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Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures

Neşet Aközbek and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 9 September 1997!

We present a detailed analysis of finite energy solitary waves in two- and three-dimensional nonlinear
periodic structures exhibiting a complete photonic band gap. Solitary waves in photonic crystals with a two-
dimensional~2D! square and triangular symmetry group as well as a 3D fcc symmetry group are described in
terms of an effective nonlinear Dirac equation derived using the slowly varying envelope approximation for the
electromagnetic field. Unlike one-dimensional Bragg solitons, the multiple symmetry points of the 2D and 3D
Brillouin zones give rise to two distinct classes of solitary wave solutions. Solutions associated with a higher
order symmetry point of the crystal exist for both positive and negative Kerr nonlinearities, whereas solutions
associated with a twofold symmetry point occur only for positive Kerr coefficient. Using a variational method
we derive the important physical features such as the size, shape, peak intensity, and total energy of the solitary
waves. This is then confirmed numerically using the finite element Ritz-Galerkin method. It is shown that the
initial variational method and the finite element numerical method are in good agreement. We discuss the
stability of these solitary waves with respect to small perturbations. It is suggested that an analytical stability
criterion for spinor fields satisfying the nonlinear Dirac type of equation may exist, similar to the well known
stability criterion for solitary waves in the nonlinear Schro¨dinger equation. Our stability criterion correctly
reproduces the stability conditions of other nonlinear Dirac type of equations which have been studied numeri-
cally. Our study suggests that for an ideal Kerr medium, two-dimensional solitary waves in a band gap are
stable, whereas three-dimensional ones are stable only in certain regions of the gap.@S1063-651X~98!05401-4#

PACS number~s!: 42.65.Tg, 42.70.Qs
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I. INTRODUCTION

Electromagnetic wave propagation and localization
nonlinear periodic structures has been the subject of con
erable activity over the last decade. The stationary prope
of one-dimensional~1D! Bragg gratings were first analyze
by Winful, Marburger, and Garmire@1#, who showed that
these structures exhibit bistable optical transmission beh
ior. The term ‘‘gap soliton’’ was introduced by Chen an
Mills @2# in subsequent numerical work. This terminolog
was based on the fact that the electric field envelope func
inside the medium resembles a hyperbolic secant, rem
cent of solitary wave solutions of other well known nonline
wave equations, such as the nonlinear Schro¨dinger equation
obtained in the propagation of optical solitons in fibers@3#.
An analytical solution was obtained for stationary gap so
tary waves by Mills and Trullinger@4#. These authors de
rived the existence of one-dimensional self-localized so
tions of the optical field throughout the band gap of a
Bragg grating for both positive and negative nonlinear K
coefficients. They showed that the phase modulation of
gap solitons satisfies the double sine-Gordon equation, w
has kink type solutions. The electric field amplitude of th
solution is a localized function with a more complex stru
ture than a simple hyperbolic secant function. A general a
lytical solution to the time-dependent 1D nonlinear optic
gap soliton problem was obtained by Aceves and Wab
@5#, using an analogy with the massive Thirring model@6#.
Unlike the integrable Thirring model, the optical couple
mode equations for a Bragg grating are not integrable,
the gap solutions are not truly solitons but rather solit
waves. A useful review of one-dimensional gap solitons w
571063-651X/98/57~2!/2287~33!/$15.00
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given by de Sterke and Sipe@7#. In the continuous wave
~CW! limit, optical switching @8# and bistability @9# have
been experimentally demonstrated. Most recently the gen
tion and propagation of gap solutions were observed by E
leton et al. @10#.

Gap solitons are in some ways similar to optical fib
solitons@11#. They are both formed by the balance betwe
the group velocity dispersion~GVD! and the nonlinearity of
the medium. When an optical pulse propagates throug
nonlinear medium, it gains an additional intensity-depend
phase due to the nonlinear index of refraction, referred to
self-phase modulation. In a medium with positive nonline
ity, the phase modulation causes the leading edge of
pulse to be redshifted, while the trailing edge is blueshift
In general, a pulse propagating in a linear dispersive med
will spread. A material in which the GVD paramete
b2[ (d/dv) (1/vg) is negative is said to exhibit anomalou
dispersion. Herevg is the group velocity at frequencyv. In
the anomalous dispersion regime, the leading edge of
pulse is blueshifted, while the trailing edge is redshifte
When both GVD and nonlinearity are present in the mediu
then, under certain conditions, these two effects can ca
each other, resulting in a pulse which propagates with
changing its shape. In the appropriate limit, both fiber so
tons and solitary waves in a Bragg grating can be descri
by a nonlinear Schro¨dinger equation. The difference is tha
the GVD in fibers is mainly due to the material dispersi
~frequency-dependent refractive index!, whereas in the latter
GVD is due to the periodic variation in the linear~frequency
independent! dielectric constant. The latter variation is man
orders of magnitude larger than the dispersive variation
fibers. Unlike the fiber soliton which experiences only se
2287 © 1998 The American Physical Society
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2288 57NEŞET AKÖZBEK AND SAJEEV JOHN
phase modulation, the gap soliton experiences additio
cross-phase modulation with light that is Bragg scattered
the grating. Another difference is that gap solitons may att
any velocity between zero and the average speed of ligh
the medium, whereas fiber solitons travel only with the a
erage speed of light in the medium. Despite these dif
ences, the optical coupled mode equations in a photo
band-gap~PBG! material can be reduced to an effective no
linear Schro¨dinger equation for the electric field envelop
function when the optical frequency is near one of the p
tonic band edges. The soliton arising in pulse propagatio
fibers is usually referred to as a temporal soliton, wherea
the PBG material it is a spatial soliton. Optical solitons ha
received tremendous interest for their technological appl
tions in the area of optical fiber communications and pho
nic switching@12#.

Qualitatively similar considerations arise in the proble
of steady~CW! beam propagation in a medium with a se
focusing Kerr nonlinearity. When a CW beam propaga
through a nonlinear medium, the nonlinear effect can bala
the diffraction of the beam, such that the beam can tra
without changing its transverse profile@13#. In a 3D geom-
etry this soliton is unstable to perturbations. However, in
2D system, where diffraction is allowed in only one tran
verse dimension due to linear confinement in the other tra
verse direction, the beam can propagate through the med
without changing its shape. The nonlinear Schro¨dinger equa-
tion that governs this solitary wave follows from interpretin
the time variable as the spatial propagation direction.

The linear electromagnetic band structures of periodic
electric structures have been extensively studied rece
@14#. Frequency gaps have been demonstrated in 2D and
systems in which there are no propagating solutions of
Maxwell’s equations for a medium with a real positive r
fractive index. This picture changes significantly if the m
dium also exhibits a Kerr nonlinearity in which the dielectr
constant is intensity dependent. As the intensity of the
coming radiation with frequency inside the gap is increas
it is possible for the underlying dispersion relation to chan
locally, and for the incoming light pulse to tune itself outsi
the band-gap region by locally deforming the band structu
and to propagate through the medium. Nearly all work so
has been done on one-dimensional structures. Recently
have shown that localized finite energy solitary waves e
inside the photonic band gap of a two-dimensional perio
structure@15#. In one-dimensional photonic band gaps, t
propagation of light is only forbidden over a very small fra
tion of k space. Three-dimensional periodic structures w
nonoverlapping gaps in different directions were studied
Ohtaka @16#. A complete band gap of a three-dimension
periodic medium with the point group symmetry of a f
lattice was independently suggested by John@17# and
Yablonovitch@18#. Potential applications of these structur
for optical filters, pulse compression@19#, zero-threshold mi-
crolasers@20#, and all-optical transistors@21# have been pro-
posed. Although three-dimensional PBG materials have b
fabricated in the microwave regime@20#, the ultimate goal is
to obtain complete gaps in the visible spectrum and n
infrared ~1.5 mm! for applications such as optical interco
nects, all-optical amplifiers, and wavelength demultiplex
@22,23# in the telecommunication industry. Using a PBG i
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terconnect containing an active region, optical fiber solito
may be reshaped, amplified, or otherwise processed. Th
ficiency of these processes is greatly enhanced by virtu
the inhibition of spontaneous emission by the PBG structu
Recently, Özbay et al. @24# constructed a three-dimension
structure with a PBG at around 100 GHz. The existence
photonic band gaps in two dimensions has been dem
strated both theoretically@25–27# and experimentally in the
microwave regime@28,29#. In the optical regime, fabrication
of two-dimensional periodic structures has proved to
much more straightforward. Such structures have been
ricated on a small scale in the optical regime for square@30#
and triangular lattices~2.5–1.1mm! @31#. Very large array,
2D square and triangular lattice PBG’s, in the 6mm range,
have been demonstrated in macroporous silicon by Gru¨ning
et al. @32#. These latter structures are easily fabricated us
the self-organizing property of columnar voids in Si und
suitable electrochemical etching conditions. Most recen
large scale 3D PBG structures on the optical scale have b
demonstrated using infiltrated opals@33#. In these systems a
close-packed fcc lattice of SiO2 spheres with diameter on th
micron scale is infiltrated with a high refractive index mat
rial such as diamond or silicon@34#. The higher index mate-
rial fills the interstitial regions between the SiO2 spheres,
forming a connected solid network. The SiO2 spheres are
then removed by chemical etching, leaving behind a P
crystal with a complete 3D gap@35#.

Unlike their 1D counterparts, 2D solitary waves are loc
ized in two spatial dimensions. Another difference is the e
istence of multiple symmetry points in the 2D Brillouin zon
~BZ!. This gives rise to new types of solitary waves that ha
no analog in one dimension. In general, there are two s
cific symmetry points in BZ’s which determine the upper a
lower band edges of the full photonic band gap. We defi
the order of the symmetry point by the total number of su
points that are connected to each other by reciprocal lat
vectors of the photonic crystal. One of them~usually a two-
fold symmetry point! gives rise to a solitary wave with low
symmetry, whereas the higher order point gives a solit
wave with higher symmetry. We find that the low symmet
solution exists only for positive Kerr coefficient, where
higher symmetry solutions may exist for both negative a
positive Kerr coefficient. The underlying nonlinear electr
magnetic wave equation can be reduced, using the slo
varying envelope approximation to a nonlinear Dirac type
equation where the number of components of the slo
varying spinor field depends on the order of the symme
point about which the electric field is expanded. In gene
the solitary wave can be described as a localized amplit
function accompanied by a self-phase modulation kink in
direction of the Bragg scattering.

In this paper, we derive solitary wave solutions for 2
square and triangular lattices, and the 3D fcc lattice. As
the 1D case, near the photonic band edges it is possibl
establish an analogy between the effective nonlinear elec
magnetic wave equation and the equation for a particle m
ing in a classical potential well. This analogy furnishes
existence proof for the higher-dimensional solitary wav
Unlike the one-dimensional case, where an exact analyt
solution exists throughout the PBG, in higher dimensio
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57 2289OPTICAL SOLITARY WAVES IN TWO- AND THREE- . . .
simple solutions can be obtained only near the photonic b
edges where the ‘‘effective mass approximation’’ for t
photon dispersion is valid. For a general frequency wit
the gap one must use numerical or approximate methods
have introduced a variational method which recaptures m
of the important physics of these 2D and 3D solitary wav
First we test the accuracy of our variational method by
plying it to the 1D case. This yields excellent qualitati
agreement with the exact solution of Mills and Trulling
@4#. In order to generalize the variational ansatz ford.1, we
use the Ritz-Galerkin numerical method based on the exp
sion of the solitary wave in terms of a suitable set of eig
functions. In one dimension we show that by retaining s
ficient terms in this finite element expansion the solut
converges to the exact solution for the entire band-gap
gion. In d.1, we include more terms in the expansion un
there is no significant difference in the solution between t
successive iterations.

Given the existence of 2D solitary waves, we then disc
their stability with respect to small perturbations. In an ide
Kerr medium with no periodic modulation, it is well know
that solitary waves satisfying the nonlinear Schro¨dinger
equation~NLSE! are unstable ford.1. On the other hand
saturation effects of the nonlinear susceptibility tend to s
bilize solitary waves in all dimensions, as do the inclusion
higher order derivative terms@36#. Materials exhibiting qua-
dratic nonlinearities are also known to exhibit stable solit
waves ford.1 @37#. Using a linear stability analysis, w
derive a criterion for the stability of solitary wave solution
of the nonlinear Dirac equation analogous to the criterion
the NLSE. For spinor fields with an unbounded negat
spectrum, we show that the minimum property of the ene
functional is neither a necessary nor sufficient condition
stability. We test our criterion on a number of models w
known stability properties. In each of these cases our cr
rion reproduces the known result. Our stability criteria su
gests that two-dimensional solitary waves in a PBG with
purely Kerr nonlinearity are stable throughout the gap
gion, whereas three-dimensional ones are stable only
v.vcr , wherevcr is the frequency at which there is a loc
minimum of the total energy as a function ofv. A similar
minimum point exists in the 3D nonlinear Schro¨dinger equa-
tion with a saturable nonlinear index of refraction.

II. SLOWLY VARYING ENVELOPE APPROXIMATION

Consider a two-dimensional periodic nonlinear dielect
where the electric fieldEW and medium polarizationPW are
linearly polarized in theẑ direction perpendicular to the
plane of the 2D lattice. Denoting thez component of the
electric field byE, Maxwell’s equations take the form of
scalar wave equation,

¹2E~rW,t !2
e~rW !

c2

]2E~rW,t !

]t2
2

4p

c2

]2PNL~rW,t !

]t2
50,

~2.1!

where the nonlinear polarizationPNL5x (3)uEu2E. Here we
assume that the nonlinear susceptibilityx (3) is independent
of rW, and that medium responds instantaneously to the
d
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plied field. For the square lattice we choose the linear par
the dielectric constant to have the simple form

e~rW !5 ẽ 1De@cos~GW 1•rW !1cos~GW 2•rW !# ~2.2!

whereGW 15(2p/ao) x̂ andGW 25(2p/ao) ŷ are the reciprocal
lattice vectors,ẽ is average dielectric constant of the m
dium, andao is the lattice constant. This model exhibits a
indirect photonic band gap with the upper band edge occ
ring at the face center (X point! of the 2D BZ and the lower
band edge occurring at the corner~M point! of the BZ. In
Fig. 1 we show a possible 2D square lattice structure with
corresponding Brillouin zone.

The slowly varying envelope approximation~SVEA! to
Eq. ~2.1! is obtained by expanding the electric field amp
tude about the band edges. The field amplitude at theX point

@kWo5(G/2)x̂# is connected to2kWo by the reciprocal lattice
vectorGW 1 , leading to the expansion

E~rW,t !5„E1~rW,t !eikWo•rW1E2~rW,t !e2 ikWo•rW
…e2 ivt1c.c.

~2.3!

Here, we assume thatE1 and E2 vary slowly in time and
space on the scalesv21 andko

21, respectively. Substituting
Eq. ~2.3! into Eq.~2.1! with Eq. ~2.2!, we obtain two coupled
equations forE1 andE2 in the SVEA:

i
]E1

]t
1 i

]E1

]x
1

]2E1

]y2
1dE11bE21 2

3 a@ uE1u212uE2u2#E1

50, ~2.4a!

i
]E2

]t
2 i

]E2

]x
1

]2E2

]y2
1dE21bE11 2

3 a@ uE2u212uE1u2#E2

50. ~2.4b!

Here we have introduced the change variablesGx→x,
Gy→y, v/vo→v andAlE1,2→E1,2, 2vot→t, so that Eq.

FIG. 1. Top view of a 2D square lattice PBG structure~left! in
the (x,y) plane. The medium is assumed to be homogenous in tz
direction. The dark circular spots represent a long circular rod w
dielectric constanteA embedded in a background medium with
dielectric constanteB . The first Brillouin zone~right! is labeled
with the corresponding symmetry pointsX (p/ao,0) and M
(p/ao ,p/ao), whereao is the lattice constant.
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~2.4! is dimensionless. The other parameters are define

vo[cG/2A ẽ , b[De/8ẽ , and l[9pux (3)u/2ẽ . d[(v2

21)/4 describes the detuning of the average soliton
quency from the photonic midgap, anda561 for positive-
negative nonlinearity. Strictly speaking, expansion~2.3! cor-
responds to a ‘‘nearly free photon approximation ’’ which
valid when the periodic dielectric modulation is a weak p
turbation to the vacuum wave equation (De! ẽ ). In a real
PBG material,De is comparable toẽ , and the carrier waves
e2 ivt6 ikW•rW must be replaced by Bloch functions@38# ob-
tained from a realistic band structure calculation. Nevert
less, the overall structure of the solitary wave equation
the envelope functionsE1 and E2 is quite similar to that
obtained from Eq.~2.3!. Consequently, even for strong sca
tering materials, we expect that Eq.~2.3! yields the important
underlying physics and qualitative properties of the solit
wave solutions. In the standard SVEA, we retain only fi
order derivatives in space and time forE1 and E2 . Higher
derivative terms tend to become significant only for frequ
cies deep within the PBG when the envelope function
localized on the scale of the lattice constantao . However,
whenDe! ẽ , Eq. ~2.4! is valid throughout the gap region.

Equation~2.4! can be succinctly rewritten in terms of
two-component spinor fieldC†[(E1* ,E2* ):

$ i ] t1]yy1 isz]x1d1bsx1a@~C†C!

2~C†szC!sz/3#%C50 ~2.5!

Here,sx,y,z are the usual 232 Pauli matrices. Multiplying
Eq. ~2.5! by C†, adding the complex conjugate, and th
integrating over the transverse space variabley, the follow-
ing continuity equation can be obtained:

]r

]t
1

] j

]x
50. ~2.6!

