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Theory of fluorescence in photonic crystals
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We present a formalism for the description of fluorescence from optically active materials embedded in a
photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in
terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local
density of photon modes available to the emitting atoms in either the high or low dielectric regions of the
crystal. We then obtain expressions for fluorescence spectra and emission dynamics for luminescent materials
in photonic crystals. The validity of our formalism is demonstrated through the calculation of relevant quan-
tities for model photon densities of states. The connection of our calculations to the description of realistic
systems is discussed. We also describe the consequences of these analyses on the accurate description of the
interaction between radiative systems and the electromagnetic reservoir within photonic crystals.

DOI: 10.1103/PhysRevA.65.043808 PACS number~s!: 42.50.Ct, 42.70.Qs, 32.50.1d
s
p
er
t

ia
o

st
-

ce
s

o
o
th
e
hi
n
e
bl
a

e
to

iv

t
t

wise

as
y

ing

al–
To
of

ds
to

are
al
oli-
l-
g
ug-
-IR
l
e

an
ver
pro-

ork
op-
rials
ns
ure
the
uc-
he-

ng

rn
3

I. INTRODUCTION

Photonic crystals~PCs! are periodic dielectric structure
that use a carefully engineered combination of microsco
scattering resonances from individual elements of the p
odic array and Bragg scattering from the dielectric lattice
strongly modify the dispersion~energy-momentum! relation
of light @1#. From a fundamental perspective, these mater
are of interest for their ability to drastically alter the nature
the propagation of light@2,3#. Of even greater current intere
is the potential that such materials offer for significantly im
proving the emission characteristics of active optical devi
@4#, such as diodes, optical switches, and low power la
systems.

The most drastic modification of light propagation, and
the associated ability to modify the emission properties
active optical devices, occurs when a PC is designed so
the propagation of light within it is prohibited in all thre
directions for a continuous range of frequencies. T
propagation-free frequency range is known as a photo
band gap~PBG! @3,4#. An active material with a free spac
radiative transition that lies deep inside a PBG will be una
to emit a photon when placed inside a PBG material; inste
a photon-atom bound state is formed@5#. For transitions near
the edge of a PBG, the emission dynamics will be modifi
relative to free space, due to the restricted number of pho
modes available at the band edge@6#. The resulting non-
Markovian atom-field interaction has been predicted to g
rise to a number of quantum optical phenomena, such
rapid multiatom switching with low quantum noise@7#, la-
serlike collective atomic emission@8#, and atomic states tha
can be readily generated and protected from processes
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would serve to decohere the system@9#. Additionally, local-
ized and extended defects can be engineered in the other
optically empty PBG in order to waveguide light@10#, and to
produce strongly localized states of light that can serve
extremely high-Q microcavities for microlaser and cavit
QED applications@11,12#.

Since the first demonstration of a PBG material operat
at microwave frequencies@13#, experimental efforts have
been focused on creating such materials at the optic
near-IR frequencies relevant to optical communications.
produce a full PBG typically requires a connected network
high index material containing a periodic array of air voi
@43#. The periodicity of these voids should be comparable
the relevant wavelength of light. Clearly, these conditions
difficult to achieve on the micron length scale of optic
crystals. However, in the past two years, advances in micr
thography@14#, and in the fabrication of self-organizing co
loidal systems@15# have produced materials with stron
pseudogaps in the optical. More recently, materials that s
gest a full photonic band gap at frequencies in the near
have been produced@10,16#. In particular, an inverse opa
PBG material@16# can be constructed by infiltrating th
voids in a colloidal synthetic opal crystal~grown by self-
assembly! with a dielectric material~such as Si!, and then
etching away the initial colloidal template. The result is
optical PBG material that can be made highly ordered o
hundreds of lattice constants, and that can eventually be
duced in a cost-effective manner.

Recently, there has been considerable experimental w
on radiative emission from active materials embedded in
tical PCs with photon propagation pseudogaps, i.e., mate
that prohibit photon propagation in only certain directio
@17–20#. These studies are important precursors to fut
studies in PBG materials, so that one might optimize
emission properties of active materials in the latter str
tures. Furthermore, certain types of quantum optical p
nomena, such as improved optical switching@7#, in fact do
not require a complete band gap, but only a stro

a-
.
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pseudogap. This along with the fact that pseudogap st
tures are simpler to fabricate than those with a full PB
means emission studies of pseudogap structures are of i
est in their own right for device applications.

It is the aim of this work to provide an efficient formalism
for interfacing realistic calculations of the photon dispers
relation ~and the associated spatial distribution of the E
modes! in a PC with calculations of the emission properti
of active media embedded in these materials. In particu
we treat the phenomenon of fluorescence from a dilute
tribution of active elements~e.g., atoms, molecules! placed
within the high or low dielectric fraction of a PC. The stud
of fluorescence from within a PC is of considerable inter
for a number of reasons. Firstly, it provides an important t
for the characterization of a PC. Active elements within t
crystal may couple to modes that are inaccessible from
side the crystal due to the mismatch in symmetry betw
Bloch modes within the crystal and external plane wa
@21,22#. As a result, fluorescence from a PC may prove to
a more reliable means of determining the presence of a
PBG than reflection and transmission experiments@18,19#.
Secondly, our formalism permits an evaluation of qualitat
treatments of radiative emission from a photonic crys
based on model photon dispersion relations. Furtherm
our method enables a quantitative description of the inte
tion between an atom and the electromagnetic modes a
able in a PC, which is central to the description of quant
optical phenomena in these materials.

