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Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum
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We demonstrate that when an optically birefringent nematic liquid crystal is infiltrated into the
void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material
exhibits a completely tunable PBG. In particular, the three-dimensional PBG can be completely opened
or closed by applying an electric field which rotates the axis of the nematic molecules relative to the
inverse opal backbone. Tunable light localization effects may be realized by controlling the orientational
disorder in the nematic.

PACS numbers: 42.70.Qs, 42.70.Df
Photonic-band-gap (PBG) materials are a distinct class
of dielectrics which facilitate two fundamentally new op-
tical principles, namely the localization of light [1–5] and
the controllable inhibition of spontaneous emission of light
from atoms and molecules [6–10]. The utility of PBG ma-
terials arises essentially from their ability to realize these
two functions. Although an intensive effort has developed
over the past ten years [11–13] to microfabricate PBG ma-
terials, it is only recently that a clear route to synthesizing
large scale three-dimensional PBG materials with submi-
cron lattice constants has been demonstrated [14–16] using
self-assembly methods. The application of this approach
to Si, Ge, and GaAs based PBG materials may open the
door to applications in laser devices and telecommunica-
tions as well as to the realization of fundamentally new
effects in quantum and nonlinear optics.

For many applications, however, it is advantageous to
obtain some degree of tunability of the photonic band
structure through electro-optic effects. Such tunability
may be obtained by controlling one or several forms of op-
tical anisotropy of the constituent materials. The science
of liquid crystals [17–19] has spawned an entire indus-
try related to these electro-optic effects. In earlier works,
however, a rather pessimistic conclusion regarding the ef-
ficacy of birefringent photonic crystals was drawn [20,21]
since attention was restricted to unrealizable structures that
consist of spheres of disconnected anisotropic, high dielec-
tric materials in an air background. In other more readily
realizable liquid crystal systems [22,23], there was insuffi-
cient refractive index contrast to open a three-dimensional
PBG. However, it is now well known that inverse opal
structures, i.e., air inclusions in a high dielectric backbone
material such as silicon provide a much more efficient scat-
tering system both for ordered [15,24] as well as disordered
[25] structures. For these inverse opals the optimal filling
ratios of the high dielectric backbone lies around 24.5%,
leaving a large empty volume for infiltration by a low re-
fractive index liquid crystal with strong optical anisotropy.
This large volume of birefringent material makes the
resulting composite system highly efficacious for electro-
optic tuning effects. In particular, a change in the orienta-
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tion of the nematic director field with respect to the inverse
opal backbone by an external electric field can completely
open or close the full, three-dimensional PBG.

In this Letter, we illustrate the principle of the fully
tunable electromagnetic vacuum with detailed results on
an inverted opal [14,16] made of silicon into which the
low index nematic liquid crystal BEHA [19] is infiltrated.
For this structure we find that a 2% photonic band gap
may be opened or closed, by changing the orientation of
the nematic director. In addition, the thermally driven
nematic to isotropic liquid phase transition provides further
tunability of the PBG. Localized states of light may be
created through random fluctuations as well as through
singularities (textures) in the nematic director field.

In order to determine the photonic band structure of
anisotropic crystals we start with the wave equation satis-
fied by the magnetic field for a three-dimensional periodic
array of scatterers
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where = ? �H��r � � 0. The dielectric tensor e��r 1 �R � �
e��r � is periodic with respect to the set R � �n1 �a1 1
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describe the structure of the photonic crystal. It may be
expanded in a Fourier series on G the reciprocal (dual) lat-
tice corresponding to R:
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Equation (1) comprises a set of three coupled differential
equations with periodic coefficients. Using the Bloch-
Flouquet theorem, we may expand the magnetic field as
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where l labels the two transverse polarizations for any
plane wave such that ê

l�1,2
�G

and �k 1 �G form an orthogo-
nal triad. Because of the discrete translational symmetry
of the lattice, the wave vector �k labeling the solutions may
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be restricted to lie in the first Brillouin zone (BZ). How-
ever, care must be exercised in identifying the irreducible
part of the Brilloin zone (IBZ): The dielectric tensor in
Eq. (1) may have fewer rotational symmetries than the un-
derlying lattice and consequently, the IBZ for a photonic
crystal containing anisotropic materials may be consider-
ably larger than the IBZ for the corresponding isotropic
crystal. Rather than dealing with an IBZ that changes from
problem to problem, we choose to work with the standard
IBZ for the isotropic material and solve Eq. (1) not only
for the given form of the dielectric tensor, but also for all
inequivalent transformations of it with respect to the rota-
tional symmetries of the underlying lattice.