Here the energy densityr5*dy(C†C)5*dy(uE1u2
1uE2u2), and the current density j 5*dy(C†szC)
5*dy(uE1u22uE2u2) describes the net power flow of th
solitary wave. Integrating Eq.~2.6! over x reveals that the
conserved quantityQ[*dxdy(C†C) describes the total en
ergy of the solitary wave within the PBG.

We first consider static solutions of Eqs.~2.5! for which
] tC50 and E15E2* . In this case j 50. Writing
C†5(E* ,E), Eq. ~2.5! reduces to

@]yy1 isz]x1d1bsx1a~C†C!#C50. ~2.7!

The SVEA simplifies the true single photon band structure
Eq. ~2.1! to an approximate one. This approximate ba
structure follows from Eq.~2.7! by settinga50 and consid-
ering solutions of the formC5FeiqW •rW, with F independent
of rW. The approximate one-photon dispersion relation is
tained by setting the resulting 232 determinant equal to
zero:

@d2qx2qy
2#@d1qx2qy

2#2b250. ~2.8!

Solving Eq.~2.8! for the detuning frequencyd, keeping only
terms of orderq2, the dispersion relations for the upper a
as

-

-

-
r

y
t

-
s

f
d

-

lower photonic band gaps becomev6
2 (qx ,qy)5124qy

2

64Aqx
21b2. The Bragg condition is satisfied at the ban

edge defined byuqW u50. The frequency gap at theX point is
determined by

v6
~X!5A164b, ~2.9!

wherev6
X are the upper and lower band edge frequencie

X. For a frequency within the gap region,uqW u becomes
imaginary, and linear wave propagation is exponentia
damped.

Alternatively, we may consider a wave vector close to t
M symmetry point atkWo5 (G/2) (x̂1 ŷ). In this case there
are four components in the Fourier expansion of the elec
field which are resonantly coupled by reciprocal lattice ve
tors of the photonic crystal. Accordingly, we expand t
electric field about the four symmetry-relatedM points:

E~rW,t !5~E1eiko~x1y!1E2e2 iko~x1y!1E3eiko~x2y!

1E4e2 iko~x2y!!e2 ivt1c.c. ~2.10!

Substituting Eq.~2.10! into Eq. ~2.1! we obtain a set of four
coupled nonlinear equations for the slowly varying envelo
functionsE1 , E2 , E3 , andE4 :

i
]E1

]t
1 i S ]

]x
1

]

]yDE11~v222!E1/41b~E31E4!

1
2l

3
@ uE1u2E112~ uE2u21uE3u21uE4u2!E1

12E2* E3E4#50, ~2.11a!

i
]E2

]t
2 i S ]

]x
1

]

]yDE21~v222!E2/41b~E31E4!

1
2l

3
@ uE2u2E212~ uE1u21uE3u21uE4u2!E2

12E1* E3E4#50, ~2.11b!

i
]E3

]t
1 i S ]

]x
2

]

]yDE31~v222!E3/41b~E11E2!

1
2l

3
@ uE3u2E312~ uE1u21uE2u21uE4u2!E3

12E4* E1E2#50, ~2.11c!

i
]E4

]t
2 i S ]

]x
2

]

]yDE41~v222!E4/41b~E11E2!

1
2l

3
@ uE4u2E412~ uE1u21uE2u21uE3u2!E4

12E3* E1E2#50. ~2.11d!

Equation~2.11! yield a similar continuity relation,

]r

]t
1¹W • jW50, ~2.12!
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where the energy densityr5uE1u21uE2u21uE3u21uE4u2

and the net power flux j 5 j xx̂1 j yŷ, with j x5uE1u2
2uE2u21uE3u22uE4u2 and j y5uE1u22uE2u22uE3u2
1uE4u2. Integration of Eq.~2.12! over x and y gives the
conservation of the total energyQ5*dx dy r of the solitary
wave.

A particular solution of Eq.~2.11! follows from setting
E25E1* and E45E3* . In this case we may write the stat
equations for the stationaryM solitary wave in spinor
field notation by defining the four-componentC5
(E1* ,E2* ,E3* ,E4* ):

$ i ~g1]x1g2]y!1dM1bg3

1a@3~C†C!2~C†g4C!g4#%C50. ~2.13!

Here, we have performed the rescalingAl/2C→C and
dM5(v222)/4. g1 , g2 , andg3 are 434 matrices defined
as

g15S sz 0

0 szD , g25S sz 0

0 2szD , ~2.14a!

g35S 0 sx1I

sx1I 0 D , g45S I 0

0 2I D , ~2.14b!

We make the important observation here that although
~2.13! formally resembles a Dirac equation there is at le
one important distinction. In a truly relativistic Dirac forma
ism, the structure matricesg1•••g3 exhibit a completely an-
ticommuting algebra. This is clearly not the case for the m
trices defined by Eq.~2.14!. Unlike the 1D solitary wave
equation, in the 2D case the analogy with the relativis
Dirac equation is not complete. The above matrices, wh
are determined by the anisotropy properties of the photo
crystal, lead to a more complicated wave equation than
would obtain in a truly relativistic~211!-dimensional field
theory.

For theM symmetry point we obtain the effective on
photon dispersion relation in the SVEA by setting the app
priate 434 determinant equal to zero. The resultin
roots yield the dispersion relations v1,2

2 (qx ,qy)
5264(Aqx

21b21Aqy
21b2) and v3,4

2 (qx ,qy)52
64(Aqx

21b22Aqy
21b2). For uqW u50, there are two nonde

generate solutions at frequenciesA268b and a doubly de-
generate solution at frequencyA2. Therefore, the SVEA pre
dicts approximate gaps at theM point for A228b,v,A2
andA2,v,A218b. In order to have acompleteband gap,
the gaps atX andM must overlap. This leads to the requir
ment thatDe/ ẽ >0.6. The upperv1 and lowerv2 band
edges of the resultingindirect photonic band gap are give
by v1

(X) and v2
(M ) , respectively. Equations~2.7! and ~2.13!

describe two distinct types of solitary waves. TheX solitary
wave is a generalization of the one-dimensional soliton st
whereas theM soliton is a new type of state corresponding
a higher symmetry group of the Brillouin zone.

In addition to the two fundamental solitons describ
above, a symmetricX solitary wave solution is possible. Thi
arises from the interaction of twoX solitary waves, one be
q.
t

-

c
h
ic
e

-

e,

ing Bragg scattered in thex̂ direction and the other in theŷ
direction. In this case the electric field can be expanded

E~rW,t !5~E1eikox1E2e2 ikox1E3eikoy1E4e2 ikoy!e2 ivt

1c.c. ~2.15!

Inserting this expansion into Eq.~2.1! and using the SVEA,
we obtain the following coupled mode equations for t
static, compositeX soliton:

i
]E1

]x
1

]2E1

]y2
1dE11bE212a@ uE1u212uE3u2#E150,

~2.16a!

2 i
]E2

]x
1

]2E2

]y2
1dE21bE112a@ uE2u212uE3u2#E250,

~2.16b!

i
]E3

]y
1

]2E3

]x2
1dE31bE412a@ uE3u212uE1u2#E350,

~2.16c!

2 i
]E4

]y
1

]2E4

]x2
1dE41bE312a@ uE4u212uE1u2#E450.

~2.16d!

It is easy to see whenE35E450 we recover the simpleX
solitary wave equations.

A. Mechanical analogy for the 1D gap soliton

The existence of a soliton solution in one dimension c
be easily demonstrated by considering a solution of the fo
E(x)5A(x)e2 if(x). Putting E(x) into Eq. ~2.7! with
]yyC50, we obtain a set of coupled equations for the ph
anglef(x) and amplitudeA(x) @4#:

2
df

dx
1d1b cos@2f~x!#12aA~x!250, ~2.17a!

dA~x!

dx
5bA~x!sin@2f~x!#. ~2.17b!

By differentiating Eq.~2.17a! with respect tox and using Eq.
~2.17b! it follows that the phasef(x) satisfies the double
sine-Gordon equation

d2f

dx2
12bd sin~2f!1b2sin~4f!50. ~2.18!

It is well known that Eq.~2.18! has kink type solutions@39#.
Nevertheless, it is instructive to demonstrate the existenc
the solution to Eq.~2.17! by means of a simple mechanic
analogy. For illustrative purposes we considera51. Equa-
tion ~2.17a! can be rewritten as

ḟ52
dU

df
1Fext~x!, ~2.19!
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where f may be regarded as the coordinate of a classic
particle, U(f)52df2 (b/2)sin(2f) is the potential in
which it moves, andFext5A2(x) is an external force which
acts on the particle andx plays the role of a time variable. If
we add an inertia termmf̈ to the left hand side of Eq.~2.19!,
it is formally equivalent to a Newtonian equation of motion
for a particle experiencing a viscous drag force2ḟ. As it
stands, Eq.~2.19! is the overdamped limit of this Newtonian
problem in which the particle massm is negligible, and the
viscosity is large. The potentialU(f) is sketched in Fig. 2.
From Eq.~2.17b!, we easily see that for a localized ampli-
tude solution, we require that sin(2f)56co when x→6`.
In other words whenx→` the particle is at rest at
f5fo5arccos(2d/b)/2, which corresponds to the extre-
mum points of the potentialU. The external force acts on the
particle, and moves it to the unstable equilibrium position a
f52fo for x→1`. This results in a kink type solution for
the phase function,f, and a localized amplitude functionA.
For a511, the exact solution is given by

A~x!5A
sech~ax!

A11b2tanh~ax!
~2.20a!

and

f~x!5p/21arctan@btanh~ax!#, ~2.20b!

whereA5Ab2d, a5Ab22d2, andb5A(b2d)/(b1d).

B. Moving solitary waves in a PBG material

The general time-dependent solitary wave solutions to th
one-dimensional version of Eq.~2.5! have been studied by
Aceves and Wabnitz@5#. Moving solitary waves can be ob-
tained from stationary ones by applying the appropriate Lo
entz transformation to Eq.~2.5!. We seek a solution of the
form

C~x,y,t !5C~z,y!eiDkx ~2.21!

FIG. 2. The existence of 1D solitary waves in a PBG is appare
using an analogy with a mechanical potentia
U(f)52df2b sin(2f)/2, in which a particle is pushed up by the
external forceFext5A2(x) from the equilibrium position atfo

(x→2`) to the unstable equilibrium point at2fo (x→1`).
This results in a kink type solution for the phase anglef of the
optical solitary wave.
al

t

e

r-

using the new variablesz5(x2vt) andt5t. Then Eq.~2.5!
can be written as

i
]E1

]t
1 i ~12v !

]E1

]z
1

]2E1

]y2
1~d2Dk!E11bE2

1
2a

3
@ uE1u212uE2u2#E150, ~2.22a!

i
]E2

]t
2 i ~11v !

]E2

]z
1

]2E2

]y2
1~d1Dk!E21bE1

1
2a

3
@ uE2u212uE1u2#E250. ~2.22b!

These equations can be mapped onto a static equatio
means of the change of variables

E15l1/4Ẽ1 , E25l21/4Ẽ2 ~2.23a!

d5g d̃ , Dk5vg d̃ , gz→z, ~2.23b!

wherel5@(11v)/(12v)# andg51/A12v2. Inserting Eq.
~2.23! into Eqs.~2.22! yields

i
]Ẽ1

]z
1l1/2

]2Ẽ1

]y2
1 d̃ Ẽ11bẼ21

2a

3
@luẼ1u212uẼ2u2#Ẽ1

50, ~2.24a!

2 i
]Ẽ2

]z
1l21/2

]2Ẽ2

]y2
1 d̃ Ẽ21bẼ11

2a

3
@l21uẼ2u2

12uẼ1u2#Ẽ250. ~2.24b!

In addition to the conserved energy, Eqs.~2.24! exhibits the
property that (]/]z) *dy@ uẼ1u22uẼ2u2#50. We first con-
sider the 1D case by setting]/]y50 in Eqs. ~2.24!, and
seeking solutions of the formẼ1,25«(z)eif1,2(z). Introducing
the new phase anglesf[(f12f2)/2 andc5(f11f2)/2,
and the rescaled variable«5hA, where 3/h25@21 (1
1v2)/(12v2)#, it follows from Eq. ~2.24! that

S 2
]f

]z
1b cos~2f!1 d̃ 12aA2DA50, ~2.25a!

]A

]z
2bA sin~2f!50. ~2.25b!

It can easily be seen that Eqs.~2.25a! and ~2.25b! are iden-
tical to the static equations given in Eq.~2.17! for which the
solutions are given by Eqs.~2.20!. The only difference is that
d is replaced byd̃ . In this new notation, the solitary wave i
described by two independent parametersd̃ and v. Equa-
tions ~2.25a! and ~2.25b! have solitary wave solutions fo
21, d̃ /b,1, for which the average soliton frequency
given by Eq.~2.23b! as v25114g d̃ . Clearly the average
frequency of the moving soliton is shifted from the corr
sponding average frequency of the stationary soliton. At p

t
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cisely midgap (d50), there is no frequency shift. Ford
Þ0, the average soliton frequency is pulled away from
midgap in a strongly velocity-dependent manner. In fact
high velocity solitons, the average frequency may be co
pletely outside the gap. Nevertheless, the existence of t
out-of-gap solitons is contingent on the presence of the P

For the sumc of the phase angles,

]c

]z
5

4

3
ah2vg2A2. ~2.26!

Using solution~2.20a!, this can be integrated to give

c5
4

3

avh2

~12v2!
arctan@b tanh~az!# ~2.27!

Combining these results, we obtain~for a51)

C~x,t !5hA~z!eivg d̃ xS l1/4ei @c~z!1f~z!#

l21/4ei @c~z!2f~z!#D . ~2.28!

Clearly, if v50, thenh51 andc50. Solution~2.28! then
reduces to the static solution as required. In other wo
once the static 1D solitary wave solution is known, it is ea
to generalize it to a moving solitary wave using the prec
ing steps.

For d.1, the generalization to moving solitons is no
trivial since the Lorentz transformation does not complet
reduce the time-dependent nonlinear wave equations to
corresponding static equations. In Sec. IV, we use a va
tional method to obtain an approximate time-dependent
lution for the 2DX solitary wave.

III. EXISTENCE OF SOLITARY WAVE SOLUTIONS
FOR D>1: NEAR BAND EDGE APPROXIMATION

Unlike the 1D case, ford.1 an analytic solution to the
solitary wave equation is not always possible. Our appro
to the higher-dimensional solitary waves is to obtain an
proximate solution using a variational method. This var
tional method recaptures all the important features of
soliton solution in one dimension. Ford.1, we begin by
considering the condition for the existence of a solitary wa
solution. We also consider the limiting case of near ba
edge solitary waves in which the full nonlinear wave equ
tion reduces to a simple NLSE. In this case the existenc
a solitary wave can be reduced by means of analogy to
existence of a finite action trajectory of a classical particle
a potential well.

First we derive anecessarycondition for the existence o
the solitary wave solutions to Eq.~2.7!. Consider the func-
tion

C5
1

Aab
C̃S x

a
,
y

bD , ~3.1!

whereC̃ is a solution to Eq.~2.7!. Clearly,Q5*d2rW C†C
is invariant under the scale transformations defined by
parametersa and b. It is useful to construct an ‘‘action’’
functional for the static solitary wave defined by
e
r
-
se
.

s,
y
-

y
he
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o-

h
-
-
e

e
d
-
of
e

n

e

SX~a,b![E d2rWS b22u]yCu22a21C†sz]xC

2C†~d1bsx!C2
a

2
a21b21~C†C!2D .

~3.2!

Using this definition, it is straightforward to verify that Eq
~2.7! is the stationary point of Eq.~3.2! with respect to varia-
tion of C†(r ), i.e., dSX /dC†50. SinceC is a solution to
Eq. ~2.7!, it follows ~as a special case of the extremum pr
ciple! that

]SX

]a
5

]SX

]b U
a5b51

50. ~3.3!

This leads to the following two conditions:

E d2rW~C†isz]xC!52
a

2E d2rW~C†C!, ~3.4a!

2E d2rWu¹yCu25
a

2E d2rW~C†C!2. ~3.4b!

Clearly condition~3.4b! can only be satisfied whena.0,
since both integrals are positive. This means that a locali
X solitary wave does not exist for a negative nonlinear K
coefficient. This simple scaling argument can also be app
to theM solitary wave solution by constructing an approp
ate ‘‘action’’ functional SM . This leads in an analogou
manner to the following necessary conditions for the ex
tence of anM solitary wave:

E d2rW~C†ig1]xC!52
a

2E d2rWUNL~C†,C! ~3.5a!

and

E d2rW~C†ig2]yC!52
a

2E d2rWUNL~C†,C!.

~3.5b!

Here,UNL is defined as

UNL~C†C!53~C†C!22~C†g4C!2.

Clearly Eqs.~3.5! can be satisfied for both signs ofa. In
other words, the symmetricalM solitary wave exists for ei-
ther sign of the Kerr coefficient. Although the present arg
ment only provides a necessary condition of soliton ex
tence, in practice this often provides a sufficient condition
well. In order to proceed further, we consider a frequen
close to the band edge. In this case it is possible to derive
effective nonlinear Schro¨dinger equation, from which a com
plete existence proof of solitary wave solutions can be
tained by means of a mechanical analogy. First we cons
the X solitary wave Eq.~2.7!. Introducing the Fourier trans
formation C(qW )5* rWe

2 iqW •rWC(rW) and using the notation
* rW[*d2rW, *qW[*d2qW /(2p)2, Eq. ~2.7! becomes

@2qxsz2qy
21d#C~qW !1FNL$C%50, ~3.6!
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where the nonlinear functional FNL$C%
[a*qW 1

*qW 2
„C†(qW 1)C(qW 2)…C(qW 1qW 12qW 2).