The outline of this paper is as follows. In Sec. II w
develop a quantum description of the atom-field interact
in a realistic PC in terms of the natural~Bloch! modes of a
periodic crystal. In Sec. III we derive the integro-different
equation describing fluorescence from active media. In
process, we introduce the concepts of the projected lo
density of states, and the orientationally averaged local d
sity of states, which describe the local electromagnetic fie
seen by radiating atomic dipoles in this system. Section
derives the expressions for fluorescence spectra and dy
ics starting from the local photon density of states, includ
a detailed treatment of the Lamb shift in a PC. We then
our formalism on idealized models of the dispersion relat
in a PC in Sec. V. Finally, in Sec. VI we give a qualitativ
discussion of how our formalism may be applied to interp
actual fluorescence experiments in PCs.

II. ATOM-FIELD COUPLING IN A PHOTONIC CRYSTAL

We aim to describe the fluorescence spectrum and e
sion dynamics of an active material placed in either the h
or low index region of a photonic crystal. Physical realiz
tions of such a system include, for example, dilute solutio
of fluorescent organic dyes in the void regions@20# and lu-
minescent rare-earth ions embedded in the dielectric b
bone of an air-dielectric crystal@23#. The active material is
modeled as a collection of two-level atoms situated at r
dom positions. These atoms are, furthermore, assumed
present in a sufficiently low density so as to eliminate
possibility of collective coherent emission. The differenc
between realistic active elements and our somewhat id
04380
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ized system are discussed in Sec. VI.
The Hamiltonian for an electron in an electromagne

field may in general be written in the form:

Hel5
1

2me
@p2eA~r !#22eF~r !. ~2.1!

p andme are the momentum and mass of the atomic tran
tion electron, respectively, andA(r ) and f(r ) are, respec-
tively, the electromagnetic vector and scalar potentials.
ing Maxwell’s equations and their relations to the associa
potential functions, the equations of motion for the classi
scalar potentialF and the vector potentialA can be written
as @24#

†¹2A~r ,t !2“@“•A~r ,t !#‡

2
ep~r !

c2 F ]2A~r ,t !

]t2
1

]

]t
“F~r ,t !G50, ~2.2!

“e~r !•“F~r ,t !1e~r !¹2F~r ,t !1“e~r !•
]A~r ,t !

]t

1e~r !
]

]t
“•A~r ,t !50, ~2.3!

where the dielectric permittivity is given bye(r )5ep(r )e0,
and in the present study is assumed to be linear
frequency-independent in the frequency range of inter
The spatially varying dielectric functionep(r ) describes the
periodic modulation of the dielectric constant within a ph
tonic crystal,ep(r )5ep(r1R), whereR is a vector of the
direct Bravais lattice,R5( iniai , njPI , the aj being basis
vectors of the periodic lattice. To simplify our expression f
A, we choose to work in a gauge in whichF50. Equation
~2.2! reveals that this condition can be satisfied provid
that:

“•@e~r !A#50. ~2.4!

The consequences of this constraint are discussed below
A classical theory for the electromagnetic field in a ph

tonic crystal based on the above equations is develope
detail in Refs.@24# and@25#. The classical equations may b
quantized in the usual manner@24,26#; the appropriately
quantized solution of Eq.~2.2! for the vector potential may
be expanded in the general form

Â~r ,t !5(
k,s

Ck$Ak,s~r !âk,s~ t !1Ak,s* ~r !âk,s
† ~ t !%,

~2.5!

whereâk,s(t)[âk,s(0)e2 ivkt is the annihilation operator fo
a field mode with wave vectork and with polarization
s51,2, and satisfies the boson commutation relat

@ âk,s ,âk,s
† #5dk,k8ds,s8 . The mode functionsAk,s(r ) may

in general be any complete set of basis functions spann
the region under consideration. In free space, where the
complete translational symmetry, it is natural to choose
8-2
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THEORY OF FLUORESCENCE IN PHOTONIC CRYSTALS PHYSICAL REVIEW A65 043808
basis functions simple plane waves,Ak,s(r )5eik•rek,s , ek,s
being a unit vector in the direction of the polarization states
for a given wave vectork. In a photonic crystal, the period
icity of the dielectric breaks this full translational symmetr
As a result, the field seen by an active atom varies from p
to point within a unit cell of the crystal@27#. One may ex-
pressÂ(r ) at a specific point using a plane-wave basis; ho
ever, such an approach would not elucidate or take advan
of the symmetry properties of the periodic crystal. It is the
fore highly advantageous to use a basis of Bloch mod
which satisfy the Bloch-Floquet theorem,

Ak~r1R!5eik•RAk~r !, ~2.6!

as we may then conveniently restrict our attention to a sin
Wigner-Seitz cell of the lattice. If we then adopt a reduc
zone scheme fork @28#, we may write the vector potential in
a photonic crystal as

Â~r ,t !5(
n
E

BZ

d3k

~2p!3
A \

2e0vn,kV
$An,k~r !ân,k~ t !

1An,k* ~r !ân,k
† ~ t !%, ~2.7!

whereV is the volume of a unit cell of the lattice,n is the
energy band index in the first Brillouin zone, and the wav
vector integration is over each band in this region ofk space.
Mode functions labeled byn are henceforth understood to b
Bloch modes of the crystal. Unlike in free space, differe
polarization states for a given wave vector are not neces
ily degenerate in energy. Therefore the band indexn also
counts the polarization states for a given wave vectork.

