the winding number
u=1 and u=—1. The AFM mean-field background is distorted
only over a finite region(b) Creation of the backbone of a horizon-
tal charged stripe(c) Meron crystal corresponding to the hole con-
centration 5=1/8. This configuration may be responsible for the
suppression of superconductivity in some compounds, at this co
centration.

a doubly degenerate level at the midgdphis close similar-
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FIG. 16. (a) Electronic gap structure of the FM- and AFM-core
2D skyrmion as a function of the continuum parameteiS/2at, as
predicted by the continuum modeb) Electronic gap structure of
the FM- and AFM-core 1D polaron as a function of the continuum
parametepU S/2at, as predicted by the continuum model.

the 2D skyrmion is topologically equivalent to a bound pair
of merons[see Fig. 1&)]. For the skyrmion we choose
o(r)y=2tan i(r/p) and for the polaron we choose
6(x)=2 tan (x/p). In this case, a truly FM core does not
exist, since at =0(x=0) the arrangements of the spins of a
unit cell is the same as that of a unit cell in the asymptotic
region, except that all spins are flipped. In the asymptotic
region we have an AFM arrangement. This means that in the
core we have an AFM arrangement as well. Consequently we
can setA=1 in Eq.(5.9. All the symmetries of the Hamil-
tonian remain as for the meroomain wal), and in the
large p (US/2at) limit the band structure is basically the
same. It consists of two nondegenerate levels that go towards
the band edges. In the small(US/2at) limit, the levels
cross over and go towards the opposite band edge, instead of
going towards the midgajsee Figs. 1&) and 16b)].

Finally, we discuss the nature of the charged meron, ob-
tained by doping the 2D antiferromagnet with a hole. In anal-
ogy with the charged domain wall soliton in 1D we expect
that the local magnetic moment amplitude in the core of the
meron will be suppressed. The undoped meron has a “lotus-
flower” structure(see Fig. 1R It resembles a planar vortex
in the plaquette director field in the asymptotic region. In the
core region, the plaquette vector points in a direction perpen-
dicular to the 2D plane. In analogy with the doped 1D soli-
ton, we assume that the effect of doping the 2D meron is
simply to remove the components of spin perpendicular to

ity between the 1D and 2D structures can be seen for othehe plane, and the “lotus flower” is reduced to a planar
magnetic textures as well. In particular, the 2D skyrmionvortex in which the local moment amplitude vanishes in the
structure is analogous to the 1D polaron. The 1D polarorcore region. Remarkably, for this charged meron-vortex con-
may be regarded as a bound pair of domain wall solitons anfiguration, it is possible to obtain an analytic solution for the
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midgap electronic structure. We set azs0 and we take the the system is doped, bound meron-antimeron vortex pairs
same “doped” parameterization sitanh¢/p). It is should appear. As the doping is increased or the temperature
straightforward to show that the meron radial equation has & raised, these vortex pairs may dissociate through a
doubly degenerate midgap level, whose wave functions arkosterlitz-Thouless unbinding transition. Although this de-

given, up to a normalization constant, by stroys the magnetic long-range order, short range spin corre-
lations remain very strong. The non-Fermi-liquid behavior is
7*(r)= \/F sechir/py)(1,0-1,0) if s;=1 a consequence of the fact that the charge is transported by

(5.10a bosons, while the midinfrared band in the optical absorption
spectrum may be accounted for by absorption on the midgap
and levels. In the doping region relevant to high-superconduc-
) tivity, the quantum liquid of merons gives rise to a midgap
7*(r)=\r seclir/p,)(0,1,0-1) if s;=—1. impurity band of significant bandwidth. As the doping con-
(5.10b centration increases further, the staggered magnetization de-