The linear part of Eq.~3.6! can be diagonalized using th
qW -dependent unitary operator

S~qW !5S sinS u

2D cosS u

2D
cosS u

2D 2sinS u

2D D , ~3.7!

where tan(u)5 b/qx . Introducing the new spinor field
F(qW )[S†(qW )C(qW ), Eq. ~3.6! becomes

@Aqx
21b2sz2qy

21d#F~qW !1FNL$F~qW !%50 ~3.8!

The photonic band edge occurs atuqW u50. Near band edge
behavior may be described by expanding the dispersion
lation for smalluqW u,

A11S qx

b D 2

5F11
1

2S qx

b D 2

2
1

8S qx

b D 4

1••• G . ~3.9!

Within this approximation, we replaceS(qW ) by S(0), sothat
F(qW ).S†(0)C(qW ). Retaining only quadratic terms in th
dispersion and transforming the equation back to coordin
space, we obtain,

$2sz]xx/2b1]yy1d1bsz1a@F†~rW !F~rW !#%F~rW !50.
~3.10!

Solutions may be found for a521 by choosing
F†5(Ẽ1,0), and fora51 by choosingF†5(0,Ẽ2). In this
case we obtain two uncoupled nonlinear equations forẼ1

and Ẽ2 . Near the upper band edgev1 ,

F2
1

2b
]xx2]yy1

~v1
2 2v2!

4
2auẼ2u2G Ẽ250.

~3.11a!

Near the lower band edgev2 ,

F2
1

2b
]xx1]yy1

~v22v2
2 !

4
1auẼ1u2G Ẽ150.

~3.11b!

In Eq. ~3.11a!, the term2auẼ2u2 acts as an attractive sca
tering potential~for a.0) in bothx andy directions, and a
repulsive potential for (a,0). This leads to a self-trappe
state of light~solitary wave! only whena.0. On the other
hand, the termauẼ1u2 in Eq. ~3.11b! acts as attractive poten
tial in the x direction, but a repulsive potential in they di-
rection~for a,0), or vice versa for (a.0). Consequently,
there exist no localized solitary wave solutions whena,0
as predicted by the scaling argument in Eq.~3.4b!. Equation
~3.11b! has solutions which are extended in they direction.
These solutions have a total energy which increases line
with the size of the sample, and we do not consider th
here.
e-

te

rly
m

Following the same procedure, we can obtain near b
edge equations for theM solitary wave. After the transfor-
mation toqW space, and applying the ‘‘effective mass appro
mation,’’ Eq. ~2.13! becomes

Fg1S b1
1

2b
qx

2D1g4S b1
1

2b
qy

2D1dM GF~q!

1F̃NL$F%50, ~3.12!

wheredM5(v221)/4, F(qW )5S†(0)C(qW ),

S~0!5S 1
2 0 21/A2 2 1

2

1
2 0 1/A2 2 1

2

1
2 21/A2 0 1

2

1
2 1/A2 0 1

2

D , ~3.13!

andF̃NL$F% is the appropriate nonlinear functional ofF(qW ).
Equation~3.12! in coordinate space yields

F2
g1

2b

]2

]x2
2

g4

2b

]2

]y2
1b~g11g4!1dM1a@3~F†F!

2~F†g48F!g48#GF~x,y!50, ~3.14!

whereg485S†g4S. In this case, localized solitary wave solu
tions of the nonlinear Schro¨dinger equation are possible fo
both a561. Since the matrix~3.13! rotates the original
spinor field C, the symmetricM solitary wave amplitude
takes the formF†5(Ẽ1,0,0,0) near the lower band edg
Using this ansatz, Eq.~3.14! reduces to

F2
1

2b

]2

]x2
2

1

2b

]2

]y2
1

~v22v2
2 !

4
13auẼ1u2G Ẽ1~x,y!50.

~3.15a!

Near the upper band edge, the ansatzF†5F(0,0,0,Ẽ4)
yields

F2
1

2b

]2

]x2
2

1

2b

]2

]y2
1

~v1
2 2v2!

4
23auẼ4u2G Ẽ4~x,y!50.

~3.15b!

Using the quantum-mechanical potential well analogy, it c
be seen that Eq.~3.15a! has a localized solution fora521.
Similarly Eq. ~3.15b! leads to a finite energy solitary wav
for a511. In Sec. IV, we use a variational method to e
tend both of these solutions throughout the entire photo
band-gap region.

A. Mechanical analogy for the NLSE

To demonstrate the existence of a finite energy solit
wave solution near a band edge, we make use of a mech
cal analogy. From the earlier discussion, it is apparent
within the near band edge ‘‘effective mass’’ approximatio
the electric field envelope function, satisfies an isotrop
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nonlinear Schro¨dinger equation. If we consider an isotrop
solution for each component of the spinor field, the effect
NLSE in d dimensions near the upper band edge takes
form

C rr 1
~d21!

r
C r2a1C1C350. ~3.16!

Here a15(v1
2 2v2)/4, and thex coordinate has been res

caled asx85xA2b. It is useful to interpretC as the coor-
dinate of a classical particle at ‘‘time’’r :

C rr 52
]U

]C
2

~d21!

r
C r , ~3.17!

where the potentialU is given by

U52
a1C2

2
1

C4

4
. ~3.18!

In addition to moving in the potentialU, the particle expe-
riences a ‘‘time-dependent’’ viscous damping force ford.1.
For frequencies inside the gap (a1.0), in d51, the soliton
solution corresponds to a particle released from rest at p
tion C5Co at ‘‘time’’ r 50. As r→`, this particle comes
to rest atC50 ~see Fig. 3!. Clearly, this is the only finite
action solution. Ford.1, it is necessary for the particle to b
released at a positionC1.Co in order for it to overcome the
viscous damping effect and come to rest atC50 asr→`.
This solution corresponds to a nodeless solitary wave s
tion. Ford.1, if the particle is released from an even high
point, then it can crossC50, move to the second well, an
then return toC50 asr→`. This solution will have a node
and is a higher energy solitary wave solution. In this man
it is possible to create solutions of higher and higher ene

FIG. 3. The mechanical analogy for the NLSE consists o
potential,U(C)52a1C2/21C4/4, in which a fictitious particle
moves. Ford51, the particle is released from rest atC5Co , and
comes to rest at the top of the hillC50. This results in a nodeles
localized solution inx. For d.1, the particle experiences a time
dependent, viscous damping force. Here the particle is rele
from a pointC5C1.Co in order to compensate for the losse
The initial positionC1 is chosen such that the particle comes to r
at the hill C50. This results in a nodeless localized solution. U
like the 1D case, the particle may be released from a higher in
point such that it crosses the zero point and returns toC50. This
solution results in one node. In general, there are an infinite num
of solutions with more and more nodes.
e
e

si-
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with more and more nodes. Ford.1, the solitary wave so-
lution, for a given frequencyv, is not unique as it is for
d51. In this paper we consider only the nodeless solut
which corresponds to the fundamental solution. The n
band edge solutions that we derived using this mechan
analogy provide a plausibility argument for the existence
solitary wave solutions throughout the PBG ford.1. It also
suggests that nonlinear wave solutions of finite energy i
PBG are not unique at a given frequency ford.1.

B. Solitary wave propagation in a lossy-gain medium

Real PBG materials will invariably have small absorpti
losses. If the solid backbone is of ‘‘fiber-optic quality’’ thes
losses may be small. However, nonresonant impurities
vibrations of constituent atoms of the solid, will tend
slowly dissipate energy from the solitary wave. In additio
the sculpting processes required to construct a PBG fro
bulk semiconductor creates a large amount of surface
for the solid PBG backbone. Surfaces of electronic semic
ductors can lead to unoccupied surface electronic st
which may be excited by light within the PBG. Finally, th
PBG material can be doped with resonant impurities wh
can either absorb light or provide gain. A realistic treatme
of nonlinear wave propagation in a PBG material must
count for these effects. We discuss, below, a special case
which a simple analytic solution is possible.

The NLSE may be generalized to include linear lo
~gain! and/or nonlinear loss~gain!. In the case of only linear
loss ~gain! or nonlinear loss~gain!, stable stationary solu
tions may not exist. However, when both linear and nonl
ear losses or gain are included, the two processes may
ance each other, resulting in a stable solution. We illustr
this effect ford51 using the nonlinear Schro¨dinger equa-
tion, obtained from the ‘‘effective mass approximation
near the upper band edge with a complex refractive inde

i
]E

]t
1

1

2b

d2E

dx2
2a1E1 iGLE1~nNL1 iGNL!uEu2E50.

~3.19!

Here the imaginary part of the linear susceptibilityGL is
positive for a lossy medium, and negative in a gain mediu
The imaginary partGNL of the nonlinear susceptibility is
positive when there is two-photon absorption loss, and ne
tive when there is two-photon gain. We seek solutions to
~3.19! in which the electric field amplitude can be written
E(x,t)5«(z)ei @kx1f(z)#, wherez5t2x/V, andV is veloc-
ity of the soliton. Inserting this into Eq.~3.19!, and separat-
ing the real and imaginary parts, yields

2t«̇1~ «̇ḟ !/b1«f̈1GL«1GNL«350, ~3.20a!

t«ḟ1 «̈/2b2«~ḟ!2/2b2a«1nNL«350, ~3.20b!

where a5(a11k2/2b), t5(k/b2V), and the dot repre-
sents the derivative with respect to the independent varia
z. Equtaions~3.20! allow a solution of the forms

«~z!5A sech~az!, ~3.21!

f~z!5b ln@sech~az!#, ~3.22!
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where A252 3GL/2GNL , a252 GLb/b, b5 a1 /GL

6A(a/GL)211, andV5k/b. For a physically admissible
stationary solution, we require thatGL andGNL have oppo-
site signs. AlsoGL andb must have opposite signs.

IV. VARIATIONAL METHOD

For many one-dimensional nonlinear wave equations
exact analytical solution can be found. In higher dimensio
this is no longer possible. Since numerical methods are g
erally quite cumbersome, it is useful to develop an appro
mate analytical approach. We do this by reformulating
problem variationally. A variational approach for nonline
pulse propagation in optical fibers was used by Ander
@40# for the nonlinear Schro¨dinger equation. By using a
simple Gaussian trial function, the pulse width, amplitud
and frequency chirp were recaptured, in good agreem
with the numerical analysis. Our variational method is ba
on minimizing a functional of the system using a suitab
trial solitary wave function. We show that with only a fe
variational parameters, most of the important physics can
recaptured. The effectiveness of the method is confirmed
comparing the variational solution to the exact solution
one dimension. Ford.1, our variational solution provides
good approximation to the numerical solution obtained
Sec. V.

We first illustrate the variational method for on
dimensional gap solitons, and then generalize the metho
higher dimensions. Consider the Lagrangian density for
1D spinor field in the SVEA:

L5
i

2
~C t

†C2C†C t1Cx
†szC2C†szCx!

2C†~d1bsx!C2
a

2
@~C†C!22~C†szC!2#.

~4.1!

The nonlinear wave equation follows from the least act
principle

d S̃50 ~4.2!

where the actionS̃5*dx dt L. In particular, the Euler-
Lagrange equation

dL
dC†

5
]

]tS ]L
]C t

†D 1
]

]xS ]L
]Cx

†D 2
]L

]C†
50 ~4.3!

is equivalent to the one-dimensional version of Eq.~2.5!. We
consider a special class of solutions moving with velocityv
of the form

C~x,t !5C~z,t!eiDkx, ~4.4!

wherez5x2vt andt5t. In this case the Lagrangian den
sity ~4.1! takes the form
n
s
n-
i-
e

n

,
nt
d

e
y

to
e

n

L5
i

2
@Ct

†C2C†Ct1~12v !~Cz
†szC2C†szCz!#

2C†~d2Dksz!C2bC†sxC2
a

2
@~C†C!2

2~C†szC!2#. ~4.5!

The Euler-Lagrange equation is now equivalent to the o
dimensional version of Eq.~2.22!, where the action is given
as S̃5*dt dz L. Rather than solving the wave Eq.~2.22!
directly, we consider extrema of the action parametrized
the variational trial function

E1,2~z!5«1,2~z!eif1,2~z!. ~4.6!

Here «1,2(z) is the amplitude of the solitary wave, an
f1,2(z) is the corresponding phase angle function. The in
gration over the independent variablet from 0 toT becomes
trivial in this case. Accordingly, we defineS5 S̃/T. Substi-
tuting the trial function into the functional~4.5!, we obtain

S5E dzF ~12v !«1
2 ]f1

]z
2~11v !«2

2 ]f2

]z
2~d2Dk!«1

2

2~d1Dk!«2
222b cos~f12f2!2

a

3
~«1

41«2
4

14«1
2«2

2!G . ~4.7!

When v50, thenz and t reduce to the laboratory coord
natesx and t, respectively. A particularly simple trial func
tion consists of choosing a Gaussian amplitude«1,2

5A1,2e
2a2z2

and a linear phase modulationf1,25c1k1,2z.
Inserting this trial function into the functionalS, we obtain

~SA2!/Ap5F ~12v !A1
2k12~11v !A2

2k22~d2Dk!A1
2

2~d1Dk!A2
222b cos~2c!e2~k12k2!/8a2

2
A2a

6
~A1

41A2
414A1

2A2
2!G Y a. ~4.8!

Solving the equations]S/]t i50 with t i5A1,2,a,k1,2,c, we
obtain a set of algebraic equations. It is convenient to de
the following new variables: k5(k12k2)/2, k85(k1

1k2)/2, A1,25l1,2hA2, (l15l1/4, l25l21/4), d̃ 5d/g,
and Dk5vd. Here,l, h, and g are the same as given i
Sec. II B. In terms of these new variables, the variatio
equations take the forms

b cos~2c!e2j/2~12j!1 d̃ 50, ~4.9a!

k/g52b cos~2c!je2j/2, ~4.9b!

aA2522b cos~2c!je2j/2/A2, ~4.9c!

k8/g5
2A2

3
vg2ah2A2, ~4.9d!
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wherej5k2/a2, and cos(2c)561. For a given detuningd̃ ,
we solve forj in Eq. ~4.9a!. All other parameters are the
evaluated easily. However, for this simple trial function,
soliton solution cannot be found for the entire band-gap

gion. There is a critical value ofd̃ c50.445b cos(2c), such
that for positive nonlinearity@a.0, cos(2c)521] a solution

can be obtained ford1, d̃ , d̃ c and for negative nonlinearity
@a,0, cos(2c)51] a solution can be obtained fo

d̃ c, d̃ ,d2 . The reason for this is that the phase modulat
and the exponential localization of the exact solution dif
significantly from the above trial function at either ban
edge. We discuss this effect in more detail below, for
case whenv50. Consider the midgap cased50 anda51.
Thena50.6b/A12v2, describes Lorentz contraction of th
soliton along the direction of propagation. The peak intens
is given byA250.86h2b. Thus, using a simple trial func
tion, the qualitative physical features of the time-depend
solution can be recaptured.

Whenv50, Eqs.~4.9! reduce to the static solution, wher
d5 d̃ , g51, h51, andk850. Fora511, and a frequency
close to the upper band edge (d.b), j!1. In this limit,
A25(v1

2 2v2)/3A2, a5A(v1
2 2v2)b/6, k5(v1

2 2v2)/6,
and cos(2c)521. Near the band edge the total energy sca
as Q5A2p(v1

2 2v2)/3b. As v→v1 , the soliton energy
vanishes.

For a511, when the frequency is close to the upp
band edge (d.b), then A,a,b!1. In this limit, the exact
solution in Eq. ~2.20! can be approximated a
A2(x)5A sech(ax) and f5p/21b tanh(ax). Here the
phase angle increases linearly withx in the core of the am-
plitude function A(x), but saturates in the wings whe
A2(x)→0. On the other hand, when the frequency is close
the lower band edged.2b, the scale parametera in Eq.
~2.20! goes to zero, but the parameterb becomes very large
and determines the size of solitary wave. In the core reg
(ax!1), the amplitude takes the approximate for
A2(x)5a/@11(abx)2# and the phase angle is approximate
f5p/21arctan(bax). Here the phase angle saturates w
before the exponential decay of the amplitude sets in.
simple trial function fails to capture the required pha
modulation near the lower band edge. A variational result
the entire band-gap region can be obtained by choosin
trial phase angle of the formf(x)5c1arctan(kx). However,
with this trial function all the integrals cannot be evaluat
analytically. As an alternative, we may separate the real
imaginary parts ofE5u1 iv, and use the trial functions
(a511), u5Bxe2a2x2

andv5Ae2a2x2
, whereA, a, andb

are variational parameters. This trial function yields an a
lytical solution for the entire band-gap region. In Fig. 4 w
compare the exact solution to this variational Gaussian
function at midgapv251.

Having obtained a variational solution for the on
dimensional gap soliton, we proceed to apply this method
the two-dimensional PBG. The simplest gap solitary wa
for the 2D PBG is theX solitary wave. The correspondin
action functional is similar to Eq.~4.7!, except for the addi-
tion of the y coordinate. Using the trial function
E1,2(z,y)5«1,2(z,y)eif1,2(z), the appropriate action func
tional takes the form
-
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SX5E dz dyH ~12v !«1
2 ]f1

]z
2~11v !«2

2 ]f2

]z
1S ]«1

]y D 2

1S ]«2

]y D 2

2~d2Dk!«1
22~d1Dk!«2

2

22b cos~f12f2!2
a

3
~«1

41«2
414«1

2«2
2!J . ~4.10!

In order to obtain a localized, finite energy solitary wave,
choose«1,2(z,y)5A1,2e

2a2z22b2y2
and f1,25c1k1,2z. In-

serting this into the functional and performing the integ
tion, we obtain

2SX /p5F ~12v !A1
2k12~11v !A2

2k21A1
2b21A2

2b2

2~d2Dk!A1
22~d1Dk!A2

2

22b cos~2c!e2~k12k2!/8a2

2
A2a

6
~A1

41A2
414A1

2A2
2!GYab. ~4.11!