From Eq. ~2.1!, we see that the quantized interactio
Hamiltonian of the atom and field for an atomic electron
position r0 is given by

Ĥ int52
e

2me
@ p̂•Â~r0!1Â~r0!•p̂#. ~2.8!

In this expression, we have neglected the term involvingA2

in the Hamiltonian~2.1!, as it describes photon-photon inte
actions, which are negligible at low energies. Note that
general the electron momentum and the vector potentia
not commute:@Â(r ),p̂#5 i\“•Â(r ). However, in a spatially
homogeneous dielectric, Eq.~2.4! reduces to the condition
“•Â50, and we recover the well-knownp̂•Â form of the
minimal coupling Hamiltonian. Clearly, this is not the case
a periodic dielectric. We may, however, assume that the e
tromagnetic field varies little over the spatial extent of t
electronic wave function, thus allowing us to keep only t
dipole contribution of the electronic charge distribution. A
pointed out by Kweon and Lawandy@24#, when such an
approximation is valid, we may then evaluate the vector
tential at the position of the atomic center of mass. Since
electron mass is very small compared to that of the ato
nucleus, this is equivalent to evaluatingA at the atomic
nucleus, whose motion is independent of the electronic m
tion. We may then write
04380
nt

-
ge
-
s,

le
d

-

t
ar-

t

n
o

c-

-
e
ic

o-
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me
p̂•Â~r0!, ~2.9!

wherer0 is now understood to be the position of the atom
nucleus. Alternatively, we may simply note that the spa
variation in the dielectric constant occurs over the len
scale of the lattice constant of the crystal, which is orders
magnitude larger than the spatial extent of the individ
active atoms. As a result, we may treate(r ) as a constant
over the length scale of the active elements, thus valida
Eq. ~2.9!.

At this point, we proceed to rewrite the interaction term
the form D̂•Ê @29# in the electric dipole approximation
where D̂ is the usual electric dipole operator, andÊ is the
electric field operator obtained from Eq.~2.7!. We note that
in principle one may derive theD̂•Ê form of the interaction
directly from the Hamiltonian~2.1!, without recourse to the
approximation scheme presented here, thereby avoiding
sues relating to the acausal nature of the vector poten
~see, e.g., Ref.@30#!. Nevertheless, our approach results
the correct form for the atom-field coupling.

In a rotating-wave approximation, the full Hamiltonia
for a two-level atom and the electromagnetic field in a ph
tonic crystal can now be written as

Htot5
\

2
v21sz1\(

m
vmam

† am

1 i\(
m

~gmam
† s22gm* s1am!. ~2.10!

The indexm labels the energy band and wave vector o
given field mode,m[$n,k%, and thes j ( j 51,2) are the
usual Pauli operators for a two-level atom with a~bare!
atomic resonance frequencyv21. We have also dropped th
circumflexes denoting operators, as in what follows the d
tinction between operators and ordinary functions should
self-evident. The position-dependent atom-field mode c
pling constantsgm are given by

gm~d,r0![gm5v21d21A 1

2\e0vmV
d•Em* ~r0!,

~2.11!

where d21 and d are, respectively, the magnitude and t
direction unit vector of the dipole matrix element for th
atomic transition. Whereas the condition“•A50 in free
space implies that the plane-wave modes are transv
(k•A50), condition ~2.4! for a photonic crystal does no
necessarily give transverse polarization states for Bl
modes.

III. EQUATIONS OF MOTION

We wish to analyze the atomic emission in a Schro¨dinger
equation formalism@6,31#. Atom-field interactions that in-
volve more than one photon are more easily~and often nec-
essarily! described by a density matrix or by Heisenberg o
erator equations, and much of our analysis can be car
8-3
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NIPUN VATS, SAJEEV JOHN, AND KURT BUSCH PHYSICAL REVIEW A65 043808
over to such systems; see Sec. IV C. In the single pho
sector, the system wave function for a two-level atom w
dipole momentd21d is

uC&5b2~d,r0 ,t !u2,$0%&

1(
m

b1,m~d,r0 ,t !u1,$m%&e2 iDmt. ~3.1!

b2(d,r0 ,t) andb1,m(d,r0 ,t) label the probability amplitudes
for the excited atom plus an electromagnetic vacuum st
and a deexcited atom with a single photon in modem, re-
spectively, at a given positionr0 of a Wigner-Seitz cell in a
photonic crystal;Dm5vm2v21. In a frame that is corotating
with the bare atomic resonance frequency,v21, Eq. ~3.1!
along with the Hamiltonian~2.10! give the equations of mo
tion for the amplitudes,

d

dt
b2~d,r0 ,t !52(

m
gmb1,m~d,r0 ,t !e2 iDmt, ~3.2!

d

dt
b1~d,r0 ,t !5gmb2~d,r0 ,t !eiDmt. ~3.3!

Formally integrating Eq.~3.3! and substituting the solu
tion into Eq. ~3.2!, we arrive at an equation for the excite
state amplitude,

d

dt
b2~d,r0 ,t !52E

0

t

G~d,r0 ,t2t8!b2~d,r0 ,t8!dt8.

~3.4!

G(d,r0,t2t8) is a time delay Green function, or memo
kernel, which describes the mean effect of the electrom
netic vacuum on the atomic system@8# at positionr0; it is
defined as

G~d,r0 ,t![Q~t!(
m

ugm~d,r0!u2e2 iDmt. ~3.5!

HereQ(t) is the Heaviside step function, which ensures t
G(d,r0 ,t)50 for t,0, as required by causality conside
ations.