Consider an optimized inverted opal consisting of a
connected high index backbone material such as silicon
with total volume fraction of 24.5% [15]. This structure
consists of an fcc lattice of close packed air spheres where
the space between the spheres has been 90% filled with
silicon leaving only tiny air voids between the air spheres.
The air spheres themselves are now partially infiltrated
with a nematic liquid crystal that wets the interior surface
and results in a homogeneous coating (see Fig. 1). The
corresponding dielectric tensor is given by

e��r � � 1 1 eis

X

�R[R

Sis��r 1 �R� 1 eLC

3
X

�R[R

SLC��r 1 �R� , (4)

where Sis and SLC describe the location of the optically
isotropic backbone (is) and the liquid crystal (LC) material,

FIG. 1 (color). Cross-sectional view through the inverse opal
backbone (blue) resulting from incomplete infiltration of silicon
into the air voids of an artificial opal. After etching out the
template, a fcc lattice of overlapping air spheres remains and
additional air voids appear as triangular or diamond shaped
holes on the surface of the cut. A tunable PBG is obtained by
infiltrating this backbone with nematic liquid crystal (yellow)
which wets the inner surface of each sphere (only one is shown
in the figure).
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respectively, within a Wigner-Seitz cell. Sis��r � is unity if
R0 # j�r j # Rc and zero elsewhere while SLC� �R� is unity
for Ri # j�r j # R0 and zero elsewhere. For the optimized
opal R0�a � 1�

p
8, Ri�a � 0.2812, and Rc�a � 0.445

where a is the cubic lattice constant of the fcc lattice
[15]. The dielectric tensor for silicon is proportional to the
unit tensor, i.e., eis � �eSi 2 1�1 (eSi 	 11.9�. For bulk
nematic liquid crystal we may choose a coordinate system
in which the dielectric tensor is diagonal with principal
entries e

k
LC2 parallel and e

�
LC perpendicular to its director

n̂, respectively. For the inverse opal, the coordinate system
is fixed by the high index backbone and the director n̂ can
have different orientations with respect to this reference
frame. Consequently, the dielectric tensor of the nematic
takes the form

eLC � O�u, f� diag�e�
LC, e�

LC, e
k
LC�OT �u, f� 2 1 , (5)

where O�u, f� is a rotation matrix which acts on the cor-
responding diagonalized tensor. The angles u and f de-
scribe the orientation of the director n with respect to the
inverse opal coordinate system (see Fig. 1). Clearly, the
subset of inequivalent rotational transformations (chosen
from the larger group of rotational symmetries of the back-
bone) depends crucially on the orientation of n. As men-
tioned above, by restricting ourselves to the standard IBZ
of the fcc lattice we must compensate by computing the
band structures for all distinct dielectric tensors in the set
E � �e�s�

LC � SeLCST , S [ S �. Here S is the lattice
point group which in the case of an fcc lattice has 48 ele-
ments. This algorithm is equivalent to computing a single
band structure throughout the actual IBZ of the birefringent
PBG material. As an example, consider the case f � 0:
It is easily checked that for u � 0 the set E has three
elements whereas for u fi 0 the set E has six elements.
In the general case �f fi 0, u fi 0� there are twelve in-
equivalent transformations of eLC (for n̂ k �1, 1, 1�, i.e.,
f � p�4 and u � cos21�1�

p
3� the set E contains only

four elements).
Inserting Eqs. (2) and (3) into Eq. (1) results in an

infinite matrix eigenvalue problem
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where the matrix elements Mll0

�G �G0 are given by
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For numerical purposes Eq. (6) is truncated by retaining
only a finite number of reciprocal lattice vectors [15]. In
the case of birefringent or biaxial dielectric materials, the
dielectric tensor e��r � in Eq. (2) is real and symmetric.
For materials with inversion symmetry, e��r � � e�2�r �,
Eq. (6) is likewise a standard real symmetric eigenvalue
problem. The main numerical problem in obtaining the
eigenvalues from Eq. (6) is the evaluation of the Fourier
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coefficients of the inverse dielectric tensor in Eq. (7). As
in the case of isotropic dielectric materials [15], this can
be done in two different ways: One can calculate the
inverse dielectric tensor in real space and then compute
its Fourier coefficients. We refer to this as the direct
method. Alternatively, one can calculate the matrix of
Fourier coefficients of the real space tensor and then take
its inverse to obtain the required Fourier coefficients. The
latter method was shown by Ho, Chan, and Soukoulis
(HCS) [26] to be more efficient than the direct method
for the isotropic dielectric tensor. Since both Fourier
transformation and matrix inversion are linear operations,
for a complete set of plane waves the eigenvalue spectrum
obtained by the direct method and for the HCS method
must coincide exactly. However, we are numerically
restricted to operate on a finite dimensional subspace of the
full reciprocal space. This leads to dramatically different
rates of convergence of the two methods as the dimension
of the subspace (number of plane waves) is increased.
Just as in the case of isotropic dielectric materials, for the
birefringent PBG, we find that the HCS method converges
substantially faster than the direct method. For instance,
eigenfrequencies computed with HCS method for 531 and
1219 plane waves, respectively, differ at most by 0.01%
of their absolute value, whereas with the direct method
the results vary by more than 10%. The results presented
below were obtained with HCS method using 531 plane
waves.