Extremizing SX with respect to the variational paramete
A1,2,a,b,c andk1,2 leads to a set of conditions analogous
Eq. ~4.9!:

b cos~2c!e2j/2~12j/2!1 d̃ 50, ~4.12a!

k/g52b cos~2c!je2j/2/2, ~4.12b!

gb252b cos~2c!je2j/2/2, ~4.12c!

aA2522b cos~2c!je2j/2, ~4.12d!

k8/g52vgb21 2
3 avh2A2. ~4.12e!

FIG. 4. Plotted is the quantityuE1u21uE2u2 ~in arbitrary units!
vs the spatial variablex ~arbitrary units!, for the exact analytical
gap solitary wave solution~solid line! and the variational Gaussia
trial function ~dotted line! for the midgap frequencyd50. The
other parameters are chosen asb50.1 anda511.
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Here all the parameters are defined as in Eq.~4.9!. The sig-
nificant difference from the 1D case is the additional te
2vgb2 in Eq. ~4.12e!. To illustrate how the moving solitary
wave differs from the stationary one, we consider the midg
case d50. In Fig. 5 we compare the energy dens
uE1u21uE2u2 ~as a function ofz5x2vt) for the the station-
ary solitary wavev50, z5x ~solid line! with moving ones
of velocity v50.5 ~dotted line! and v50.9 ~long-dashed
line!. Similarly, in Fig. 6 the energy density is plotted in th
transverse directiony for the same parameters. The solita
wave undergoes a Lorentz contraction in the moving dir

FIG. 5. Plotted is the energy densityuE1u21uE2u2 ~a.u.! for the
2D X solitary wave as a function of the propagation directi
z5x2vt (y50), for the case whenv50 ~solid line!, v50.5 ~dot-
ted line!, andv50.9 ~long-dashed line!. Here the velocity is in units
of the average speed of the light in the medium. The Lorentz c
traction becomes more apparent as the velocity approaches
speed of light in the medium (v→1). Hered50 andb50.1.

FIG. 6. Plotted is the energy densityuE1u21uE2u2 ~a.u.! for the
2D X solitary wave as a function of the transverse directiony
(z50), for the case whenv50 ~solid line! v50.5 ~dotted line! and
v50.9 ~long-dashed line!, where the velocity is in units of the
average speed of the light in the medium. This expansion of
solitary wave in the transverse direction becomes more appare
the velocity approaches the speed of light in the medium (v→1).
Hered50 andb50.1.
p

-

tion, whereas it expands in the transverse direction whev
Þ0. These effects are most apparent when velocity
proaches the average speed of light in the medium. The
quired incident intensity can be estimated by

I in}uE1u253~11v !3/2A12vA2/~32v2!, ~4.13!

which vanishes asv approaches the speed of light in th
medium. The backward flux is proportional touE2u2, and can
be found by replacingv with 2v in Eq. ~4.13!. Similarly,
the total energyQ5*ddr (uE1u21uE2u2) of a solitary wave
associated with a twofold symmetry point in ad-dimensional
PBG material can be scaled as

Q~v !5~12v2!~52d!/4
3

32v2
Q~0!. ~4.14!

This describes both the 2DX solitary wave and the 3DL
solitary wave, which we introduce in Sec. VII.

As in the 1D case, the Gaussian trial function with line
phase modulation yields a solitary wave throughout mo
but not all of the gap at theX point. The complete photonic
band gap for the 2D square lattice consists of the intersec
of the gap at theX point and the gap at theM point. For this
complete gap region, the above ansatz nevertheless prov
a simple but valuable approximation to the solitary wa
solution.

Since the asymptotic behavior of the soliton wave fun
tion is actually of the forme6x, a more accurate trial func
tion is ~for v50)

A~x,y!5A sech~ax!sech~by! ~4.15a!

and

f~x,y!5c1arctan@d tanh~ax!#. ~4.15b!

Inserting the ansatz~4.15! for C trial into the functional
SX , we obtain,

SX/85A2@arctan~d!21/d1arctan~d!/d2#/b1A2b/3a

2A2d/ab24aA4/9ab

2cos~2c!bA2@2 arctan~d!/d21#/ab. ~4.16!

The extremum conditions]SX /]t i50 for the variational pa-
rameterst i5A,a, b, d, andc leads to the algebraic equa
tions

b252aA2/3, ~4.17a!

a5b cos~2c!@d2/~11d2!2d arctan~d!#/@d2arctan~d!#,
~4.17b!

a@arctan~d!21/d1arctan~d!/d2#/21d

1cos~2c!b@2 arctan~d!/d21#50, ~4.17c!

aA259@arctan~d!21/d1arctan~d!/d2#a/4,
~4.17d!

cos~2c!561. ~4.17e!
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Here a solution is possible for the entire band g
v2

X ,v,v1
X , for a511. From Eq.~4.17a! it is easy to see

that a localized solution is not possible whena521 ~nega-
tive Kerr coefficient!, as predicted in the scaling argumen
In Fig. 7 the solution for the variational parameters is plot
as a function of the detuning frequencyd from the mid gap.
Near the upper band edge,v1 , d!1, so that we may expan
arctan(d) in a Taylor series. This leads to the analy
cal solution a5A3b(v1

2 2v2)/4, A259(v1
2 2v2)/16,

b5A3(v1
2 2v2)/8 andd5A3(v1

2 2v2)/16b. The total en-
ergy can be found for frequencies close to the the upper b
edge asQ53A8/b.

The M solitary wave is a new type of solution for whic
there is no analog in one dimension. It is purely a result
the 2D PBG structure. It resembles the structure of two
teracting 1D solitary waves. The general time-dependent
lution is more complicated, so we only discuss the sta
solution. The action for theM solitary wave is given by

SM5E d2rW$C†@ i ~g1]x1g2]y!1dM1bg3#C

2ŨNL~C†,C!%, ~4.18!

where ŨNL(C†,C)5 1
2 a„3(C†C)22(C†g4C)2

…. The M
solitary wave is described by a four-component spinor fi
resulting from Bragg scattering in both thex and y direc-
tions. We use the trial functionC trial

† 5(C1
† ,C2

†), where

C j5Aj~x,y!S eif j ~x,y!

e2 if j ~x,y!D , j 51,2. ~4.19!

In terms of these amplitudes and phases,

FIG. 7. Plotted are the variational parameters, for theX-solitary

wave solution versus the detuning frequencyd/b, (b5De/8ẽ )
measured in units ofvo

21 . The soliton size parameters areb/(a)
~solid line! andAb/(b) ~dotted line! in units ofao/2p, whereao is
the lattice constant. The intensity is given byA2/b ~short-dashed

line! in units of l21, where l52 ẽ /9pux (3)u. The quantity
AbA2/(ab) ~dotted short-dashed line!, is proportional to the total
energy of the solitary wave.
p

d

nd

f
-
o-
c

d

SM/25E d2rWS 2A1
2 ]f1

]x
2A1

2 ]f1

]y
2A2

2 ]f2

]x
1A2

2 ]f2

]y

1dM~A1
21A2

2!14A1A2b cos~f1!cos~f2!

12a~A1
41A2

414A1
2A2

2! D . ~4.20!

Using the trial function

A1~x,y!5A2~x,y!5A sech~ax!sech~ay!

and

f j~x,y!5cj1arctan@b tanh~ax!#

2~21! j arctan~b tanh~ax!!, j 51,2

we obtain

SM/85$22@arctan~b!21/b1arctan~b!/b2#/a

12b@2 arctan~b!/b21#cos~c1!cos~c2!/a21dM /a2

18aA2/3a2%A2. ~4.21!

The extremum point ofSM with respect to the variationa
parameters is defined by the conditions:

a5bcos~c1!cos~c2!@b2/~11b2!

2barctan~b!#/@b2arctan~b!#,

d12bcos~c1!cos~c2!@2 arctan~b!/b21#50,

aA25@arctan~b!21/b1arctan~b!/b2#3a/8

and

cos~c1!cos~c2!561.

These equations admit a solution for botha561. For
a511, cos(c1)cos(c2)521, and for a521,
cos(c1)cos(c2)51. In Fig. 8, the solution to the variationa
problem is plotted against the detuning parame
dM5(v222)/4. Similarly, a variational solution can be ob
tained for the compositeX solitary wave solution to Eq.
~2.16!. From the symmetry of the equations it can be se
thatE3,4(x,y)5E1,2(y,x). The results are qualitatively simi
lar to those of the simpleX solitary wave solution. Unlike
the M solitary wave, the compositeX solitary wave exists
only for a positive Kerr coefficient.

A. Numerical estimates for 2D solitary waves in a PBG

The variational results are useful in determining some
portant physical quantities such as the total energy, peak
tensity, and localization length of these solitary waves. T
standard time-averaged electromagnetic field energy den
is given by ẽ uEu2/8p, where the physical electric field i

given by Re(12 Ee2 ivt). In our convention, the physical elec
tric field is Re(Ee2 ivt). Accordingly the energy density be
comesu5 ẽ uEu2/2p. Thus the total electromagnetic energ
in our case is defined as U5 ẽ Q/2p, where
Q5*ddr (C†C). Similarly, the total time-averaged powe
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flow ~Poynting vector! is given by Sp5 c ẽ /2p (uE1u2
2uE2u2) for the X solitary wave solution. For a stationar
soliton,Sp50, and there is no transfer of energy. Neverth
less, it is instructive to evaluate the forward flux, defined
I in5(c ẽ /2p)uE1u2. This quantity provides a guide to the in
cident flux required to create a soliton using an external la
pulse. For theX solitary wave solution the total electroma
netic energy~per unit length transverse to the 2d Bragg gr
ing! is given as

U ~J/cm!5
ẽ

2p

8A2

labG2
52.2310210

ẽ 2ao
2

ux~3!u
S A2

abD .

~4.22!

Here, the lattice constantao and the Kerr coefficientux (3)u
are all given in~cgs! units. The total energy is measured
units of J/cm, since the medium is assumed to be translat
ally invariant along thez direction. The peak incident flux is
given by

I in ~W/cm2!5
c ẽ

2p

A2

l
533.77

ẽ 3/2

ux~3!u
A2, ~4.23!

where the Kerr coefficient is given in~cgs! units. The param-
etersA2, a, andb in Eqs.~4.22! and ~4.23! are found from
the variational results. Similar expressions exist for theM
solitary wave solution. The total energy for theM solitary
wave is given as

U ~J/cm!5
ẽ

2p

16A2

labG2
59.1310210

ẽ 2ao
2

ux~3!u
S A2

a2 D ,

~4.24!

and the incident peak intensity is

I in ~W/cm2!5
c ẽ

p

A2

l
567.55

ẽ 3/2

ux~3!u
A2. ~4.25!

FIG. 8. Plotted are the variational parameters for theM solitary
wave solution vs the detuning frequencydM /b, measured in terms
of vo

21 . The soliton size parameter isb/(a) ~solid line!, the inten-
sity is A2/b ~short-dashed line!, and the quantityAbA2/(2ab) ~dot-
ted short-dashed line! is proportional to the total energy of theM
solitary wave.
-
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-
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For theX solitary wave solution we consider two cas
with x (3).0, one with frequency close to the upper ba
edge and one at the middle of theX gap. For a frequency
detuning from the midgapd50.9975b ~where the upper
band edged15b[De/8ẽ ) the variational solution yields
A2/b55.6231023, a/b58.6531022, b/Ab56.1231022,
andA2/ab51.061/Ab. At midgap, wheredX50, the param-
eters becomeA2/b52.1, a/b51.42, b/Ab51.18, and
A2/ab51.24/Ab.

For theM solitary wave solution we consider two cas
with x (3).0, one with frequency close to the upper ba
edge and one at the middle of theM gap. Near the uppe
band edge, we choosedM51.9975b, and the following re-
sults are obtained:A2/b59.431024, a/b58.6531022,
and A2/a250.125/b. At midgap dM50, we have
A2/b50.6, a/b51.6, andA2/a250.22/b. The results for
x (3),0, can easily be found by mirror reflection about t
midgap.

In general, the required peak intensity and power for
excitation of these solitary waves decreases as the Kerr
efficient ux (3)u increases. The choice of the material is d
tated by the specific application. For instance, a PBG in
connect between fibers would be designed to have a
centered at 1.5mm, with a large Kerr coefficient at this
wavelength. For applications in the picosecond regime, a
nonlinear response is required. In addition to these requ
ments, the linear and nonlinear losses of these mate
should be as low as possible.

The magnitude of the Kerr coefficient and the respon
time depends on the physical mechanism of the nonlin
interaction. For purely electronic polarization, which i
volves the distortion of the electron cloud about an atom a
virtual electron-hole pairs in the material, the response
almost instantaneous (10215 s!. These nonlinearities are
achieved by operating far from any resonances. For exam
optical fibers are typically used below one-fifth of the ener
gap and semiconductors are used below their half-band
energy. In transparent dielectrics, such as optical fiber
typical susceptibility isx (3);10214 esu@41#. In semiconduc-
tor materials, more general physical mechanisms may c
tribute to the nonlinear coefficient. The most important o
involves the absorption of some of the electromagnetic
ergy accompanied by the creation of real electron-hole pa
In this case, the response time is determined by the rec
bination time of the electron and hole, typically in the nan
second regime. Ultrafast semiconductor materials with l
absorption losses include AlxGa12xAs, where the nonlinear
susceptibilityx (3);10211– 10210 esu@42# for 800–850 nm,
and x (3);10211 esu @43# for 1.55 mm, with femtosecond
pulses. Materials such as CdS, ZnSe, and ZnS exhibit n
linear susceptibilitiesx (3);10212 esu at approximately 1.27
mm using femtosecond pulses@44#. Recent measurements o
polymeric materials have revealed both high nonlinear ind
and a very fast response time on the picosecond time sc
Polymers such asp-toluene sulfonate have a nonlinear coe
ficient x (3);10210 esu for 1.3mm and 1.6mm @45#. The
nonlinear susceptibility of polydiacetylene 9-BCMU th
films has been measured in the 0.64-mm spectral window to
be x (3);1028 esu @46#. These materials, however, have
low optical damage threshold in the GW/cm2 regime.
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For illustrative purposes, consider a 2D PBG, contain
polydiacetylene 9-BCMU material, wherex (3)51.231028

esu and the linear refractive indexno51.6 for 0.64mm. As-
suming that a comparable nonlinear response can be
tained at 1.55mm, a suitable nonlinear PBG structure may
fabricated starting from a square lattice of air columns etc
into a high index material such as silicon (e512). The air
columns may then be infiltrated with the polymer (e52.6),
creating a highly nonlinear PBG material. Since the medi
is periodic, the dielectric constant can be expanded in a F
rier series. Comparing this expansion with our model
quires that we associateẽ with the zeroth order expansio
coefficient, andDe with the first order expansion coefficien
Then we have@26#

ẽ 5~12 f !eB1 f eA ~4.26!

and

De54 f ~eA2eB!
J1~Gra!

Gra
. ~4.27!

Here, f 5p(r a /ao)2 is the volume fraction of the cylinder
with a radius ofr a , ao is the lattice constant of the 2D
square lattice,eA is the dielectric constant of the cylinder
eB is the background dielectric constant,J1(x) is a Bessel
function, andG52p/ao . For a 2D square lattice, a com
plete gap for both polarizations~TE and TM! of the electro-
magnetic field is not possible. Thus we consider the c
when there is a complete gap for the TE polarization. Cho
ing f 50.38, there is a band gap centered aroundao /l50.25
@47#. Then, from Eq.~4.26!, ẽ 58.4, and from Eq.~4.27!,
De53.6, yieldingb[De/8ẽ .0.05. For a PBG constructe
to have a gap centered atl51.55 mm, we require a lattice
constantao50.4 mm. For a soliton of average frequenc
near the upper band edge of theX gap~sayd50.0489), the
total energyU59.8 nJ/cm, withI in519.3 MW/cm2. At mid-
gapd50, U511.5 nJ/cm withI in57.2 GW/cm2. Similarly,
for the M solitary wave near the upper band edge of theM
gap (dM50.0998) the total energy isU521.4 nJ/cm with an
incident flux of I in56.5 MW/cm2. At midgap (dM50), the
total energyU537.6 nJ/cm withI in54.1 GW/cm2. For a 2D
PBG material which is translationally invariant in the tran
verse direction, the total energy of the soliton will be det
mined by the transverse size of the incident laser beam. If
2d PBG structure is confined inside a planar dielectric wa
guide, the total energy is determined by the thickness of
waveguide.

V. NUMERICAL METHOD AND RESULTS

The variational method provides an excellent qualitat
description of solitary waves. In order to obtain a more qu
titative picture of gap solitary waves, we solve the nonline
wave equation numerically. In general, numerical algorith
for 2D nonlinear partial differential equations~PDE’s! are
more complicated than for 1D PDE’s. There are two ma
approaches. The first one is to discretize the equations
defining the electric field on a suitable mesh. The sec
approach is to project the solution on a finite dimensio
subspace of the full function space, and then to solve
resulting nonlinear equations for a finite number of exp
g

b-

d

u-
-

e
s-

-
-
e
-
e

e
-
r
s

r
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d
l
e
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sion coefficients. Here we utilize the second method.
write the solitary wave envelope functions in the form of
finite element expansion

C~rW !.C̃~rW !5(
i , j

n

Ci j f i~ax!f j~by!, ~5.1!

where$f i(x)% is a set of orthonormal basis functions. On
advantage of this method is that we can perform a numbe
steps analytically. Expansion~5.1! is substituted into the ac
tion functional, and the expansion coefficients are found
solving the nonlinear equations]S/]t i50, where
t i5Ci j ,a,b. The number of termsN in expansion~5.1! is
increased until convergence is achieved. We first illustr
the method by applying it to the 1D soliton problem. In th
case we can compare the exact result with the numer
solution. Separating the real and imaginary parts
E5u1 iv, the 1D action functional becomes

S1d/25E dx@vux2uvx1d~u21v2!1b~u22v2!