Making explicit the band and wave-vector contributio
to the wave-vector sum, Eq.~3.5! becomes

G~d,r0 ,t!5Q~t!a(
n
E

1BZ
dk

e2 iDn,kt

vn,k
ud•En,k~r0!u2

5Q~t!a(
n
E

0

`

dv
e2 i (v2v21)t

v

3E
1BZ

dkd~v2vn,k!ud•En,k~r0!u2, ~3.6!

where a5v21
2 d21

2 /16\e0p3, and the k-space integration
over the first Brillouin zone. Here we have added a f
quency integration over a Diracd function, which does not
affect the value ofG(d,r0 ,t). The frequency integral is de
04380
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fined only over positive frequencies, as there are no nega
energy photon modes. Note that Eq.~3.6! does not contain
within it a conventional total density of states~DOS!, which
counts the number of modes available at a given frequen

N~v![(
n
E

1BZ
dkd~v2vn,k!. ~3.7!

Such a DOS fails to account for either~i! the relative orien-
tation of the atomic dipole and a given field mode, or~ii ! the
local contribution of themth mode at the positionr0. It is
therefore more useful to consider a projected local densit
states, defined as

Np~d,r0 ,v!5(
n
E

1BZ
dkd~v2vn,k!ud•En,k~r0!u2.

~3.8!

For a specific atom, or for coherent, collective emission fr
a group of atoms~e.g., lasing or superradiant emission!, one
must explicitly consider the relative orientation of the atom
dipole and the various Bloch modes in Eq.~3.8!. In the case
of fluorescence, however, we have a collection of indep
dently emitting atoms with essentially random dipole orie
tations. As a result, in order to describe the ‘‘mean’’ emiss
characteristics of the system, we averaged over all solid
angles, giving a factor of 1/3. We may further introduce
distribution function,r(r ), which describes the density o
fluorescing atoms at a given point in the crystal. We sh
assume that the atomic distribution is the same for each
cell. Performing an average over both dipole orientation a
the atomic distribution within the crystal, we obtain an e
pression for the fluorescence Green function,

Gf~t![^G~d,r ,t!& r ,u

5Q~t!bE
WSC

dr
r~r !

Ne
E

0

`

dv
Nl~r ,v!

v
e2 i (v2v21)t,

~3.9!

where, after performing the angular integration, the lo
density of states~LDOS! is defined as

Nl~r ,v![
3

4p
^Np~d,r ,v!&u

5(
n
E

1BZ
dkd~v2vn,k!uEn,k~r !u2. ~3.10!

^ & r and ^ &u are used to denote the spatial and orientatio
averages, respectively, and in Eq.~3.9!, we have absorbed al
numerical factors into the prefactorb5v21

2 d21
2 /12\e0p2.

The spatial integration is performed over the density dis
bution function for the active atoms in a Wigner-Seitz ce
such that*drr(r )5Ne , the total number of active atom
within this unit cell. The replacement ofG(r ,t) by Gf(t) in
Eq. ~3.4! gives the equation of motion for the probabilit
amplitude of the excited state population in fluorescent em
8-4
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THEORY OF FLUORESCENCE IN PHOTONIC CRYSTALS PHYSICAL REVIEW A65 043808
sion; we denote this normalized fluorescence amplitude
bf(t). The resulting fluorescence equation is then

d

dt
bf~ t !52E

0

t

Gf~ t2t8!bf~ t8!dt8. ~3.11!

As discussed in Refs.@27# and@32#, it is the local density
of states~3.10! that one must evaluate in order to determi
the electromagnetic modes in a given frequency range a
able to the active atoms in fluorescence, as the Bloch m
of a periodic dielectric for a given bandn tends to reside
preferentially in either the high or low dielectric region
the crystal. Different modes may therefore have very diff
ent spatial distributions, and accordingly can couple very
ferently to an active atom at a given position in the crys
We note that Eq.~3.10! corresponds to the local radiativ
DOS of Ref.@27#. However, because we have made a fi
expansion in terms of the natural Bloch modes of the crys
in our case the distinction between a local DOS and a lo
radiative DOS does not arise. The relation between
LDOS and the total DOS is given by the expression

N~v!5E
WSC

dre~r !Nl~r ,v!, ~3.12!

which shows that for a small dielectric modulation in t
crystal, which implies a weak interaction between the diel
tric and the electromagnetic field, the total DOS can prov
a reasonable description of the field at any point in the cr
tal. Clearly, such a condition is not satisfied by a crys
exhibiting a strong pseudogap or a full photonic band g
@33#.

IV. EVALUATION OF FLUORESCENCE SPECTRA
AND DYNAMICS

Below, we describe the method of calculation of expe
mentally measurable quantities from fluorescence exp
ments for a given LDOS. For convenience, we shall pr
ently consider the case of a single radiating atom in each
cell at the positionr0, such that

r~r !5d~r2r0!,

andNe51. The fluorescence Green function~3.9! is then

Gf 1
~t!5Q~t!bE

0

`

dv
Nl~v!

v
e2 i (v2v21)t, ~4.1!

where it is understood thatNl(v) is evaluated at the positio
r0. This simplification is made only to make our subsequ
analysis more transparent; spatial averages over more c
plicated atomic density distributions may be introduced i
straightforward manner, due to the linear nature of the a
aging process. Because of the complexity of calculat
Nl(r ,v) throughout the active fraction of the crystal, it ma
in fact prove to be more practical to evaluateGf 1

(t) at a few
representative points within a unit cell. We note that fo
04380
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crystal comprised of many unit cells, we are still justified
performing an average over dipole orientations, as the dip
orientations of the single atoms in each unit cell are unc
related.