We now evaluate the tunable band structure of the
inverted opal [15], described above, made of silicon.
This structure, which consists of about 24.5% silicon by
volume, has a 8.6% band gap between bands 8 and 9.

FIG. 2. Total DOS for an inverse opal which is infiltrated
with a nematic liquid crystal. The nematic director is orientated
along the (0,0,1) axis of the inverse opal backbone. The inverse
opal backbone is made of silicon (24.5% by volume) which is
infiltrated with the liquid crystal BEHA (36.8% by volume).
The isotropic refractive index of silicon is nSi � 3.45 and
the principal refractive indices of BEHA are n

k
LC � 1.6 and

n�
LC � 1.4.
Next, we partially infiltrate the nearly 75% void regions
with the nematic liquid crystal BEHA [19] such that it wets
the inner surface of the air spheres. The principal indices
of refraction for BEHA are n

k
LC � 1.6 and n�

LC � 1.4.
We choose Ri � 0.2812a so that roughly half the void
volume is filled with BEHA and the total volume fraction
of BEHA is 36.8%. In Fig. 2 we show the total photon
density of states (DOS) when the nematic director n̂ is
oriented along the (0,0,1) axis of the fcc backbone. The
complete 8.6% photonic band gap of the inverse opal
backbone is destroyed upon infiltration of the liquid crystal
but a pronounced pseudogap with a low DOS remains. The
closing of the band gap between bands 8 and 9 for n̂ �
�0, 0, 1� occurs first at the W points of the full Brillouin
zone which experience a strong anisotropy. If n̂ is rotated
away from the (0,0,1) direction, different high symmetry
points in the Brillouin zone will be affected differently.
Most notably, the anisotropy seen by the W points will
be reduced. In Fig. 3 we display the dependence of
the gap size between bands 8 and 9 as n̂ rotates from
(0,0,1) through (1,1,1) to the (1,1,0) direction. In terms
of spherical coordinates, f � p�4 and u ranges from 0
to p�2. For the liquid crystal PBG material, this leads
to an opening of a complete photonic band gap. The PBG
reaches a maximum value of 1.6%, when n̂ points along the
(1,1,1) axis, direction for which the anisotropy as seen by
the W point is at a minimum. The effect of reorienting n̂ on
the photon density of states is further illustrated in Fig. 4,
where, for fixed f � p�4, we consider various values of
the angle u. This clearly demonstrates an electro-optic
shutter effect to the complete three-dimensional photonic
band gap which may be realized by an external electric
field that controls the orientation of the nematic molecules.

As stated in the introduction, the utility of PBG ma-
terials arises from the two fundamental optical principles

FIG. 3. Dependence of the photonic-band-gap size for a
silicon inverted opal infiltrated with the nematic liquid crystal
(BEHA) on the orientation of the nematic director n̂�f,u� for
fixed angle f � p�4. The volume fractions are the same as
in Fig. 2.
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FIG. 4. Total photon DOS for a silicon inverse opal which is
infiltrated with the nematic liquid crystal (BEHA) for various
orientations of the nematic director n̂�f, u�. The angle f �
p�4 is fixed and the volume fractions are the same as in
Fig. 2. The PBG is closed for u � 0, but reaches a maximum
value Dv�vc 
 1.6% relative to its center frequency vc for
n̂ � �1, 1, 1��

p
3.

which they facilitate: (i) The localization of light and (ii)
the control of spontaneous emission. The tunable liquid
crystal PBG material may facilitate electro-optic modula-
tion of laser light emission along the W direction from
active molecules placed within the material. It will also
facilitate an electro-optical tuning of the propagation and
localization of light in the vicinity of the gap. For a ther-
mally disordered nematic liquid crystal, a dramatic modi-
fication of the Ioffe-Regel criterion [27] for localization
may be realized. Light localization in a disordered dielec-
tric medium is expected [1,2,28] when

p2cr�v� ����2 
 1 . (8)

Here, c is the speed of light in vacuum, r�v� is the photon
density of states at frequency v, and �� is the transport
mean free path for photons, determined by the extent of
disorder in the medium. For photons in ordinary vacuum
�v � ck�, r�v� � v2��p2c3� and this condition reduces
to the Ioffe-Regel condition, ���v�c� 
 1. However, in
the liquid crystal PBG material, �� represents the transport
mean free path for optical Bloch waves arising from
the deviations of the medium from perfect periodicity.
The very low DOS (depending on the orientation of n̂)
at the bottom of the pseudogap or near the complete
band gap, provides a very favorable scenario for the
photon localization according to criterion (8) even when
���v�c� ¿ 1. For a nematic which is well ordered and
fully aligned in the (1,1,1) direction, tunable waveguiding
effects may be realized by locally applying an electric
field which reorients the nematic director field along the
(1,0,0) direction along specific channels that pass through
the PBG material. The resulting tunability of spontaneous
emission, waveguiding effects, and light localization may
considerably enhance the technological utility of liquid
970
crystal photonic band gap materials over and above that
of either a bulk liquid crystal or a conventional photonic
crystal by itself.
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