1a~u21v2!2#. ~5.2!

We then expandu and v using the complete, orthonorma
basis functions,

f i~x!5sech~x!Pi@ tanh~x!#. ~5.3!

Here Pi are the Legendre polynomials, andf i satisfy the
boundary conditionsx→` and C→0. The orthogonality
and normalization relation is given by

E
2`

1`

f i~x!f j~x!dx5
2

~2i 11!
d i j . ~5.4!

We write

u~x!5(
i

N

Ci
uf i~ax!, ~5.5a!

v~x!5(
i

N

Ci
vf i~ax!, ~5.5b!

where (Ci
u , Ci

v , a) are variational parameters. The solutio
possesses some symmetry properties which reduce the
ber of independent parameters. Fora.0, u is an odd func-
tion of x andv an even function ofx. Using these symme
tries,u andv can be expanded as follows:

u~x!5sech~ax!(
i 51

N

Ci
uP2i 21@ tanh~ax!# ~5.6a!

v~x!5sech~ax!(
i 51

N

Ci
vP2i 22@ tanh~ax!#. ~5.6b!

Inserting Eq.~5.6! into the one-dimensional functional~5.2!,
all integrals can be evaluated analytically. The nonline
terms have the form( i , j ,k,lCiCjCkClI ( i , j ,k,l ), where
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I ( i , j ,k,l )5*dx@f i(x)f j (x)fk(x)f l(x)#. This integral can
be evaluated analytically by using the following forms of t
Legendre polynomialsPn(x):

Pn~x!5
1

2n (
m50

[n/2]

~21!mS n

mD S 2n22m

n D xn22m. ~5.7!

S1d

2
5(

i 51

N F2Ci
uCi 11

v 8i 2

~16i 221!
1Ci

uCi
v 4~2i 22!2

~4i 21!~4i 23!

2Ci 21
u Ci

v 2~2i 22!2

~4i 23!~4i 25!
1

2d

a S ~Ci
u!2

4i 21
1

~Ci
v!2

4i 23D
1

a

a
I NLG , ~5.8!

whereI NL contains the integration of the nonlinear term:

I NL5 (
i , j ,k,l

@Ci
uCj

uCk
uCl

uI ~2i 21,2j 21,2k21,2l 21!

12Ci
uCj

uCk
vCl

vI ~2i 21,2j 21,2k22,2l 22!

1Ci
vCj

vCk
vCl

vI ~2i 22,2j 22,2k22,2l 22!#. ~5.9!

Applying the extremum condition to Eq.~5.8! results in
(2N11) coupled nonlinear algebraic equations. Solvi
nonlinear equations is complicated by the fact that the s
tion is not necessarily unique. The numerical algorithm
highly sensitive to the initial guess. Here, we use
MINPACK routine HYBRID, based on the Powell hybrid
method@48#. For the numerical calculation, we choose t
gap parameterb50.1 anda511, yielding a 1D photonic
band gap in the frequency range20.1,d,0.1. To test the
convergence of our numerical method we consider two
solitons: one close to the upper band edge and one clos
the lower band edge. Near the upper band e
(d50.099 75) we obtain convergence to the exact solut
for N53. Near the lower band edge (d520.0875), conver-
gence is achieved forN512. In Fig. 9 we plot the intensity
profile near the lower band edge forN55 and 12, and com-
pare these with the exact solution. Near the upper band e
uuu!uvu, resulting in rapid convergence. Near the low
band edgeuuu.uvu, and more terms are needed to recapt
the exact solution of Mills and Trullinger@4#.

A. 2D Solitary Waves

Having demonstrated the effectiveness of our numer
method in recapturing the exact 1D solution, we now ap
this method to the 2D case. First, we consider theX solitary
wave solution. The real and imaginary parts ofE5u1 iv are
expanded as

u~x,y!5(
i , j

N

Ci j
u f~ax!f~by!, ~5.10a!

v~x,y!5(
i , j

N

Ci j
v f~ax!f~by!. ~5.10b!
u-
s
e
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The functional for the 2DX solitary wave in terms ofu(x,y)
andv(x,y) is given by

SX/25E
2`

1`

dx dy@~]yu!21~]yv !22~vux2uvx!

2d~u21v2!2b~u22v2!2a~u21v2!2#.

~5.11!

In what follows, we choose the gap parameterb50.1, and
consider the case of the positive Kerr nonlinearity,a511.
Using the symmetry properties ofu and v, we make the
expansions

u~x,y!5sech~ax!sech~by!(
i , j

N

Ci j
u P2i 21

3@ tanh~ax!#P2 j 22@ tanh~by!# ~5.12a!

and

v~x,y!5sech~ax!sech~by!(
i , j

N

Ci j
v P2i 22@ tanh~ax!#

3P2 j 22@ tanh~by!#. ~5.12b!

Inserting Eq.~5.12! into Eq. ~5.11!, and applying extremum
conditions, we obtain (2N212) coupled nonlinear algebrai
equations for the variational parametersCi j

u , Ci j
v , a, andb.

For illustrative purposes we consider two solitary wav
Near the upper band edge,d50.099 75, a converged solitar
wave solution is obtained forN56. Near midgap,
d50.0375,N510 is needed to obtain convergence. In Fig
10 and 11 we plot the numerically converged total ene

FIG. 9. The convergence of the numerical finite element met
to the exact analytical solitary wave solution is demonstrated n
the lower band edge ford520.0875 (d2520.1). Plotted is the
energy densityuE1u21uE2u2 ~a.u! vs the spatial variablex ~a.u!. The
dotted line is the finite element result by retaining only five eige
functions (N55) in the expansion, and the solid line shows t
exact solution. The converged numerical result forN512 is indis-
tinguishable from the exact solution. Here,b50.1 anda511.
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FIG. 10. Plotted is the energy density (uE1u21uE2u2) ~a.u.! of theX solitary wave using the numerical finite element method (N56), for
a frequency near the upper band edge of theX gapd50.09975. The spatial coordinatesx,y are scaled in units of the lattice constantao .
Here,a511 andb50.1.
th
th

an

d
si
on

si
a es

ure
density r5uE1u21uE2u2, within the structure, for the two
solitary waves. As expected, for frequencies deeper in
band-gap region the solitary wave is more localized, and
intensity is greater than near the upper band edge.

In Table I we make a comparison of the conserved qu
tity Q and peak intensity of theX solitary wave with the
variational and numerical results. Near the upper band e
the sech trial function gives a better result than the Gaus
trial function. Near the midgap the Gaussian trial functi
appears more accurate.

For the M solitary wave we again use the same ba
functions ~5.3!. Separating the real and imaginary parts
E15u11 iv1 , E25E1* , E35u31 iv3 , andE45E3* , the ac-
tion functional becomesL
e
e

-

ge
an

s
s

SM/25E dx dy$v1~u1x1u1y!2u1~v1x1v1y!

1v3~u3x2u3y!2u3~u3x2u3y!

1dM~u1
21v1

21u3
21v3

2!14bu1u3

12a@~u1
21v1

2!21~u3
21v3

2!2

14~u1
21v1

2!~u3
21v3

2!#%. ~5.13!

The finite element, numerical solution of theM solitary
wave is facilitated by exploiting the underlying symmetri
of the M solitary wave Eqs.~2.11!. Equations~2.11a! and
~2.11c! may be interchanged by the relabeling proced
ear upper
FIG. 11. Plotted is the energy density (uE1u21uE2u2) ~a.u.! of the X solitary wave using the numerical finite element method (N510),
for a frequency near the midgap of theX gap (d50.0375). The spatial coordinates,x andy are measured in units of the lattice constantao .
Close to midgap, the localization length is only several lattice constants and the intensity has increased when compared to the n
band edge solution in Fig. 8. All other parameters are the same as in Fig. 8.
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1↔3, 2↔4, andy↔2y. The same relabeling leads to th
interchange of Eqs.~2.11b! and ~2.11d!. It follows that
E3(x,y)5E1(x,2y). Furthermore, some of the terms in th
general finite element expansion are identically zero. We
lize the expansions

u1~x,y!5sech~ax!sech~ay!(
i , j

N

$Ci j
u P2i 22@ tanh~ax!#P2 j 22

3@ tanh~ay!#1Bi j
u P2i 21@ tanh~ax!#P2 j 21

3@ tanh~ay!#%, ~5.14a!

v1~x,y!5sech~ax!sech~ay!(
i , j

N

$Ci j
v P2i 21@ tanh~ax!#

3P2 j 22@ tanh~ay!#

1Bi j
v P2i 22@ tanh~ax!#P2 j 21@ tanh~ay!#%

~5.14b!

TABLE I. Comparison of the variational and numerical resu
for the X solitary wave solution for two frequency detunings, o
close to the upper band edge,d5(v221)/450.099 75, and the
other close to midgap,d50.0375. We compare the peak intens
A2 ~a.u.! and total energyQ obtained the finite element numeric
method, with that obtained by the Gaussian and sech variati
trial functions. Both trial functions are in qualitatively good agre
ment with the numerical results. Here the material parameters
chosen asb50.1 anda511, and the midgap is defined byd50.

Gaussian Sech Numerical

d50.09975
Q 28.11 26.84 26.18
A2 0.000 50 0.000 56 0.000 61
d50.0375
Q 34.77 29.56 37.15
A2 0.111 0.134 0.117
i-

along with the symmetry conditionsu3(x,y)5u1(x,2y) and
v3(x,y)5v1(x,2y). Inserting expansion~5.14! into func-
tional ~5.13!, and applying the extremum condition, we o
tain (4N211) nonlinear algebraic equations for the vari
tional parametersCi j

u , Bi j
u , Ci j

v , Bi j
v , and a. Here we

consider two frequencies, one near the lower band e
dM520.199 75 and one deep inside the photonic band
dM520.15, for the case of the negative Kerr coefficie
a521. The numerically converged solutions are given
Figs. 12 and 13, where we plot the total energy density fu
tion uE1u21uE2u21uE3u21uE4u2. The solitary wave is clearly
more localized for frequencies deeper in the gap regi
Also, the shape of theM solitary wave departs significantl
from that of theX solitary wave for frequencies deeper in th
gap.

VI. 2D TRIANGULAR SYMMETRY GROUP

In this section we apply the methods of Secs. IV and V
derive the existence of solitary waves in a photonic crys
with a 2D triangular symmetry group. This type of structu
has already been fabricated@32# using silicon in the infrared
regime~around 5mm!. For simplicity, we model the linea
dielectric constant of the triangular lattice by

e~x,y!5 ẽ 1De$cos~GW 1•rW !1cos~GW 2•rW !

1cos@~GW 11GW 2!rW#% ~6.1!

HereGW 15 (2p/ao) (1,2A3/3) andGW 25 (2p/ao) (0,2A3/3)
are the reciprocal vectors of the triangular lattice with latt
constantao . As in the square lattice the photonic band edg
are described by the two extremal symmetry points in
triangular BZ. These are theX symmetry point
kWX5(2p/3ao)(0,A3) and the J symmetry point
kW J5(2p/3ao)(1,A3). A possible lattice structure and th
corresponding Brillouin zone is given the Fig. 14. Followin
the SVEA method, we expand the electric field around th
symmetry points. The derivation of the nonlinear wave eq

al

re
FIG. 12. Plotted is the energy densityr5(C†C) ~a. u.! of the M solitary wave, for a frequency close to the lower band edge of theM
gap (dM520.19975). The spatial coordinatesx andy are measured in units of the lattice constantao .
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FIG. 13. Plotted is the energy densityr5(C†C) ~a.u.!, of theM solitary wave, for a frequency deeper in the band-gap region of thM
gap (dM520.15). The spatial coordinatesx andy are measured in units of the lattice constantao .
ea
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tion is similar to that described earlier. We do not rep
these detailed steps here. Instead we simply state the re
ing equations for the slowly varying envelope functions. F
the twofoldX symmetry point, the electric field is expande
in the usual manner:

E~x,y!5E1~x,y!ei ~G/2!y1E2~x,y!e2 i ~G/2!y ~6.2!

For theJ symmetry point, there are three points ink space
connected by Bragg scattering:

E~x,y!5E1~x,y!ei @~G/2A3!x1 ~G/2!y#1E2~x,y!e2 i ~G/A3!x

1E3~x,y!ei @~G/2A3!x2 ~G/2!y. ~6.3!

HereG54pA3/3ao . For theX symmetry point the nonlin-
ear wave equation is completely equivalent to Eq.~2.7!, and
the resulting gap solitary waves are identical to those
scribed earlier for the square lattice. However, a new type
wave equation is required to describe theJ symmetry point

FIG. 14. Shown is a top view of a triangular lattice PBG stru
ture ~left! consisting of circular dielectric rods. The Brillouin zon
~right! with the relevantJ(2p/3ao,2pA3/3ao) andX(0,2pA3/3ao)
symmetry points are indicated.
t
ult-
r

-
of

where three modes are resonantly coupled through the p
odic dielectric function. In this case we obtain

i S 1

A3

]E1

]x
1

]E1

]y D 1dJE11b~E21E3!

1
2l

3
@ uE1u212~ uE2u21uE3u2!#E150, ~6.4a!

2 i
2

A3

]E2

]x
1dJE21b~E11E3!1

2l

3
@ uE2u212~ uE1u2

1uE3u2!#E250, ~6.4b!

i S 1

A3

]E3

]x
2

]E3

]y D 1dJE31b~E11E2!

1
2l

3
@ uE3u212~ uE1u21uE2u2!#E350. ~6.4c!

Equations~6.4! can be written in a compact form by definin
the three-component spinor fieldC†5(E1* ,E2* ,E3* ):

@ i ~g18]x1g28]y!1dJ1bg381aUNL~C†,C!#C50.
~6.5!

HeredJ5(v224/3)/4, and

UNL~C†,C!5@ 5
3 ~C†C!2 1

6 ~C†g18C!g182 1
2 ~Cg28C!g28#.

~6.6!

In arriving at the dimensionless wave equation~6.5!, we per-
formed the rescalingA2l/3C→C wherel[9pux (3)u/2ẽ is
the nonlinear optical coefficient.x and y are dimensionless
coordinate variables measured in units ofG21, andg18 , g28 ,
andg38 are 333 matrices defined as

-
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g185S 1 0 0

0 22 0

0 0 1
D , g285S 1 0 0

0 0 0

0 0 21
D ,

g385S 0 1 1

1 0 1

1 1 0
D ~6.7!

The band gaps for theX andJ symmetry points can be foun
for the SVEA by settinga50. Using the trial solution,
C5FeiqW rW, the band edges for theX symmetry point occur a
uquW50, at the frequencies

v6
X 5A164b ~6.8!

For the J symmetry point the upper and lower band ed
frequencies are given by

v1
J 5A4/314b,

v2
J 5A4/328b.

The complete photonic band gap is an indirect one de
mined byv15v1

(X) andv25v2
(J) . In order to have a com

plete band gap we require that (De/ ẽ )>0.2 in the context of
the slowly varying envelope approximation.

Variational and numerical results

The variational method is implemented by introducing t
action functional for theJ symmetry point:

SJ5E d2rW$C†@ i ~g18]x1g28]y!1dJ1bg38#C

2ŨNL~C†,C!%, ~6.9a!

where

ŨNL5
a

2
$ 5

3 ~C†C!22 1
6 ~C†g18C!22 1

2 ~C†g28C!2%

~6.9b!

Using the variational trial solution

C5S A1~x,y!eif1~x,y!

A2~x,y!eif2~x,y!

A3~x,y!eif3~x,y!
D , ~6.10!

the action functional functional takes the form

SJ5E dx dyF2A1
2S ]f1

]x
1

]f1

]y D2A3
2S ]f3

]x
2

]f3

]y D
12A2

2 ]f2

]x
1dJ~A1

21A2
21A3

2!

12b@A1A2 cos~f12f2!1A1A3 cos~f12f3!
r-

1A3A2cos~f22f3!#1
a

2
@A1

41A2
41A3

414~A1
2A2

2

1A1
2A3

21A3
2A2

2!#G ~6.11!

The integrals in Eq.~6.11! may be evaluated explicitly using
the following ansatz for the solitary wave amplitude a
phase angles:

A1~x,y!5A3~x,y!5A sech~ax!sech~ay!;

A2~x,y!5bA1~x,y!, ~6,12a!

f1~x,y!5c11arctan@d tanh~ax!#1arctan@d tanh~ay!#,
~6.12b!

f2~x,y!5c22arctan@d tanh~ax!#, ~6.12c!

f3~x,y!5c31arctan@d tanh~ax!#2arctan@d tanh~ay!#.
~6.12d!

In this case the action functional takes the form

SJ/45F2A2

a S arctan~d!2
1

d
1

arctan~d!

d2 D S 11
~11b2!

A3
D

1
2bA2

a2 S 2arctan~d!

d
21D

3S b@cos~c12c2!1cos~c32c2!#

3
sinh21~d!

d
1cos~c12c2! D1

A2dJ~21b2!

a2

1
2aA4

9a2
~61b418b2!G . ~6.13!

The extremization of Eq.~6.13! with respect to the varia-
tional parametersA2, a, b, andd leads to a cumbersome s
of coupled nonlinear algebraic equations. From the con
tions ]SJ /]A250 and]SJ /]a50, we find

dJ~21b2!12b@2 arctan~d!/d21#$b@cos~c12c2!

1cos~c32c2!#sinh21/d1cos~c12c2!%50, ~6.14!

aA4~61b418b2!

59aS arctan~d!2
1

d
1

arctan~d!

d2 D ~21b2!/2,

~6.15!

and from the condition]SJ /]d50 we may express the pa
rameter a in terms of the others. The last conditio
]SJ /]b50 together with Eq.~6.14! will be a function ofb
andd which then have to solved numerically.