Central to our analysis is the Fourier transform of t
probability amplitudebf(t), which is given by

b̃f~V2v21![E
2`

`

dt8bf~ t8!ei (V2v21)t8. ~4.2!

The factor ofe2 iv21t in the integrand accounts for the fa
that bf(t) has been defined in a rotating frame in Eq.~3.11!.
Evaluating Eq.~4.2!, we obtain

b̃f~V2v21!5@G̃f 1
~V2v21!2 i ~V2v21!#

21, ~4.3!

in which G̃(V) is the Fourier transform of the memory ke
nel ~4.1!;

G̃f 1
~V2v21!5bE

2`

`

dt8E
0

`

dvQ~t8!
Nl~v!

v
ei (V2v)t8.

~4.4!

Changing the order of integration and performing the tim
integration in Eq.~4.4! yields

G̃f 1
~V2v21!5bE

0

`

dv
Nl~v!

v Fpd~V2v!1 iPS 1

V2v D G
5bFp

Nl~V!

V
1 iPE

0

`

dv
Nl~v!

v~V2v!G . ~4.5!

P denotes a Cauchy principal-value integral. We may thus
express Eq.~4.3! in the form

b̃f~V2v21!5H bp
Nl~V!

V
2 i FV2v21

2bPE
0

`

dv
Nl~v!

v~V2v!G J 21

. ~4.6!

We see that the last term on the right-hand side~rhs! of this
expression appears to shift the bare atomic frequency, an
in fact the source of the atomic Lamb shift, as describ
below.

A. The Lamb shift

As is well known from the theory of free space spontan
ous emission, the dressing of an atom by virtual photo
leads to a shift of its bare atomic resonant frequency@29#. In
photonic crystals, the modified electromagnetic vacuum n
a photonic band gap or pseudogap may produce an ano
lous Lamb shift@5#. In particular, calculations for simple
model systems have suggested that near the edge of a
gap, the strong dressing of an atomic system by real, Br
reflected photons may be sufficiently strong so as to spl
8-5
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formerly degenerate atomic level into a doublet that is
pelled from the band edge both into and out of the gap. T
effect could then give rise to fractional localization effec
and vacuum Rabi oscillations in the atomic emission dyna
ics @6#. The possibility of detecting such effects in realis
photonic crystals is discussed in Sec. V B.

The energy eigenvalue equation for the dressed ato
frequency~ies! is given by an equation for the real part of th
poles ofb̃f(V) after analytic continuation to a complex fre
quency space; the imaginary part is responsible for ato
decay. From Eq.~4.6!, the implicit eigenvalue equation fo
the dressed atomic frequencyṽ21 is

ṽ212v215bPE
0

`

dv8
Nl~v8!

v8~ṽ212v8!
, ~4.7!

where the principal-value integration is assumed when
dressed frequency lies in the allowed electromagnetic c
tinuum,Nl(v)Þ0.

Because the density of states for large frequencies sh
approach the free space DOS, i.e.,Nl(v)}v2 for large v,
we see that the right-hand side of this equation is forma
divergent. A complete treatment of this divergence wo
require a relativistic quantum field-theoretic approach;
stead we appeal to the nonrelativistic prescription of Be
@34#: The right-hand side of Eq.~4.7! can be written in the
alternative form

bPE
0

`

dv8
Nl~v8!

v8~ṽ212v8!

5ṽ21bPE
0

`

dv8
Nl~v8!

~v8!2~ṽ212v8!

2bE
0

`

dv8
Nl~v8!

~v8!2
. ~4.8!

The last term in this equation is linearly divergent, and
related to the fact that the bare electronic mass is a
dressed by the electromagnetic field. It can thus be remo
from the equation if we include a mass renormalizat
counterterm in our initial Hamiltonian. This leaves only th
first term, which is at most only logarithmically divergen
This latter divergence can be treated by introducing a cu
in the frequency integration at the electron’s Compton f
quencyve , as higher energy components would probe
relativistic structure of the electron and can therefore be
glected in our analysis. The Lamb shift is thus given by
solution~s! to the equation@35#

ṽ212v215ṽ21bPE
0

ve
dv8

Nl~v8!

~v8!2~ṽ212v8!
. ~4.9!

In free space, the atom-field coupling strength, given
b, is weak (!ṽ21), andNl(v) is a smoothly varying func-
tion. As a result, we may assume that the pole ofb̃f(V) is
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only slightly shifted from its undressed value, whic

amounts to settingṽ215v21 on the right-hand side of Eq
~4.9!. This pole approximation, along with the free spa
DOS, N(v)5v2/c3, gives the usual Wigner-Weisskopf re
sult for the free space Lamb shift, dLamb5
2v21b ln(ve/v21)/c

3. Near a photonic band gap,b is un-
changed from its free space value; however,Nl(v) can in
principle vary sufficiently strongly as to modify the Wigne
Weisskopf picture. We therefore retain the full express
~4.9! in our consideration of the Lamb shift in photonic cry
tals. Finally, we note that because of the explicit function
dependence of the Lamb shift on the bare atomic freque
and the DOS in a photonic crystal, we cannota priori trans-
form the equations of motion for the fluorescence dynam
to a rotating frame at a constant Lamb-shifted frequency
is commonly done in free space. It is for this reason that
have chosen to work in a rotating frame at the bare ato
frequency.