; " creasesdue to the suppression in the core of the mgrtme
The midgap levelss(r)~ [(r)/ ] have exactly the same Mott-Hubbard gap closes, and normal liquid-Fermi behavior

form as the midgap levels of the doped, 1D, FM-core soliton.
For the doped, vortex soliton, the gap states are empty arfgPrears. .
At low temperatures, merons may also combine to form

the valence-band continuum states are fully occupied. It ish raed siri In Fig. 18 we show ir of merons with
straightforward to verify that these occupied states are spiﬁ 1arged stripes. 9- € show a pair of merons

paired, as was the case for the charged domain wall in on‘é{Inding numberst 1 and—1. In Fig. 18b) we show several

dimension. As a result, the charged vortex soliton carries ngnerons star.tlng to c‘r‘eate th? ,t,)ackbone of a horizontal
harged stripe. By “squeezing” each other, the merons

net spin, and behaves as a bosonic excitation in the 2D antf- ; . .
ferromagnet ower their energy, and form AFM domains. Domain wall

' solitons in 2D (charged stripeéshave been the subject of
intense study® and it was predicted that their lowest-energy

VI. DISCUSSION AND CONCLUSIONS configuration corresponds to “empty walls,” in which all
We have investigated the effect of a hole on the antiferMidgap states are empty. In a recent paperwas argued
romagnetic ground state of the 1D and 2D Hubbard modeIEha,t popul_ated _vvalls should be favorablelln the strong inter-
with a half-filled band, using self-consistent Hartree-Fockaction limit. This type of wall has a fraction of the midgap
theory. For the 1D case, we have considered two types Os*rtate_s occup|e_d,_and therefore Contnbutes_to electrical con-
domain walls(FM-core and AFM-core solitonsand showed duction. Allso, |8t is easy to constrggt hole I‘I.Ch and hole de-
that at half-filling such walls are unstable in the absence oP!€ted regions” A particularly striking configuration con-
anisotropy. Nevertheless, a host of discrete levels appe&Sting of a crystalline lattice of merons is depicted in Fig.
within the Mott-Hubbard gap in the presence of these magi2(C): for a doping concentratio@=1/8 per site. For this
netic textures. Upon doping, a hole can lower its energy by!OPINg, it _has been observed that superconductivity is
occupying the deepest available gap level, thereby stabilizinéuF’preS_SGaﬁ Neutron scattering fow=1/8 also reveals a
the domain wall. We found two self-consistent charged soli/@gnetic _superstructure in which the charge carriers are
tons. The stable doped soliton, centered at a site, has a pair @c@lized-" The stability of various configurations depends
doubly degenerate midgap levels and is a mobile charge@n temperatures, hole concentration, ah§/t.
boson. The second solution is doped-soliton centered be- !t is useful to extend our theory to describe the ordered
tween sites. This is a charged boson ®8/t<2, but be- and(quantum liquid phases of merons in the doping regime
comes an immobile charged fermion @§/t>2. These re- Pertinent to hight . superconductivity. This may provide a
sults were recaptured using a very simple continuunfMicroscopic basis for the observed non-Fe_rm|-I|qU|d proper-
approximation, which led to a self-consistent model of alies of the normal state of the doped Mott insulator.
doped soliton(a charged bosgnwith a pair of midgap lev-
els. These solitons may be relevant to the superconductivity ACKNOWLEDGMENTS
observed on the CuO chains of some cupréte® such as ) i ]
YBa,Cuz0-, which are known to have antiferromagneti- NS work was supported in part by the Natural Sciences
cally ordered chains at low temperatufés. and En_gl_neenng Research Council of Canada, and a grant
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antiperiodic wave function&ue to a rotation by z of their
sping as they encircle any elementary plaquette of the lat- APPENDIX A: GREEN’S FUNCTIONS
tice. The relativistic one-electron dispersion relations in the IN THE MEAN-FIELD AFM BACKGROUND STATE
presence of the spin flux facilitated the description of mag- L - !
netic textures. We showed a one-to-one correspondence be- 1€ Hamiltonian describing the mean-field AFM back-
tween the electronic spectra of 1D and 2D magnetic texturedround is given Tby Fq@r'l)' It is useful to introduce the
In particular, the analog of the 1D doped domain wall is a 2DSPinor  fields x;=(&;;& ) and the Bloch operators
doped meron vortex. The meron vortex has a pair of midgagt’ =N~ "2Z,exp(~ikx)x{’. Herex;=2na+(i—1)a is the
levels, and is a mobile charged boson. The appearance @psition of the sitei=1,2 of thenth unit cell. The sum is
merons provides possible explanations for some of th@erformed over all theN unit cells. Using the four-