We solve nonlinear algebraic equations numerically
the casea521. The solution to the variational paramete
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are plotted versus the detuning frequencydJ5(v224/3)/4
in Fig. 15. However, fordJ.0, these numerical results wer
not accurate thus we do not present them on the plot. W
a521, cos(c12c3)5cos(c12c2)5cos(c32c2)51. Near the
lower band edge,b.1. When a51, cos(c12c3)51, and
cos(c12c2)5cos(c32c2)521. Near the upper band edg
b.2. Thus a solution is possible for either sign of the no
linear optical coefficientl. The variational method is usefu
in estimating important physical quantities of the solita
wave for various frequency detunings. The required incid
intensity ~flux! is given by

I in ~W/cm2!550
ẽ 3/2

ux~3!u
A2 ~6.16!

and the total energy of theJ solitary wave yields

U ~J/cm!51.3310210S ẽ 2ao
2

ux~3!u
D S A2~21b2!

a2 D ,

~6.17!

where the lattice constant isao ~cm! and the Kerr coefficient
ux (3)u esu. The magnitude of these quantities are qualitativ
the same as in the 2D square lattice case.

In order to obtain a more detailed numerical solution,
separate the real and imaginary parts asEj5uj1 iv j , j 51,
2, and 3. The functional becomes

SJ5E dx dy„v1(u1x1u1y)2u1(v1x1v1y)…

12(u2v2x2v2u2x)1v3(u3x2u3y)2u3(v3x2v3y)

1dJ(u1
21v1

21u2
21v2

21u3
21v3

2)

12b(u1u21u1u31u2u31v1v21v1v31v2v3)

FIG. 15. The variational parameters for theJ solitary wave
shown are plotted as a function of the detuning frequencydJ /b.
Here the soliton sizeb/a ~solid line! is measured in units ofao , the
intensity isA2/b ~dotted line!, and the second amplitude parame
is b ~dotted short-dashed line!. The quantitybA2(21b2)/a2 ~dot-
ted long-dashed line! is proportional to the total energy of theJ
solitary wave.
en

-

t

ly

e

1
a

2 F5

3
(u1

21v1
21u2

21v2
21u3

21v3
2)2

2
1

6
„u1

21v1
222(u2

21v2
2)1u3

21v3
2
…

2

2
1

2
(u1

21v1
22(u3

21v3
2)2G . ~6.18!

For a521, we utilize the finite element expansion

u1~x,y!5sech~ax!sech~by!(
i , j

N

Ci j
u P2i 22

3@ tanh~ax!#P2 j 22@ tanh~by!#

1Bi j
u P2i 21@ tanh~ax!#P2 j 21@ tanh~by!#,

~6.19a!

v1~x,y!5sech~ax!sech~by!(
i , j

N

Ci j
v P2i 21

3@ tanh~ax!#P2 j 22@ tanh~by!#

1Bi j
v P2i 22@ tanh~ax!#P2 j 21@ tanh~by!#,

~6.19b!

u2~x,y!5sech~ax!sech~by!(
i , j

N

C̃i j
u P2i 22

3@ tanh~ax!#P2 j 22@ tanh~by!#, ~6.19c!

v2~x,y!5sech~ax!sech~by!(
i , j

N

B̃i j
v P2i 21

3@ tanh~ax!#P2 j 22@ tanh~by!#. ~6.19d!

From the symmetry of the Eq.~6.4! it can be seen that
u3(x,y)5u1(x,2y) and v3(x,y)5v1(x,2y). For illustra-
tive purposes, a frequency close to the lower band e
dJ520.1998~for a521) is chosen. The result is plotted i
Fig. 16. Deeper in the band-gap region more terms
needed for the convergence of the solitary wave soluti
and also the solution to the coupled nonlinear algebraic eq
tions is numerically more difficult.

VII. THREE-DIMENSIONAL SOLITARY WAVES
„LIGHT BULLETS … IN A 3D PBG:

FCC SYMMETRY GROUP

In order to have a complete photonic gap in all directio
and polarizations, a three-dimensional periodic structure
needed. Structures with a face centered cubic symmetry h
been fabricated in the microwave regime@20,24#. Very re-
cently, 3D structures made of diamond or silicon on the o
tical scale have been fabricated@34# using infiltration tech-
niques starting with a scaffolding of close-packed op
spheres which are later removed by chemical etching.
voids may then be filled with another nonlinear dielect
material. These structures facilitate complete localization
light @17# as well as the inhibition of spontaneous emissi
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FIG. 16. Plotted is the numerically determined energy density (uE1u21uE2u21uE3u2), for theJ solitary wave. The spatial coordinatesx
andy are measured in units of the lattice constantao . Here the frequency is chosen near to the lower band edge (dJ520.0308),a521,
andb50.1.
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from atoms@18#. Another possible self-organizing 3D stru
ture arises in colloidal crystals@9#. Due to the relatively low
index contrasts, these structures~even for TiO2 spheres in
water! do not exhibit a complete photonic band gap, but w
have band gaps in specific directions. An advantage of th
structures is that the lattice spacing can be adjusted
changing the particle concentration, particle size, and t
perature@9#. In this section, we describe the nature of 3
localized solitary waves arising in such systems using
variational technique introduced in Sec. IV.

For a three-dimensional photonic crystal with point gro
of symmetry of a fcc lattice, we introduce a simple mod
dielectric function of the form:

e~r !5 ẽ 1De@cos~GW 1•rW !1cos~GW 2•rW !1cos~GW 3•rW !

1cos~GW 4•rW !#. ~7.1!

Here, the reciprocal lattice vectors are given
GW 15 (2p/ao) ( x̂2 ŷ1 ẑ), GW 25 (2p/ao)( x̂1 ŷ2 ẑ), GW 3

5 (2p/ao)(2 x̂1 ŷ1 ẑ), and GW 45GW 11GW 21GW 3 ;
G52pA3/ao is the magnitude of the reciprocal lattice ve
tor; andao is the fcc lattice constant. In this simple mode
the photonic band edges are again determined by the two
L symmetry point and the fourfoldW symmetry point of the
Brillouin zone. The Brillouin zone to the fcc structure
shown in Fig. 17. As before, we expand the total elec
field around these symmetry points, and derive the equat
in the SVEA. Near theL symmetry point@kWo5p(1,1,1)/ao#
the electric field may be expanded as

E~x,y,z!5E1~x,y,z!ei ~p/ao!~x1y1z!

1E2~x,y,z!e2 i ~p/ao!~x1y1z!. ~7.2!

The wave equation for the two-component spinor fie
C†5(E1* ,E2* ) is given by
l
se
y
-

e

l

ld

c
ns

@ isz]x81]y8y81]z8z81d1bsx1a~C†C!#C50.
~7.3!

Here we have introduced the new dimensionless varia
x85(x1y1z)/A3, y85(x2y)/A2, and z85(x1y
22z)/A6 ~measured in units ofG21) and we have per-
formed the standard rescalingAlC→C. This is identical to
Eq. ~2.7! for the X solitary wave, except for the addition o
the z8 derivative term.

For the higher symmetryW point @kWo52p(1,1/2,0)/ao#
there are four coupled envelope functions. In the SVEA,
write

E~x,y,z!5E1ei ~p/a!~2x1y!1E2e2 i ~p/a!~2x2y!

1E3e2 i ~p/a!~y22z!1E4e2 i ~p/a!~y12z!.

~7.4!

Defining the four-component spinor field C†

5(E1,* E2,* E3,* E4* ), the resulting coupled equations can th
be written compactly as:

@~ i2ḡ 1]x1 ig4]y1 i2ḡ 2]z!1dW1bg31aUNL#C50,
~7.5a!

FIG. 17. Shown is the first Brillouin zone to the 3D fcc lattic
structure labeled with the twofoldL symmetry point and the four-
fold W symmetry point.
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where

UNL5[ 7
4 ~C†C!2 1

4 ~C†g4C!g42 1
2 ~C†ḡ 1C!ḡ 1

2 1
4 ~C†ḡ 2C!ḡ 2]. ~7.5b!

Here, dW5(v225/3)/4, and the matricesḡ 15(g11g2)/2
and ḡ 25(g12g2)/2. The dimensionless coordinate va
ables are measured in units of (A3G)21, and the field is
rescaled asA2l/3C→C.

The band gaps in the SVEA for theL and W symmetry
points are found in the usual way from the linear dispers
relations. For theL symmetry point the band edges occur
the frequencies

v6
L 5A164b, ~7.6a!

whereas, for theW symmetry point, the band edges occur

v6
W5A5/368b, ~7.6b!

For a complete band gap in the SVEA, we requ
De/ ẽ >0.66.

Variational results

Equation ~7.3! may be cast into a variational form b
defining the action functionalSL : ~for simplicity we drop the
primes inx, y, z)

SL5E d3rWS u]yCu21u]zCu22C†~ isz]x1d1bsx!C

2
a

2
~C†C!2D . ~7.7!

Using the trial functionC†5A(x,y,z)(e2 if(x),eif(x)), the
action takes the form

SL/25E d3rW@~]yA!21~]zA!21A2]xf2dA2

2b cos~2f!A22aA4#. ~7.8!

This can be extremized using the variational ans
A(x,y,z)5A sech(ax)sech(by)sech(bz) and f(x)5c
1arctan@d tanh(ax)#. Using this trial function the integration
in Eq. ~7.8! can be performed analytically, yielding

SL/1652A2/3a1A2@d2arctan~d!1arctan~d!2d#/d2b2

2dA2/ab22A2b cos~2c!@2arctan~d!/d21#/ab2

28aA4/27ab2. ~7.9!

The extremum condition]S/]t i50 for t i5A, a, b yields

aA2527@arctan~d!1arctan~d!/d221/d#a/8,
~7.10a!

d1b cos~2c!@2 arctan~d!/d21#50, ~7.10b!

b254aA2/9, ~7.10c!
n
t

t

z

a5b cos~2c!@d2/~11d2!2darctan~d!#/@d2arctan~d!#,
~7.10d!

cos~2c!561. ~7.10e!

From Eq.~7.10c! it is clear that a localized solution exist
only for a511 ~positive Kerr coefficient!. In Fig. 18, the
intensity A2, size scalesa, andb, and the total energy are
plotted as a function of detuning frequencyd. Clearly, the
minimum energy solitary wave occurs near the midgap. N
the upper band edge the total energy diverges. The requ
incident intensity~flux! is given by

I in @W/cm2#533.77
ẽ 3/2

ux~3!u
A2, ~7.11!

and the total energy of the ‘‘light bullet’’ of theL solitary
wave is given by

U ~J!51.4310211S ẽ 2ao
3

ux~3!u
D S A2

ab2D . ~7.12!

For the W symmetry point, the action functional corre
sponding to Eq.~7.5! is given by

SW5E d3r $C†@ i ~2ḡ 1]x1g4]y!12ḡ 2]z1dW1bg3#C

1ŨNL%, ~7.13a!

where

ŨNL5
a

2
@ 7

4 ~C†C!22 1
4 ~C†g4C!22 1

2 ~C†ḡ 1C!2

2 1
4 ~C†ḡ 2C!2#. ~7.13b!

FIG. 18. Plotted are the variational parameters for the 3DL
solitary wave. The soliton lengthb/a ~solid line!, and transverse
sizeAb/b ~dotted line! are measured in units ofao . The quantity
bA2/ab2 ~dotted long-dashed line! is proportional to the total en-
ergy of theL solitary wave, and the peak intensity~right scale! is
given byA2/b ~short-dashed line!.
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Using the trial function C†5A(x,y,z)(e2 if1,
e2 if2,e2 if3,e2 if4), the action becomes

SW5E d3r F2A2S 2
]

]x
~f12f2!12

]

]z
~f32f4!

1
]

]y
~f11f22f32f4! D14dWA2

12bA2
„cos~f12f3!1cos~f12f4!

1cos~f22f3!1cos~f22f4!…114aA4G .
~7.14!

Using phase anglesf15c11k(x1y), f25c22k(x2y),
f35c32k(y2z), andf45c42k(y1z), we obtain

S̃~A,a,k,c!5@23k1dW12b cos~2c!

3e23k2/4a2
1a8A2#A2/a3. ~7.15!

Here cos(2c)5@cos(c12c3)1cos(c12c4)1cos(c22c3)
1cos(c22c4)#/4, a857A2a/8, andS̃5SW /pA2p. The ex-
tremum condition gives

dW12b cos~2c!e23j/4~21j!50, ~7.16a!

k52b cos~2c!je23j/4, ~7.16b!

a8A252b cos~2c!je23j/4, ~7.16c!

where

j25k2/a2. ~7.16d!

Equations~7.16! yield a solution for both signs of the Ker
coefficient. As with the 2DX solitary wave, the Gaussia
trial function does not give a physical solitary wave soluti
throughout the entire band-gap region. Moreover, the us
the sech trial function fails in this regard. This is probab
because Bragg scattering occurs in several directions lea
to a more complicated phase modulation behavior than c
sidered above. Nevertheless, in Fig. 19 the variational
rameters are plotted as a function of the detuning freque
dW , for the case of a negative Kerr coefficient (a521), in
the band-gap region where a solution is possible. As
pected, the total energy of the solitary wave diverges as
frequency approaches the lower band edge. Unlike thL
solitary wave, where the minimum energy is around midg
the W solitary wave has a minimum energy much closer
the lower band edge. For theW solitary wave the required
incident intensity~flux! is given by

I in ~W/cm2!550
ẽ 3/2

ux~3!u
A2, ~7.17a!

and the total energy

U ~J!58310212S ẽ 2ao
3

ux~3!u
D S A2

a3 D . ~7.17b!
of

ng
n-
a-
cy

x-
e

,

For concreteness, we consider a fcc lattice of air sphere
silicon. We consider the frequency where the total ene
attains a local minimum. This is near the midgapd50 for
the L solitary wave. The variational parameters are given
(a511): A2/b55.15, a/b51.6, b/Ab51.5 and
A2b/(ab2)51.4. For theW solitary wave the minimum cou
pling energy is achieved for a detuning frequen
dW /b51.81 (a511), and the variational parameters a
given as:A2/b50.2, a/b50.45, andA2b2/a352.2. The
Kerr coefficient for silicon at 1.06mm has been measure
@49# to be x (3)5831028 esu. However, the nonlinear re
sponse time is in the nanosecond time scale. Consideri
filling fraction f 50.74, there exists a complete photon
band gap region~of about 5 of the center frequency! centered
at ao /l50.85. In order to place the center of the PBG
l51.55mm, we require a lattice constantao51.3 mm. The
expansion coefficients of the Fourier expansion are given
@26#:

ẽ 5~12 f !eA1 f eB ~7.18a!

and

De56 f ~eA2eB!
@sin~Gra!2Gra cos~gra!#

~Gra!3
.

~7.18b!

Here,eA512 ~silicon!, eB51 ~air! andG52pA3/ao . From
these expressionsẽ 53.9 andb[De/8ẽ .0.07. For theL
solitary wave withd50, the total energyU50.1 pJ with
I in51.2 GW/cm2. For theW solitary wave withdW50.127,
U51.5 pJ, andI in567 MW/cm2.

VIII. STABILITY OF SOLITARY WAVES SATISFYING A
NONLINEAR DIRAC TYPE EQUATION

Given the existence of gap solitary wave solutions in
nonlinear photonic crystal, the next important question

FIG. 19. The variational parameters for the 3DW solitary wave
are plotted in terms of the detuning frequencydW /b. The soliton
size b/a ~solid line, left scale! is measured in units ofG21, the
quantity b2A2/a3 ~dotted long-dashed line! is proportional to the
total energy of theW solitary wave, and the peak intensity~right
scale! is A2/b ~dotted short-dashed line!.
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consider is their stability with respect to small perturbatio
Higher-dimensional solitary waves (d>2) in a Kerr medium
satisfying the nonlinear Schro¨dinger equation are known t
be unstable to self-focusing wave collapse. Physically,
wave collapse will eventually be stopped by other physi
mechanism not accounted for in the derivation of the non
ear wave equation. These may include higher order non
earities, higher derivative terms of the power series exp
sion of the dispersion, or even optical damage of
material. In most materials the nonlinear index saturate
higher intensities, thereby stabilizing the solitary wave a
preventing wave collapse. The inclusion of fourth and hig
order derivatives in the nonlinear Schro¨dinger equation has
been shown@36# to stabilize the solitary wave under suitab
circumstances. It has also been shown that the addition
(x (5)) nonlinearity to the usual Kerr response (x (3)) stabi-
lizes the solitary wave solution@50#. The stability analysis of
solitary waves falls into two main categories. The first co
sists of direct numerical stability analysis of the nonline
wave equation. The second approach consists of lineari
the nonlinear wave equation with respect to small pertur
tions about the solitary wave, and considering the temp
growth or decay of the perturbation. In certain special ca
one may use the minimum property of a suitable action fu
tional to determine the stability of solitary waves. For sca
fields with a linear spectrum which is bounded from belo
the existence of a local minimum of the action function
with respect to small perturbations of the solitary wave
equivalent to the condition of stability obtained from tim
dependent perturbation theory. This was used by Der
@51# to establish stability of the solutions to the nonline
Klein-Gordon equation. However, for wave equations~such
as the Dirac equation! with a sign indefinite linear spectrum
the action functional may not possess a local minimum in
vicinity of a stable solitary wave.

In order to determine the stability of the gap solita
waves derived in the previous sections, a small tim
dependent perturbation is added to the solitary wave solu
and the condition for exponential growth of the perturbat
with time is found. Following this procedure, we conjectu
an analytical stability criterion for optical gap solitary wave
analogous to the one found for the NLSE. Our conjectu
stability criterion correctly recaptures the known stabil
characteristics of other widely studied nonlinear spinor fi
equations. It makes some distinctive predictions for opti
solitary waves in PBG materials.