B. Emission spectra

The fluctuation or emission spectrum for fluoresce
emission as a function of frequency,V, is given by the
Wiener-Khintchine relation@29#,

S~V![2 ReH E
2`

`

dt8bf~ t8!ei (V2v21)t8J
52 Re@ b̃f~V2v21!#. ~4.10!

Extracting the real part of Eq.~4.6!, the emission spectrum
~4.10! for an arbitrary DOS is given by@31#

S~V!52bp
VNl~V!

@bpNl~V!#21V2~V2ṽ21!
2

. ~4.11!

Here, we have again denoted the Lamb-shifted atomic
quency byṽ21[v211bP*0

`dv@Nl(v)/v(V2v)#. We see
explicitly that the form of the emission spectrum is com
pletely determined by the LDOS in the crystal, and by t
position of the~dressed! atomic transition frequency. The
emission spectrum thus defined corresponds to the total s
trum obtained by considering the radiation emitted into
directions from the active medium.

C. Emission dynamics and electromagnetic reservoir
correlations

The dynamics of fluorescent emission are given by
evolution of the excited state atomic population,ubf(t)u2.
Because our input parameter is the LDOS of the crystal,
wish to evaluatebf(t) from the inverse Fourier transform o
bf(V), i.e.,
8-6
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bf~ t !5
1

2pE2`

`

dvb̃f~v2v21!e
2 i (v2v21)t

5
1

2pE2`

`

dve2 i (v2v21)tFbp
Nl~v!

v
Q~v!

1 ivbPE
0

`

dv
Nl~v8!

~v8!2~v2v8!

2 i ~v2v21!G21

, ~4.12!

where we have transformed back to a rotating frame, and
have made explicit the fact thatNl(v) is defined only for
positive frequencies by the use of the step function,Q(v).
From this expression, we see that fort50, the fact that
Nl(V)}V2 for large frequencies means that the memo
kernel will be logarithmically divergent. However, we a
only interested in the behavior of this function on the tim
scale of the atomic dynamics; this is, in general, much lon
than the natural time scale in Eq.~3.9!, which is set by the
atomic resonance frequency,v21. We therefore impose a
high-frequency cutoff on Eq.~4.12! for t50 without any loss
of information on the time scale of atomic emission. W

choose to apply a smooth cutoff of the forme2v2/vc
2
, and we

choosevc such that our result is insensitive to perturbatio
about this choice of cutoff~in practical terms,vc.3v21).
This transform is then well defined for a givenNl(v), and
can be efficiently calculated by standard Fourier integ
methods. We note that in contrast to the Lamb shift, wh
probes the high-frequency behavior of the LDOS and
associated virtual photon contribution, the presence of
phase factore2 i (v2v21)t in Eq. ~4.12!, coupled with the fact
that the remaining argument of the integrand falls off at la
frequencies implies that the emission dynamics are de
mined only by the LDOS the vicinity of the atomic fre
quency.

We may also evaluate the memory kernelG(t), which
may also be referred to as the temporal autocorrelation fu
tion for the electromagnetic reservoir. As previously me
tioned, this function plays a central role in the description
the atom-field interaction and therefore allows us to char
terize the nature of this interaction in a given photonic cr
tal. From Eq.~3.9!, G(t) may be defined in terms ofNl(v)
as

G~t!5Q~t!bE
0

`

dv
Nl~v!

v
e2 i (v2v21)t. ~4.13!

Upon the evaluation of Eq.~4.13!, the resulting function
G(t) may be used to evaluate the emission dynamics
direct integration of Eq.~3.11! in the time domain. This
method is numerically more straightforward than the eva
ation of Eq.~4.12!; however, it is considerably more compu
tationally intensive, as it requires that we explicitly integra
over all previous values ofbf(t8) in order to obtainbf(t).
04380
e

y

r

s

l
h
e
e

e
r-

c-
-
f
c-
-

y

-

V. FLUORESCENCE FOR MODEL PHOTON DENSITIES
OF STATES

We now apply the methods of Sec. IV to simple models
the photon dispersion relation and of the associated den
of states as a test of our method. We explicitly consider th
cases: free space, a model DOS for an anisotropic phot
band edge, and a model DOS for a pseudogap in a phot
crystal. For simplicity, the DOS in these models is chosen
be position independent. Nevertheless, in light of the co
putational complexity of calculating a realistic LDOS, su
idealized models provide an invaluable means of develop
a qualitative and quantitative understanding of the atom-fi
interaction in a photonic crystal. While the chosen mod
provide an analytic form of the DOS, we note that o
method does not require that such an analytic form exists
contrast to previous attempts to describe the spontane
emission of an atom in a PC@6,36#.

A. Free space

As is well known, the free space photon dispersion re
tion is linear and isotropic, i.e.,vk5cuku. The corresponding
DOS is therefore given byN(v)52v2/c3, where the factor
of 2 has been included to account for the two photon po
izations that are degenerate in energy. The Lamb shift for
case has been discussed in Sec. IV A, and is given appr
mately by dLamb5v21b ln(ve/v21)/c

35g ln(ve/v21)/2p,
where ve.mec

2/\, and me is the electron mass. Forg
5108 sec21 and v2151015 sec21, we arrive at a value of
dLamb52.23108 sec21. SincedLamb is essentially constant
we incorporate it into our definition of the atomic resona
frequencyv21.