anomalous features of the normal state of the cuprates. Asomponent operator®; = (2 x(?"), the electronic part of
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the mean-field Hamiltonian can be expressed as Ggg(m,n;E)
USo €
Ho= > @E( z K D, . =[E+(—-1)"oUS]
K € —USa,

—jlm=nlg=Im=nlé(2¢2 gjnh -1 i |El<
The sum is performed over the first Brillouin zone _ ‘II B ‘e ) _( t _Sln %) I [E[<US
— m/2a<k<m/2a and e,= — 2t coska). x ¢ ie'IM="9(2t? sin 2¢) if US<|E[<vy
We introduce the conduction- and valence-band operators e~ Im=nl¢(2t2 sinh 2p) 1 it y<|E|.
(k" xk ) =®{U, where
(b) If m andn have different parities, then

0 —ozf:) 0 oz(kﬂ
a0 —a 0 G, (mn;E)
U= (+) (- |
0 ay 0 iim=nl-1e=Im=nl¢(2t coshegp) ™! if |E|<US
—a) 0 4P O —{ —iellmnlé(2t sin ¢)~1 if US<|E|<y
— g~ Im=-n[¢ i -1 i
. e (2t sinh ¢) if y<|E|.
a{®)=1(17USEy), and E = \e2+(US)2. The Hamil- ¢ v<I€l
tonian can be expressed as The angle$>0 is defined by
He|=2k ExxS xE—xt xb). sinh™}((US)?—E?/2t) if |E|<US

_ i1l [N 2_E2 i — -
Therefore, the conduction band has doubly degenerate levels ¢= S?n (Vy —E72) ff US<IE[=y
described by the dispersion relati@{=E, while the va- sinh™*(VE*— y°/2t) if y<|E]|
lence band has doubly degenerate levels described b
Ex=—Ey. The bands are separated by the Mott-Hubbar(f;/nd y=Var+ (U9~
gap of magnitude @S opened at the Fermi points
(ko= * m/2a). Finally, the one-electron band wave functions APPENDIX B: GREEN'S FUNCTION
are given by OF THE SHARP-BOUNDARY SOLITON

In order to obtain a sharp-boundary soliton we must cut
the chain, flip all the spins of one of the halves, and then
5, ,oelkma e (oo paste the two.halves back together. We calculate, below, the

’ ™enta, ™O0m), Green’s functions at each stage.

:T(ak K

Vkor(m,0)=<m0'|vla,|0>

Cko./(m,o')=<m0'|clo_,|0>

1. Green’s functions for a semi-infinite chain

Let H,, be the Hamiltonian for the mean-field AFM back-
_ (a7 — o~ omg . grour_1d state, ands?m,(_n,m;E) the (_:orre_sponding Green’s
N k m Tk m function. In order to find the Hamiltonian for half of this
chain, we cut this chain between sited and 0. Assuming
Heree,=1 if mis an even number and O #h is an odd  that the two halves of the chain do not interact, the Hamil-
number, andy,=1-ey,. tonian for the chain with the cut3&%" 1= Hq+ V,,, where
the potentialVy, describing the cut is chosen such that

50’0/eikma

1. Green'’s function

The matrix elements of the Green’s function in the site- <n0|H2||n,‘T’>:0

basis space are given by
if n, n’ are on different sides of the cut, and

Gg'a’(m’n; E)E<mU|GO(E)|nOJ> = 50’,0”

x 2

k

(nalHgn" ') =(no|Heln' ")

Cka(m10)ctg(n10)
E-Ex—in if n, n’ are on the same side of the cut.
The requiredv,, is given by
Vie(M,a) Vi, (N, 0)