A. Linear stability method

We begin with a brief review of the linear stability prop
erties for a scalar fieldC satisfying the generalized nonlinea
Schrödinger equation~GNLSE!

iC t1¹2pC1uCu2sC50. ~8.1!

Whenp5s51, Eq. ~8.1! reduces to the well known NLSE
The hermiticity of the operator¹2p1uCu2s guarantees tha
the total ‘‘field energy’’Q5*ddr uWCu2 is a conserved quan
tity.

Consider a stationary solution of Eq.~8.1! of the form
C(r ,t)5Co(r )eivt with v.0. It follows that Co satisfies
the static GNLSE,
.

e
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¹2pCo2vCo1Co
2s1150. ~8.2!

As described in Sec. III, ford.1, in addition to the nodeles
‘‘ground state’’ solution, there are also ‘‘excited state’’ s
lutions to Eq.~8.2! exhibiting one or more nodes. Here, w
discuss the stability of the ground state solution only. Co
sider a small perturbation to the stationary solutionCo(r ) of
the form

C~r ,t !5$Co~r !1@u~r ,t !1 iv~r ,t !#%eivt ~8.3!

for which the real valued functionsu,v!Co . Inserting Eq.
~8.3! into Eq. ~8.1! and keeping only first order terms inu
and v, we obtain two coupled equations for the real a
imaginary parts:

ut5Lov, ~8.4a!

v t52L1u. ~8.4b!

Here Lo52¹2p1v2Co
2s and L152¹2p1v

2(2s11)Co
2s . Using Eq. ~8.2! it is easy to verify that

LoCo50 and L1(¹Co)50, where j 5x,y,z. Since the
ground state solution,Co , has no nodes, the operatorLo is
positive definite. On the other hand, the zero eigenvalue
lution of the operatorL1 has one node. Therefore,L1 has at
least one negative eigenvalue. We consider solutions to
~8.4! of the form u(r ,t)5u(r )sin(Vt) and
v(r ,t)5v(r )cos(Vt). The resulting time-independent equ
tions

Lov5Vu, ~8.5a!

L1u5Vv ~8.5b!

can be combined to give

LoL1u5V2u. ~8.6!

Our definition of marginal stability is that any small energ
conserving perturbation added to the solitary wave sho
not grow in time. In other words,V2.0. Perturbations of the
form u(x)}Co(x) which simply increase the overall magn
tude of the solitary wave without affecting its shape, requ
that energy be added to the system. We eliminate pertu
tions of this form in our stability considerations by requirin
that ^uuCo&50. Now the instability corresponds to the exi
tence of a perturbationu, satisfying the constrain
^uuCo&50, for whichV2,0.

Within the subspace of perturbations for whic
^uuCo&50, the operator inverseLo

21 exists. Accordingly we
may act withLo

21 on Eq.~8.6! to obtain:

V25
^uuL1uu&

^uuLo
21uu&

. ~8.7!

Since^uuLo
21uu&.0 within this subspace, the sign ofV2 is

determined entirely by the numerator. Therefore, it is use
to determine the minimum value of^uuL1uu& subject to the
constraints that^uuCo&50 and ^uuu&51. This can be
achieved by considering the functional̂ uuL1uu&
2l^uuu&2a^uuCo&, where a and l are undetermined
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Lagrange multipliers. The minimum of this functional is d
termined by solving the spectral problem

L1u5lu1aCo , ~8.8!

with a andl chosen to satisfy the constraints. To solve t
spectral problem, we expandu andCo in terms of the com-
plete set of eigenfunctions ofL1 , defined by the relation
L1wn5lnwn . Using the orthonormality of the functionwn
we obtain,

u5a (
n50

`
^Couwn&
ln2l

wn . ~8.9!

The Lagrange multipliersa and l may now be determined
by imposing the constraints. The condition that^uuCo&50
yields

a(
n

z^Couwn& z2

ln2l
[a f ~l!50. ~8.10!

We note that the eigenfunctionf1 corresponds to a ‘‘Gold-
stone mode.’’ In particular,L1(¹ jCo)50, (j 5x,y,z), and
so l150 is a d-fold degenerate eigenvalue associated w
the spatial translation of the solitary wave in each of thed,
independent, Cartesian directions. Since^¹CouCo&50, it
follows that then51 term in Eq.~8.10! is absent. Clearly the
lowest eigenvaluelo is negative and the first positive eige
value isl2 . Consider al value betweenlo andl2 . In this
interval, f (l) changes monotonically from2` to 1`,
passing through zero once. We definelmin to be the value of
l at which f (lmin)50. Certainly,lmin represents the mini
mum value of the numerator^uuL1uu& of Eq. ~8.7!, subject to
the constraintŝ uuCo&50 and ^uuu&51. It follows that if
lmin.0 the solitary waveCo(r ) is stable and iflmin,0,
there exist a energy conserving perturbation which gro
with time andCo is an unstable solution to the GNLSE
Since f (l) is a continuous and monotonic function, the si
of lmin is determined by the following consideration:
f (0).0, thenlmin,0. If f (0),0, thenlmin.0. In Fig. 20
we illustrate this graphically. An alternative but equivale
expression for stability follows from the observation that

FIG. 20. Shown is the functionf (l) which diverges at both
l52ulou andl5l2 and is continuous between these two valu
The minimum valuelmin defines the point wheref (l) intercepts
the l axis. If f (0).0, thenlmin,0, and if f (0),0, thenlmin.0.
s

h

s

t

f ~0!5(
n

z^Couwn& z2

ln
5^CouL1

21uCo&. ~8.11!

The inverse ofL1 can be found by differentiating Eq.~8.2!
with respect tov:

]

]v
~LoCo!5L1S ]Co

]v D1Co50. ~8.12!

It follows that in the subspace of perturbations orthogona
¹ jCo ,

L1
21Co52S ]Co

]v D . ~8.13!

Using Eq.~8.13! in Eq. ~8.11!, we obtain

f ~0!52 K CoU]Co

]v L 52
1

2

]Q

]v
, ~8.14!

whereQ(v)5*ddr uC(r )u2. Therefore, the soliton is stabl
if

]Q

]v
.0. ~8.15!

For the particular case of the GNLSE, an analytical expr
sion for thev dependence ofQ can be found by rescaling
Eq. ~8.2!. Introducing the scaled coordinate variab
y5v1/2pr and writingCo(r )5v1/2sg(y), Eq. ~8.2! becomes

¹2pg2g1g2s1150. ~8.16!

It follows that

Q~v!5v1/s2d/2pE ddr g2~r ! ~8.17!

The stability condition~8.15! reduces to

d,2p/s ~8.18!

For the usual NLSE (s5p51), this reduces to the conditio
that d,2. For more general forms of dispersion and nonl
ear interaction, the behavior ofQ(v) is more complicated
than given by Eq.~8.17!, and must be evaluated numericall
The most important generalization is to the case of a s
rable nonlinearity of the formuCu2/(11uCu2). Then the sta-
bility criterion ~8.15! holds ford51,2 for all v.0, whereas
for d53, it holds only for certain frequenciesv.vcr . In
particularvcr is the point whereQ(v) is a local minimum
@52#.

B. Solitary wave stability for the nonlinear Dirac equation

For a nonlinear Dirac type of equation, with a linear spe
trum which is unbounded from below, the derivation of
stability criterion analogous to Eq.~8.15! is more problem-
atic. Although an eigenvalue condition of form~8.7! can be
obtained, a mathematically rigorous reduction of this eig
value problem to a stability criterion of form~8.15! requires
certain assumptions about the role of the negative continu

.
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spectrum of the Dirac operators. We delineate these assu
tions below and provide numerical evidence for their val
ity.

Consider the perturbed spinor field

C~rW,t !5Co~rW !1dC~rW,t !, ~8.19!

whereCo is a solution to Eq.~2.7! anddC!Co . Here, we
consider the generalization of the 1D soliton solution tod
dimensions, which corresponds to including]2/]y2 in two
dimensions and]2/]y21]2/]z2 in three dimensions. This
equation arises from the two fold symmetry point of t
Brillouin zone, and is common to all of the crystal symme
groups. Inserting Eq.~8.19! into Eq. ~2.5! ~with two trans-
verse dimensions! and keeping only terms up to first order
dC, we obtain the equations.

2 idĖ15L1dE11l8Eo
2dE1* 1L2dE21l8uEou2dE2*

~8.20a!

and

2 idĖ25L1* dE21l8Eo*
2
dE2* 1L2* dE11l8uEou2dE1* .

~8.20b!

Here

L1[ i ]x1]yy1]zz1d14l8uEou2, ~8.21a!

L2[b1l8Eo
2, ~8.21b!

and l852a/3. Separating the real and imaginary parts
Eo5uo1 ivo , dE15u11 iv1 , dE25u21 iv2 , and defining
the four-component spinor fielddc†5(v1 ,u1 ,v2 ,u2), Eq.
~8.20! can be expressed as

M̂dc5gḋc, ~8.22a!

where

g52 isyS I 0

0 I D ~8.22b!

and

M̂5S Ô bI

bI Ô
D 1S V1 V2

V2
† 2V1

D ~8.22c!

HereÔ5(I 1sz)Ô1/21(I 2sz)Ô2/2, V15l8(fo
†sxfo)sx ,

and V252l8@fo
†szfo2(fo

†fo)sz1 i (fo
†sxfo)sy#. fo

†

5(uo ,vo) and the operatorsÔ1 andÔ2 are defined as

Ô15]yy1]zz1d15l8uo
213l8vo

2, ~8.23a!

Ô25]yy1]zz1d13l8uo
215l8vo

2 . ~8.23b!

Introducing the new set of variablesu5u11u2 , ũ5u12u2 ,
v5v11v2 , and ṽ 5v12v2 , Eq. ~8.22! can be written as

@Ô21~b24l8vo
2!#v1~]x22l8uovo! ũ52u̇,

~8.24a!
p-
-

f

@Ô11~b14l8uo
2!#u1~2]x16l8uovo! ṽ 5 v̇,

~8.24b!

@Ô22~b24l8vo
2!# ṽ 1~]x16l8uovo!u52 ũ ,

~8.24c!

@Ô12~b14l8uo
2!# ũ1~2]x22l8uovo!v5 ṽ .

~8.24d!

From the conserved quantityQ5*ddrW(C†C)5const, the
condition for an energy conserving perturbation can be w
ten as

E ddrW~uou1voṽ !50. ~8.25!

Equations~8.24! can be compactly reexpressed in terms
the two-component spinor fieldsf1

†5(u, ṽ ) andf2
†5( ũ ,v):

M̂1f15 isyḟ2 ~8.26a!

M̂of252 isyḟ1 . ~8.26b!

Here

M̂15S Ô11~b14l8uo
2! 2]x16l8uovo

]x16l8uovo Ô22~b24l8vo
2!D

~8.27a!

and

M̂o5S Ô12~b14l8uo
2! 2]x22l8uovo

]x22l8uovo Ô21~b24l8vo
2!
D .

~8.27b!

If we assume solutions of the formf1(rW,t)5f1(rW)sin(Vt)
andf2(rW,t)5f2(rW)cos(Vt), then Eqs.~8.26! become

M̃1f15Vf̃2 , ~8.28a!

M̃of̃25Vf1 , ~8.28b!

where we introducedf̃25 isyf2 , M̃o5syM̂0sy , and
M̃152M̂1 . The operatorsM̃1 andM̃o are defined as

M̃152@ isy]x1]yy1]zz1d1bsz13l8V~fo
†,fo!#,

~8.29a!

M̃o52@ isy]x1]yy1]zz1d1bsz1l8V~fo
† ,fo!#.

~8.29b!

andV(fo
† ,fo) is given as

V~fo
† ,fo!5~fo

†sxfo!sx1~fo
†szfo!sz12~fo

†fo!.
~8.30!

Herefo satisfies the nonlinear wave equation

@ isy]x1]yy1]zz1d1bsz12a~fo
†fo!#fo50.

~8.31!
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For concreteness, we consider the casel852a/3.0. We
first examine the spectra ofM̃o and M̃1 separately. It can
easily be verified that the linear part of the operatorsM̃o and
M̃1 , exhibits both positive and negative continua, wher
the potentialV(fo

† ,fo) is a positive definite operator.M̃1

has d-fold degenerate eigenfunctions¹ jfo , j 5x,y,z
(d51,2,3) with zero eigenvalue, corresponding to the us
translational~Goldstone! mode of the solitary wave. In the
solutionfo

†5(uo ,vo), uo has one node andvo is nodeless. It
follows that the translational mode¹ juo has two nodes and
¹ jvo has one node. In analogy with the Schro¨dinger opera-
tor, we expect that a bound statef†5(u,v) of the operator
M̃1 with a negative eigenvalue exists, whereu has one node
and v is nodeless. The operatorM̃o has a zero eigenvalu
corresponding to the solutionfo . In analogy with the Schro¨-
dinger operator, we expect thatM̃o has no negative eigen
value bound states. We have numerically verified these
pected properties of the operatorsM̃o andM̃1 , by expanding
their eigenfunctions in terms of the complete orthonorm
basis functions used in the finite element analysis. The eig
values and eigenvectors of the resulting finite-dimensio
matrix are then found by standard methods. To give a
merical example in one dimension, we consider the par
etersb50.1 andd50.0975~near the upper band edge!. It is
found that in addition to the negative and positive contin
there is only one negative eigenvalue bound state of the
eratorM̃o at 20.00747, and no negative eigenvalue bou
states of the operatorM̃o . In Fig. 21 we illustrate the spectr
of the operators for one dimension. Similar results are fou
for the 2D case.

Equations~8.28! may be combined, as in the GNLS
case, to give

M̃oM̃1f15V2f1 . ~8.32!

The solitary wave solution is unstable if there exists
eigenfunctionf1 of Eq. ~8.32! with negative eigenvalueV2

in the subspacêfouf1&50. Now it can be easily shown tha
the linear part~settingV50) of the operatorM̃oM̃1 is posi-
tive definite, by considering solutions of the formeikr . The
continuous spectrum ofM̃oM̃1 is given by

FIG. 21. Illustrated are the spectra of the operatorsM̃ 1 andM̃o

for the 1D gap soliton case. Both operators exhibit a negative c

tinuum.M̃1 has a zero eigenvalue corresponding to the usual G

stone mode and a negative bound state at20.007 47. TheM̃o op-
erator has no negative bound states, and the lowest bound sol
has an eigenvalue zero, for which the eigenfunction is the gap
ton solutionfo . Herea511 andb50.1.
s

al

x-

l
n-
al
-
-

,
p-
d

d

n

V6
2 5@d2~ky

21kz
2!6Ab21kx

2#2. ~8.33!

In the presence of the potentialV(fo
† ,fo) the operator

M̃oM̃1 does not contain a negative continuum, and may h
only a finite number of discrete negative eigenvalues co
sponding to localized states. In other words, all perturbati
corresponding to extended states result inV2.0, and we
only have to consider the negative bound states. In w
follows, it is convenient to denote negative continuum sta
of the operatorsM̃o andM̃1 as the subspaceG. We refer to
the orthogonal complement of this subspace by the sym
Gc.

In the subspace for whicĥfouf1&50 we can define the
inverse of the operatorM̃o . Accordingly Eq.~8.32! can be
reduced to the form obtained for the GNLSE:

V25
^f1uM̃1uf1&

^f1u~M̃o!21uf1&
. ~8.34!

Here we only consider perturbationsf1 that are spatially
localized, since we know from Eq.~8.32! that any extended
perturbation leads toV2.0. This can also be seen from th
fact thatM̃15M̃o22l8V(fo

† ,fo) and the expectation val

ue becomes ^f1uM̃1uf1&5^f1uM̃ouf1&22l8^f1uV(fo
† ,

fo)uf1&. The eigenfunctions for the negative continuu
correspond to extended states so that for any perturbationf1

spanned by the negative continuum of the operatorM̃o , the
corresponding expectation value^f1uM̃1uf1& is also nega-
tive. This follows from the fact that the expectation valu
^f1uV(fo

† ,fo)uf1& is positive. The lowest bound state o

the operatorM̃o corresponds to the eigenfunctionfo , with
zero eigenvalue. ConsequentlyM̃o has no bound state solu
tions with negative eigenvalues in the subspace^fouf1&50.
On the other hand, the operatorM̃1 has at least one boun
state with a negative eigenvalue. Therefore the sign ofV2

will be determined by the expectation value of^f1uM̃1uf1&.
In general there are three distinct cases:~i! If the operator

M̃1 has no bound states with negative eigenvalues, then
solitary wave is stable.~ii ! If M̃1 has more than one boun
state with a negative eigenvalue, then the solitary wave
unstable. This follows from the fact that it is always possib
to construct a perturbationf1 as a superposition of the nega
tive bound states which also satisfies the constra

^fouf1&50. ~iii ! If M̃1 has precisely one negative boun
state, then the stability of the solitary wave reduces to
stability criterion similar to that obtained in the NLSE. W
consider case~iii ! in more detail below.

The minimum value of the numerator in Eq.~8.34! within
the subspacêfouf1&50 can be found by solving the spec
tral problem

M̃1f15lf11afo , ~8.35!

wherel and a are Lagrange multipliers, introduced to e
force the constraintŝf1ufo&50 and^f1uf1&51. We now
expandf1 andfo in terms of the complete set of eigenfun
tions $f̃n% of M̃1 . Using the fact thatfo , f1 eGc, it is

n-

d-

ion
li-



s
-
e

th

ti
-
de

r
s

u
o

d
ve
ili

e
tio
n

G
q.
s

el

ist

d

ally

lt

n is
p
by

-

n
the

a

lu-
In

57 2315OPTICAL SOLITARY WAVES IN TWO- AND THREE- . . .
plausible that the expansionfo5(n^fouf̃n&f̃n and
f15a(n @^f̃nufo&f̃n /(ln2l)# contain only those value
of n for which M̃1f̃n5lnf̃n andln is not part of the nega
tive continuum ofM̃1 . We denote this restriction on th
summation overn with a prime. The orthogonality condition
of ^f1ufo&50 then yields

f ~l!5( 8
n

z^f̃nufo& z2

~ln2l!
50. ~8.36!