The exact spectrum evaluated from Eq.~4.11! is given by

S~V!52
aV

~aV!21~V2v21!
2

, ~5.1!

wherea5g/2v21. For atomic transitions in the optical an
near-ir regions, we haveg/v21;1027, so that we may ap-
proximate by the usual free space Lorentzian emission s
trum with a linewidth given byg,

S~V!5
g

~g/2!21~V2v21!
2

, ~5.2!

in agreement with the result obtained in the Markovian a
proximation. As expected, the corresponding emission
namics show the decay of the upper atomic state to be hig
exponential in nature, with a decay rate ofg. Both in free
space and in the case of a PC, our results are obtained in
absence of a Markovian memory kernel@29#.

B. Anisotropic band-edge model

In order to describe the atom-field interaction near a p
tonic band-edge, we consider an anisotropic effective m
model for the photonic dispersion@8,36#. The band edge of a
8-7
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NIPUN VATS, SAJEEV JOHN, AND KURT BUSCH PHYSICAL REVIEW A65 043808
three-dimensional photonic crystal is associated with a se
n high symmetry points on the surface of the first Brillou
zone of the crystal, whose positions in reciprocal space
given by the vectorsk0

i , i 51,n. For example, in an invers
opal PBG material, the band edge for the PBG between
8th and 9th bands occurs at theW point, which is highly
degenerate.

We expand the photon dispersion relation about the up
band edge,vu , to quadratic order ink, giving

vk5vu1Auk2k0
i u2. ~5.3!

We note that by choosing to expand the dispersion rela
about the upper band edge, we are describing field mo
that reside predominantly in the void region of the crys
~the ‘‘air’’ band! @39#, a fact that is borne out by an explic
calculation of the LDOS@32#. Accordingly, this expansion is
applicable to the description of emission from active e
ments in the void regions at frequencies near the upper b
edge. In this case, we may neglect the influence of the lo
band. Similar considerations may be used to motivate
expansion about the lower band edge for active elemen
the dielectric fraction of the crystal.

In a PBG material, the degree of curvature of the disp
sion relation near the band edge will be strongly depend
on the specific structure and dielectric material being con
ered, as well as on the direction of the expansion about
band edge@37#. Therefore, it is more accurate to express
expansion coefficientA as a tensor quantity, to be determin
from a microscopic calculation of the dispersion near a b
edge; this is, however, beyond the scope of the present w
For our purposes, we shall therefore assume thatA is a scalar
constant, a condition that is satisfied exactly for crystal
ometries in which the band-edge wave vector possesse
bic symmetry within the Brillouin zone@5#, and is otherwise
a reasonable approximation for the dispersion relation ne
band edge after averaging over all directions. From Eq.~5.3!,
the DOS can be written as

N~v!5Av2vu

A3
Q~v2vu!. ~5.4!

The (v2vu)1/2 dependence ofN(v) is characteristic of a
three-dimensional phase space@38#, and is in agreement with
the band edge LDOS computed for an inverse opal P
material @32#. The physical quantities we wish to compu
require the evaluation of the productbN(v), which may be
expressed as

bN~v!.vu
3/2bA

1/2Av/vu21.

Here, bA is the characteristic frequency for band-edge d
namics in the anisotropic model, and is given by
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1/25

v21
2 d21

2

8\e0vu~pA!3/2
. ~5.5!

From this expression, it is clear that the determination of
frequency and time scales for band-edge fluorescence
depend on an accurate determination of the expansion
rameterA for a specific PBG material. The valuebA may
thus be deduced from a careful calculation of the LDOS
the vicinity of the band edge of a given crystal. In the pres
work, we shall instead rescale the relevant quantities to
frequency scalebA ; a preliminary estimate in Ref.@40#,
however, suggests thatbA should fall within the range of
0.01g,bA,10g. The ambiguity inherent to this simpl
model demonstrates the need for a more realistic calcula
of the LDOS in order to obtain a quantitative evaluation
the atom-field interaction in a PBG material.

The Lamb shift computed from Eq.~4.9! is shown in Fig.
1. We see that the shift is frequency dependent near the b
edge, showing that the standard Wigner-Weisskopf appro
is not applicable. In order to obtain a quantitative estimate
the Lamb shift at the band edge, we take the representa
values of g5108 sec21, bA50.01g and vu51
31015 sec21, which gives a value ofdLamb(vu).2
3109 sec21; this value is an order of magnitude larger th
the free space Lamb shift. The accuracy of our calculation
however, compromised by the fact that we have neglec
the contribution of the lower band edge to the frequen
integration. Additionally, the density of states for our mod
does not accurately take into account the structure of
DOS at frequencies well above the band edge. Neverthe
our model captures the qualitative behavior of the La
shift, and should give a rough estimate of its band-edge va
in a real PBG material.

The spectrum is derived from Eq.~4.11!, and has the form

FIG. 1. Plot of the Lamb shift as a function of frequency near
anisotropic band edge.
S~v!;AbA

vu

2bAv/vu21

b2~v/vu21!~bA /vu!1~v/vu!2$@v2v211dLamb~v/vu!#/vu%
2
Q~v/vu21!. ~5.6!
8-8
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Here,b53Ap/2. We see from this expression that the fun
tional form of the Lamb shift contribution ensures that t
spectrum is finite for all values of the bare atomic frequen
v21, including the valuev215vu . This spectrum is plotted
in Fig. 2. As expected, there is no emission of radiation in
forbidden band gap, and the emission goes to zero at
photonic band edge due to the absence of electromag
modes atvu . We see that the amount of emitted radiati
increases as the atomic resonance frequency is moved fa
out of the gap, and there is radiation emitted even forv21
inside the gap. The form of the spectrum is non-Lorentzi
implying a nonexponential decay of the excited atomic st
population. We, however, find that for larger detunings
v21 into the allowed band the spectrum approaches a Lor
zian shape centered at the atomic frequency that is cut of
frequencies in the gap. We observe a long spectral tail
extends far into the allowed electromagnetic continuum
all detunings ofv21 near the band edge. This is a result of t
Av2vu dependence of the DOS, which results in a sl
decay of the spectrum at higher frequencies when comp
with free space. We expect that this spectral tail would
diminished when using a more accurate model of the DO
in which the slowly increasing square root dependence of
DOS does not extend throughout the allowed band.