E+Ek_i’)7

(nolVyIn"o')=—(na|Heln'a")

Substituting the band wave functions and performing thdf n,n’ are on different sides of the cut and vanishes other-
sum over the Brillouin zone, we obtain the following expres-wise.
sions for the Green’s functions of the chain in the ground SinceHg is diagonal in the spin space, all the other op-
state. erators are diagonal in the spin space. Therefore, Dyson’s
(@) If m andn are both even or both odd, then equation for the chain with the cut is
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G"’(n,0;E)G"-(—1m:E
Gh,(nmE)=G2,(nmE)+ X GY (n,n’;E) GS,(n,m;E)=—t wol F)(‘,;")( )
n’,m’ o

X(n' g|Vy|m'a)G" _(m’,m;E).

(c) If n<0, m=0, then,

Suppose that we first calculate the Green’s function for hL ) hR )
the right-hand side of the chain,m,m’=0. In this case, the GS (nmE)=—t Goo(n, —1LE)Gye(0ME)
only nonvanishing term in the sum correspondsite- — 1, R Fo(E)
m’=0 and(—10|Vy|0c)=t. Then, Dyson’s equation can
be solved and we find the Green'’s function for the right-hand (d) If n,m<0, then,
side of the chain:

GS,(n,m;E)
G"™(n,m;E)=G%_ (n,m;E)
=Gh,(n,mE)
tGO (n,—1;E)G®_(0O,m;E)

+

oo

1-tG% (0,—1;E)

2 G"(n,—1;E)G"?(0,0,E)G"-(—1,m;E)
+ .

Fo(E)
wheren=0, m=0. Here,
The Green’s function for the left-hand side of the chain is
calculated in the same way. We also flip the spins of this F,(E)=1—-t?G"R(0,0;E)G"-(—1,—1;E).

half, which means changingS— —US in all expressions.
We will denote byG® (n,m;E) the Green’s function ob-

oo
tained as a result of this substitution. Then, the Green’s func-
tion for the left-hand side of the chain is given by a. Densities of states in the gaps:

|E|<US and|E|=[(US)?+4t7] Y2

~0 .e\~0 .
Coo(NOE)Gyo(~1M:E) The appearance of discrete states in the gap is related to
1—t§?m(—1,0;E) the existence of poles in the Green’s functions. From the
expression of Green'’s functions for the sharp-boundary soli-
wheren<0, m<0. , , _ ton, one can see that such poles appear at the endfgies

Thus, we can define the Qreen s function for the two d's'satisfying the conditiorF ,(E)=0. Since this condition is
connected halves of the chain: spin dependent, it is apparent that the direction of the spin is
well defined(and uniqué on each one of these levels.

Using the above Green’s functions, four discrete levels
G(hm(n,m;E)= G';(L,(n,m;E) if n<0, m<O0 appear in the gaps. Their energies are given in Sec. Il C. The
spin projections for these nondegenerate levels are also indi-
cated. Clearly, charge-conjugation symmetry is preserved.
For each level of energi and spino there is a level of

2. Green'’s function for the sharp-boundary chain energy— E and spin—o.

In order to obtain the Green’s function for the sharp- The LDOS can now be calculated by using the identities

boundary chain, we have to reconnect the two halves of the

3. Density of states for the sharp-boundary soliton

o

G (n,m;E)=G%, (n,m;E)+t

G"R(n,m:E) if n=0, m=0

0 otherwise.

chain by subtracting the potentisl}, added previously. 1 . 1
’ H ’ ; = |lim .
Dyson’s equation for the Green’s function of the sharp- FAE) , .o Fo(E—in)
boundary soliton is 7
GS,(n,m;E)=G"_(n,mE)—tGh (n,0;E)GS (—1mE) —pt tin L
oo 1h oo L [oxon ™0 oo vih FU(E) I’OOtS| dFU(E)/dE|EO,

—tG" (n,—1;E)GS (0m;E).
whereE, are the simple roots of the equatibp(E)=0, i.e.
Thi . . fhe energies of the discrete levels.
is equation can be solved exactly and one obtains the fol- The LDOS is proportional to the imaginary part of the

Iovngglfrisumlt:o then Green’s function. This yields the following expressions for

the LDOS.
G:_(n,mE) In the internal gagE|<US,
=Gyy(nmE) 1
Pho(E)= \/:_2[\/7\2+1—?\]N(”)[5,;,T5(E—ET+)
,GhR(n,0;E)GNS(—1-1;E)GIR(Om;E) 2yl+a
B Fo(E) ' +8, 8(E-E])].