As in the GNLSE, the problem is reduced to determining
quantity, lmin , defined by the conditionf (lmin)50. Once
againlmin is the minimum value of the quantitŷf1uM̃1uf1&
subject to the relevant constraints. We denote the nega
discrete eigenvalue ofM̃1 by lo . l1 is absent in the sum
mation ~8.36! since it corresponds to the translational mo
which is orthogonal tofo . Since the functionf (l) is mono-
tonic in the interval (l0 ,l2), the sign off (0) is determined
by the sign oflmin . If f (0),0 thenlmin.0. If f (0).0 then
lmin,0. Following the analysis of the GNLSE, we write

f ~0!5( 8
n

z^f̃nufo& z2

ln
5^fou~M̃1!21ufo&. ~8.37!

In the last equality in Eq.~8.37!, we have made use of ou
assumed orthogonality offo to each of the eigenfunction
f̃n in the negative continuum ofM̃1 . By virtue of this or-
thogonality, the summation above can be replaced by an
restricted sum, yielding the spectral representation of the
eratorM̃1

21. Taking the derivative of Eq.~8.31! with respect
to d we obtain

M̃1

]fo

]d
2fo50. ~8.38!

Substituting Eq.~8.38! into Eq. ~8.37! yields

f ~0!5 K foU]fo

]d L 5
1

2

]^foufo&
]d

. ~8.39!

This leads to the necessary condition for stability that

]Q

]d
,0, ~8.40!

whereQ5^foufo&. The stability criteria can be summarize
as follows:~i! If the M̃1 operator has more than one negati
eigenvalue corresponding to a bound state, then instab
takes place irrespective of Eq.~8.40!. ~ii ! If the operatorM̃1
has only one negative bound sate, then the solitary wav
stable provided the conserved quantity Q satisfies condi
~8.40!. For a negative nonlinear Kerr coefficient, conditio
~8.40! must be replaced by]Q/]d.0, due to the fact that the
operators are now defined asM̃15M1 andM̃o5Mo .

C. Comparison with other models

Before discussing the stability of solitary waves in a PB
material, we illustrate the stability criterion given by E
~8.40! with some widely studied nonlinear spinor equation
e

ve

n-
p-

ty

is
n

.

The first one is the integrable massive Thirring mod
~MTM !, defined by the nonlinear wave equation

S i ] t1 isz]x1msx1
k

2
@~c†c!2~c†szc!sz# Dc50.

~8.41!

Here it is known that stable localized soliton solutions ex
of the form @53#

c5A2~m2v!/k
sech~ax!

11b2 tanh2~ax!
F 1

btanh~ax!
Ge2 ivt,

~8.42!

wherea5A(m22v2) andb5A(m2v)/(m1v). For these
solutions,

Q5E dx~c†c!5
8

k
arctanAS m2v

m1v D . ~8.43!

Here v takes the place ofd in Eq. ~8.40!. Clearly,
]Q/]v,0 for 2m,v,m, indicating stability of solitons
throughout the gap.

The Gross-Neveu model is defined by the equation@53#

$ i ] t1 isy]x2msx1k@~c†szc!sz#%c50 ~8.44!

Here the soliton solution takes the form@53#

c5A2~m2v!/k
sech~ax!

12b2tanh2~ax!
F 1

b tanh~ax!
Ge2 ivt,

~8.45!

where a and b are the same as in the MTM, an
Q5 2(m2v2)1/2/v. This soliton is stable for the region
0,v,m, in agreement with numerical studies@54#. An ex-
tension of the Gross-Neveu model to~311! dimensions is
the Soler model. In this case an analytical expression forQ is
not available. Nevertheless, it has been shown numeric
that Q exhibits a local minimum as a function ofv at some
frequencyvcr . Consequently,]Q/]v changes sign atvcr
and the soliton is unstable forv.vcr . In both numerical
@54# and analytical@55# studies of the Soler model, this resu
was confirmed.

In the case of a photonic band gap, the 1D gap solito
believed to be stable@5#. We may generalize the 1D ga
soliton to two- and three-dimensional gap solitary waves
estimating the conserved quantityQ from the variational re-
sults of Sec. IV. This gives the dependence ofQ on the
detuning frequencyd. In Fig. 22 we plot the quantityQ
versus the detuning parameterd for d51, 2, and 3. In both
d51 and 2,Qd5 (]Q/]d),0 for the entire band gap re
gion. However for d53, Qd is positive between
dcr,d,d1 , indicating instability in upper band edge regio
and stability in the rest of the band gap. This behavior of
total energy is reminiscent the case of the GNLSE with
saturating nonlinear potential. For the symmetric 3DW soli-
tary wave a local minimum also exist for the quantityQ but
is now much closer to the band edge, in which stable so
tions may be possible for most of the band gap region.
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Sec. III we showed that an effective nonlinear Schro¨dinger
equation describes gap solitary waves near the band e
For d53, the NLSE solitary wave solution is unstable. Th
is consistent with the behavior ofQd . For d52, the con-
served quantity can be approximated near the upper b
edge as,Q5c11c2(b2d), where c1 and c2 are positive
numbers. Unlike the case of the NLSE in two dimensio
for which Q is independent ofd, in the 2D PBG system we
have Qd,0. The apparent stability of the 2D gap solita
wave is a new prediction of our stability criterion~8.40!.
Finally, our stability criterion suggests the existence of sta
three-dimensional solitary waves deep inside the photo
band gap in a Kerr medium, a new result which may not
extrapolated by simple consideration on the nonlinear Sc¨-
dinger equation. It is of importance to extend this study
the case of a saturable nonlinearity and to determine the
bility of 3D ‘‘light bullets’’ throughout the PBG for this,
more realistic, situation.

D. Relationship between stability and the minimum property
of the action functional

We conclude this section with a discussion of the relati
ship of linear stability analysis and the scaling and minim
zation properties of the action functional. A precise conn
tion exists for nonlinear wave equations with a positi
definite continuous spectrum such as the nonlinear Sc¨-
dinger equation. However, for Dirac-type wave equations
hibiting an unbounded negative spectrum, this equivale
appears to be lost. We start with the GNLSE ind dimen-
sions. The stationary solution to Eq.~8.1! is an extremum of
the action functional

S5E ddrWS u¹Cu2p1vuCu22
1

~2s12!
uCu2s12D ,

~8.46!

FIG. 22. Plotted is the dependence of the conserved quantityQ,
for d51 ~solid line, left scale!, d52 ~dotted line, right scale!, and
d53 ~long-dashed dotted line, right scale! on the detuning param
eterd. The stability condition]Q/]d,0 is satisfied ford51 and 2
throughout the band-gap region, whereas, ford53, stable solutions
may only exist ford.dcr . Heredcr is the detuning for whichQ has
a local minimum.
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with the conserved quantityQ5*ddrWuCu2. Our linear stabil-
ity analysis indicated that the solitary wave solution is sta
whend,2p/s. This condition can also be deduced from t
action functional by considering a one-parameter sca
form C5C(x/a)/ad/2 of the solitary wave, which preserve
Q. Substituting this scaling form into Eq.~8.46! yields

S~a!5
I 1

a2p
1vI 22

I 3

ads
, ~8.47!

where I , I 2 , and I 3 are positive numerical constants. Th
linear stability condition is equivalent to the statement th
]2S/]a2ua51.0. This corresponds to the requirement th
ds(2p2ds)I 3.0. SincedsI3.0, the condition for a local
minimum of the functional is that (2p2ds).0. This is ex-
actly the same condition obtained from the linear stabi
analysis. It can be seen from Fig. 23 that ford,2p/s, S(a)
has a stable minimum, whereas ford.2p/s the extremum
point corresponds to a maximum, in which case the fu
tional S diverges asa→0. Physically, the instability takes
place whenever the nonlinear potential*ddrWuCu2s over-
comes the kinetic energy term*ddrWu¹Cu2p. In general soli-
tary waves are stable when the nonlinear potential
bounded, as is the case for a saturable nonlinear suscep
ity. Another stabilization mechanism is the inclusion
higher order derivative terms in the kinetic energy term. F
example in the NLSE (s5p51), if the nonlinear refractive
index is replaced by an expression of the for
a1uCu22a2uCu4 (a1,2.0), then the action functional scale
as

S~a!5
I 1

a2
1vI 22

I 3

ad
1

I 4

a2d
. ~8.48!

Here all the I 1•••I 4 are positive numbers. The extremu
condition now becomes

]2S

]a2U
a51

5~2d2d2!I 314~d22d!I 4 . ~8.49!

It is easy to verify that 3D solitary waves are stable in th
medium provided thatI 4.I 3/8. Moreover, in a saturable me
dium with a nonlinear refractive index of the form

FIG. 23. Plotted is the action functionalS(a) of the generalized
nonlinear Schro¨dinger equation~GNLSE! with respect to the scal-
ing parametera. The functionalS(a) has a stable minimum when
d,2p/s, and an unstable maximum whend.2p/s. For the stan-
dard nonlinear Schro¨dinger equation (s5p51), the solitary wave
is stable ford,2.
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f (uCu2)5uCu2/(11uCu2), stable solutions exists in gener
for d51 and 2. Ford53, stable solutions are possible on
above some critical frequencyv.vcr @52#.

Clearly, there is a direct connection between the m
mum property of the action functional and stability of th
solitary wave solutions in the nonlinear Schro¨dinger type
equations. This connection can be made more precise
considering a perturbation of the formC2Co5(u1 iv) in
the functionalS. Collecting up to quadratic terms inu andv,
we obtain the second variation ofS

d2S5E ddr ~vLov1uL1u!. ~8.50!

Here, the operatorsLo,1 are defined as in Sec. VIII A. In
order to haved2S.0, both terms in Eq.~8.50! must be posi-
tive definite in the subspacêuuCo&50. Since we already
know that in this subspaceLo is positive definite, a sufficien
condition for stability is that̂ uuL1uu& is positive definite.
This condition leads to the same spectral eigenvalue prob
defined by Eq.~8.8! which in turn leads to the stability cri
terion ~8.15!.

In the case of spinor fields satisfying a nonlinear Dir
type of equation, we show below that the linear stabil
criterion and the minimum of the action functional are n
equivalent. Consider the second variation of the functio
SL defined in Eq.~7.9!. ExpandingC5Co1dC and keep-
ing quadratic terms indC, we obtain

d2SL5E ddr ~f1
†M̃1f11f̃2

†M̃of̃2!. ~8.51!

Here the operatorsM̃1 and M̃o are precisely those in Eqs
~8.29a! and~8.29b!. In order to maked2SL positive definite,
the operator

Ms5S M̃1 0

0 M̃o
D ~8.52!

must be positive definite. Clearly this is impossible, since
operatorMs exhibits a negative continuum. The eigenval
problem arising here differs significantly from the one o
tained in linear stability analysis. Our earlier time-depend
stability analysis led to a spectral problem for the opera
M̃ s5sxMs which does not exhibit a negative continuum.
general, the action functional,SL , exhibits a saddle poin
instead of a minimum. As an illustration, consider the scal
of the formC5Cs(x/a,y/b)/Aab for 2D gap solitary wave.
For theX solitary wave the action functional can be writte
as (a511)

SX~a,b!5
I yy

b2
2

I x

a
2

I NL

ab
, ~8.53!

where, I yy , I x , and I NL are positive numbers. In order t
haved2SX.0, the following conditions must be satisfied:

]2SX

]t i
2 U

a,b51

.0, t i5a,b, ~8.54a!
i-

by

m

t
l

e

-
t
r

g

D5U ]2SX

]a2

]2SX

]a]b

]2SX

]b]a

]2SX

]b2

U
a,b51

.0. ~8.54b!

In actual fact, ]2SX /]a2 ua,b5150, ]2SX /]b2 ua,b51

5I NL.0, andD52I NL
2 ,0 indicating that the solitary wave

is a saddle point in the parameter space (a,b). On the other
hand our linear stability analysis suggested that the soli
wave is stable in two dimensions. Clearly, the two metho
are not equivalent. A similar conclusion applies theM soli-
tary wave.

In summary, for solitary waves where the linear differe
tial operator which enters the nonlinear wave equation is
positive definite, scaling arguments are not a reliable indi
tor of stability and careful consideration of the tim
dependent linear stability is essential.

IX. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated the existence
stable solitary waves in 2D and 3D nonlinear photonic ba
gap materials exhibiting a nonresonantx (3) Kerr type of non-
linearity. Unlike the 1D Bragg gratings studied by others, t
higher-dimensional periodic structures exhibit multiple sy
metry points in the Brillouin zone, resulting in at least tw
distinct types of solitary wave solutions. Solutions of the fi
type, which are associated with a twofold symmetry poi
break the full symmetry of the crystal under rotation a
exist only for a positive Kerr coefficient ford.1. Solutions
of the second type, which are associated with a higher o
symmetry point, exist for both positive and negative Ke
coefficients. Solitary waves of the first type can travel at a
velocity from zero up to the average speed of light in t
medium. This can be seen by applying a Lorentz boost to
corresponding stationary solution. For a purely 1D syste
the moving soliton experiences a Lorentz contraction.
d.1, the moving solitary wave experiences additional tra
verse expansion due to the decay of the wave amplitud
the transverse direction. In general, as the soliton velo
increases, the average frequency of the soliton moves a
from the center of the PBG and the total soliton energy
creases. If the average frequency is outside of the PBG, s
solitons are degenerate in frequency with propagating lin
electromagnetic modes. This leads to couplings not inclu
in our model, and may in turn lead to instability of the so
tary wave.

Near a photonic band edge, our solitary wave solutio
are well described by a simple nonlinear Schro¨dinger equa-
tion. Deeper inside the PBG, these solitary waves probe
full structure of the nonlinear Dirac equation obtained in t
context of the SVEA. It is well known that ford53, solitons
of the NLSE are unstable. This is consistent with our n
band edge results. However, deeper inside the PBG, we
tain the entirely new prediction that 3D solitary waves a
stable with respect to small perturbations. In addition we fi
stable solitary wave solutions throughout the PBG ford51
and 2.

The solitary wave solutions we have obtained corresp
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to ultrashort, high intensity light pulses. Near the center o
PBG with a gap to center frequency ratioDv/vo.0.10,
these nonlinear pulses have a spatial extent of only sev
optical wavelengths. For 3D light bullets in a fcc photon
crystal, the total energy of the pulse is on the scale of pi
joules. If such a pulse were to move in vacuum, the co
sponding peak intensity is on the scale of GW/cm2. In this
sense, our gap center solitary wave corresponds to a c
pressed version of the pJ solitons envisaged in fiber o
telecommunication networks@12#. As the average frequenc
of the solitary wave is chosen closer to the photonic ba
edge, the compression of the pulse is relaxed, and it can
an arbitrarily large spatial extent.
In practice, the speed of propagation of the light bul
through the PBG material will be limited by the speed of t
nonlinear optical response in the material. For a pulse wh
extends over only a few optical wavelengths, in a mate
with picosecond nonlinear response time, the maximum s
ton velocity may be considerably less than the average sp
of light in the medium. A proper description of this effe
would require the inclusion of retardation effects in the no
linear response of the material. Nevertheless, our ana
indicates that while PBG materials are ‘‘emptier than phy
cal vacuum’’ with respect to classical, linear, wave propa
tion, they are quite rich in nonlinear electromagnetic wa
effects.
Our results indicate a number of avenues for further resea
In our model, we have described the electromagnetic field
a scalar wave field. It is important to extend this analysis
include electromagnetic polarization effects. It is well know
that the band structure of the realistic vector electromagn
fields differs quantitatively from the corresponding sca
wave band structure. Nevertheless, we believe that our sc
s.
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solitary wave solutions provide a valuable, qualitative sta
ing point for more detailed studies. Our studies have b
limited to materials with ax (3) nonlinear response. It would
be of interest to extend these studies to PBG materials wi
largex (2) response@56#, as well as to include the nonlinea
saturation effects which are inevitable at high light inten
ties.
In optical fibers, soliton propagation is well described by t
classical nonlinear Schro¨dinger equation. The quantum ve
sion of the NLSE can be solved@57# by the Bethe ansatz
method@58#. It would be of interest to determine the qua
tum correlations of photons comprising the gap solita
wave, and the possibility of quantum noise reduction. St
ies of this nature have already been performed for opt
fiber solitons@59#.
Finally, it is of considerable importance to study the co
pling of an external laser pulse to the predicted solit
modes of the PBG material. Studies of how to launch a g
soliton have been restricted so far to 1D Bragg gratings@60#.
It would be of considerable interest to understand the beh
ior of a general time-dependent laser pulse incident on P
material in regard to pulse reshaping effects, bistability
fects, and possible chaotic behavior@61#. In view of the large
variety of solitary wave solutions predicted in highe
dimensional PBG materials, such studies may be particul
fruitful.
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@32# U. Grüning, V. Lehman, s. Ottow, and K. Busch, Appl. Phy
Lett. 68, 747 ~1996!; U. Grüning, V. Lehmann, and C. M.
Engelhardt,ibid. 66, ~1995!.

@33# V. N. Astratov et al., Nuovo Cimento D17, 1349 ~1995!;
Phys. Lett. A222, 349~1996!; Y. A. Vlasov et al., Phys. Rev.
B 55, R13 357~1997!; Appl. Phys. Lett.71, 1 ~1997!.

@34# R. Baughman and A. Zakhidov~unpublished!.
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