(b) If N=0, m<O0, then, In the external gapkE|= \(US)?+ 4t?,
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1 if nis even, and
S (E)= ———[W\Z+1-\]N[s, . S(E-E]
pno-( ) ZW[ ] [ N ( T)
+6,,0(E—E|)]. G5 (nniE)= i(E-—coUS) _ g2+ i(E-oUS)
Here,A=US/t and 2t2 sin 2¢ 2t2 sin 2¢
n if n=0 is even JJE*=(US)?
=N(—n—-1)= i i + ——
NIM=NE=N=D=) n+1 it n=0is odd. 2t(oUS cos + IE sin )
Y H . 2 1/2
b. Densities of states in the bands: B$E|<[(US)?+4t] if nis odd.
The diagonal matrix elements of the Green’s function for In both equations, the first term in the right-hand side
the sharp-boundary chain are given by represents the Green’s function in the fundamental state
. G2 _(n,n;E). The LDOS are now simply obtained from the
GS (nniE)= (E+oUS) _ oineayg EFIUS definition
77 2t2 sin 2¢ 2t%sin 2¢
. (E+aUS) s sgnE) s
X|i+ _ - E).
T (GUScotp+iE) PnolE) Im Gyo(n.n;E)
1J. G. Bednorz and K. A. Muller, Z. Phys. &, 189 (1986. 133, John and A. Golubentsev, Phys. Rev. L&tt, 3343 (1993;

2See, for instance, D. M. Ginzbur@hysical Properties of High Phys. Rev. B51, 381(1995.
Temperature Superconductor@Vorld Scientific Press, Sin- *S. John and A. Miler-Groeling, Phys. Rev. B1, 12 989(1995.

gapore, 1992 Vols. I-V. 155, John, M. Berciu, and A. Golubentsev, Europhys. L4tt.31
3P. W. Anderson, irFrontiers and Borderlines in Physid<IV, (1998.
Corso, 1988 18D, Poilblanc and T. M. Rice, Phys. Rev.3®, 9749(1989; H. J.
4C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, Schultz, J. PhygParig 50, 2833(1989; J. Zaanen and O. Gun-
and A. E. Ruckenstein, Phys. Rev. L8, 1996(1989. narsson, Phys. Rev. BO, 7391(1989; J. Zaanen, M. L. Hor-
5P. W. Anderson, Phys. Rev. Le@4, 1839(1990. bach, and W. van Saarloobjd. 53, 8671(1996.
5p. W. Anderson and J. R. Schrieffer, Phys. Toddy55(1991);  17J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S.
P. W. Anderson, Scienc235, 1196(1987). Uchida, NaturglLondon 375, 561(1995.
7S, Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett!®V. J. Emery and S. A. Kivelson, Physi¢amsterdam 209G, 597
60, 1057(1988. (1993; 235C-240C 189(19949; in Proceedings of the Los Ala-
8H. Alloul, in High Temperature Superconductivitgdited by mos Symposium on Strongly Correlated Electronic Materials,
D. P. Tunstall and W. Barford, Proceedings of the 39th Scottish 1993 edited by K. S. Bedel{Addison-Wesley, Reading, Mas-
Universities Summer School in Physics, St. Andrefdglam sachusetts, 1994
Hilger, New York, 1991. 19M. Steiner, J. Villain, and C. Windsor, Adv. Phy&5, 87 (1976.
9K. Kamagai, |. Watanabe, H. Aoki, Y. Nakamura, T. Kimura, Y. 2°T. A. Friedmann, M. W. Rabin, J. Giapintzakis, J. P. Rice, and D.
Nakamichi, and H. Nakajima, Physica Bl8 480 (1987); J. |I. M. Ginsberg, Phys. Rev. B2, 6217 (1990; R. Gagnon, C.

Budnick, B. Chamberland, D. P. Yang, Ch. Niedermayer, A.  Lupien, and L. Tailleferjbid. 50, 3458(1994).

Golnik, E. Recknagel, M. Rossmanith, and A. Weidinger, Euro-2'D. N. Basov, R. Liang, D. A. Bonn, W. N. Hardy, B. Dabrowski,
phys. Lett.5, 651(1988; T. Thio, T. R. Thurston, N. W. Preyer, M. Quijada, D. B. Tanner, J. P. Rice, D. M. Ginsberg, and T.
P. J. Picone, M. A. Kastner, H. P. Jenssen, D. R. Gabble, C. Y. Timusk, Phys. Rev. Let{74, 598 (1995.

Chen, R. J. Birgeneau, and A. Aharony, Phys. Re\383905 22K, zZhang, D. A. Bonn, S. Kamal, R. Liang, D. J. Baar, W. N.

(1988. Hardy, D. Basov, and T. Timusk, Phys. Rev. LetB, 2484
103, Kosterlitz and D. Thouless, J. Phys6C1181(1973; 7, 1046 (1994.

(1974. 233, L. Tallon, C. Bernhard, U. Binninger, A. Hofer, G. V. M.
1p. B. Tanner and T. Timusk, ifPhysical Properties of High Williams, E. J. Ansaldo, J. |. Budnick, and Ch. Niedermayer,

Temperature Superconductors,lidited by Donald M. Gins- Phys. Rev. Lett74, 1008(1995.

berg, Physical Properties of High Temperature Superconductor&J. W. Lynn, W.-H. Li, H. A. Mook, B. C. Sales, and Z. Fisk,

Il (World Scientific Press, Singapore, 199&. A. Thomas, in Phys. Rev. Lett60, 2781(1988; J. W. Lynn and W.-H. Li. J.

Ref. 8. Appl. Phys.64, 6065(1988.

2\, Tanaka, A. Watanabe, and J. Tanaka, Bull. Chem. Soc. Jprt>S. ColemanAspects of SymmetCambridge University, Cam-
53, 645, 3430(1980; A. Feldblum, J. H. Kaufman, S. Etemad, bridge, 1995.
A. J. Heeger, T.-C. Chung, and A. G. MacDiarmid, Phys. Rev. B26C. Callan, R. Dashen, and D. Gross, Phys. L&8B, 375(1977).
26, 815(1982; T.-C. Chung, F. Moraes, J. D. Flood, and A. J. 27y, Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev.2, 2388
Hegger,ibid. 29, 2341(1984. (1980.



57 CHARGED BOSONS IN A DOPED MOTT INSULATOR: ... 9543

28D, J. Gross, Nucl. Phys. B32, 439(1978. 33T, L. Einstein and J. R. Schrieffer, Phys. Rev7B3629(1973.
2%E. H. Lieb and F. Y. Wu, Phys. Rev. Le®0, 1445(1968. 34C. Nayak and F. Wilczek, Phys. Rev. Let8, 2465(1997).

30p. W. Anderson, Phys. Ret15, 2 (1959. 35A. R. Moodenbaugh, Y. Xu, M. Suenaga, T. J. Folkerts, and R. N.
31, Hulthen, Ark. Mat., Astron. Fys26A, 11 (1938. Shelzen, Phys. Rev. B8, 4596(1988.

32N. W. Aschroft and N. D. MerminSolid State Physict&Saunders  %°D. Kalkstein and P. Soven, Surf. S&i6, 85 (1971).
College Publishing, 1936 Chap. 23. 87E.-N. Foo and L. G. Johnson, Surf. SBb, 189 (1976).