We now turn our attention to the dynamics of the popu
tion of the upper atomic state for an initially inverted acti
medium. The excited-state population is plotted in Fig. 3
various values of the detuning of the atomic transition f
quency from the band edge. We observe a nonzero pop
tion in the steady state forv21 within the gap. This is a resul
of the fractional localization of the emitted radiation abo
the atom in the steady state. Forv21 at the band edge, o
within the allowed band, we find that the excited state po
lation decays to zero in the steady state. The population
cay becomes exponential for sufficiently large detunings i
the continuum of modes, with a decay rate proportiona
the density of states, as one would expect from a perturba
solution for atomic decay. We note that the degree of loc

FIG. 2. Emission spectrum near an anisotropic band edge
various values of the detuning of the atomic frequency from
band-edge frequency,d5v212vu .
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ization of the upper state population forv21 within the gap is
influenced by the DOS in the continuum of modes, even
atomic transitions well within the gap, as the relevant in
grals extend over all frequencies. This accounts for the
sence of a completely localized state~excited state popula
tion of unity! for v21 deep in the gap within our model. Ou
results for the band-edge dynamics are very similar to th
of Yang and Zhu@36#, which were obtained by the method o
Laplace transforms. However, there are quantitative diff
ences, likely owing to the fact that their treatment used
approximate form of the memory kernel~4.13! associated
with the DOS for the anisotropic model. Here, we have ma
no such approximation. As discussed in Sec. IV C, the f
that the emission dynamics probe only the DOS near
atomic resonant frequency implies that the results we h
obtained should not be greatly affected by the inaccur
high-frequency limit of the DOS in our band-edge model

Finally, it is straightforward to show thatGf(t2t8) evalu-
ated from Eq.~4.13! for the DOS~5.4! has the form

Gf(t2t8)5vu
3/2bA

1/2ei (d1vu)(t2t8)H e2 i [vu(t2t8)1p/4]

Avu~ t2t8!

2Ap[12F(Aivu~ t2t8!] J , ~5.7!

whereF(x) is the error function,F(x)5(2/Ap)*0
xe2t2dt.

This result is in agreement with the previously derived res
for the anisotropic model@8#. This may be compared with
the free space Markovian result,Gf(t2t8)5(g/2)d(t2t8),
which implies that the atomic system in free space has
memory of its state at previous times on the time scale
atomic emission. We therefore observe that the nonzero t
poral correlations contained in Eq.~5.7! are the source of the
deviations from the Markovian behavior for atomic em
sion. In general,Gf(t2t8), or where appropriate,G(d,r0 ,t)
@Eq. ~3.6!# fully characterize the interaction between an a

or
e

FIG. 3. Temporal evolution of the excited state population for
initially excited two-level atom near an anisotropic band-edge
various values of the detuning of the atomic frequency from
band-edge frequency,d5v212vu .
8-9
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NIPUN VATS, SAJEEV JOHN, AND KURT BUSCH PHYSICAL REVIEW A65 043808
tive element and the electromagnetic reservoir. This mem
kernel is therefore of relevance to the description of quan
optical phenomena within a PC, as it describes the spont
ous decay contribution to the evolution of a quantum opti
system.

C. Pseudogap model

We now treat the case of a pseudogap, for which the s
band does not extend over all propagation directions, t
resulting in a suppression of the DOS rather than the for
tion of a full PBG. In contrast to the two cases treated abo
it is not a straightforward matter to develop a model disp
sion relation for a pseudogap, as this would require a m
explicit treatment of the directional dependence of the p
ton dispersion relation. Instead, we propose a model D
which recaptures the basic qualitative features of
pseudogap; it is plotted in Fig. 4, and has the form

N~v!5
v2

c3 F12h expS v2v0

G D 2G . ~5.8!

Here,h ~which is dimensionless! andG ~in units of v0) are
parameters describing the depth and width of the pseudo
respectively, andv0 is the central frequency of th
pseudogap. We see that the pseudogap is assumed to h
Gaussian profile, and approaches the free space DOS a
from v0, i.e., N(0)50 and N(v@v0)5v2/c3. Further-
more, we obtain the free space DOS forh50, allowing us to
unambiguously compare results obtained for the pseudo
model with the corresponding values in free space. We n
that this model is more realistic than the choice of a Lore
zian, whose more sharply peaked profile is better suited
describe the suppression of a single mode, rather than th
suppression of the range of frequencies contained with
pseudogap.

FIG. 4. Plot of the DOS@Eq. ~5.8!# for the pseudogap mode
The width of the gap is set by the parameterG50.05v0, which
implies that the pseudogap width is 10% of its central frequen
Various depths of the pseudogap~set byh) are shown.
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In Fig. 5 we plot the difference between the Lamb sh
computed for the pseudogap model and the free space L
shift D lamb . We see that in the vicinity of the bare atom
frequency,v21;v0, the Lamb shift is frequency dependen
as was the case near the anisotropic band edge of Sec.
As we have preserved the correct high- and low-freque
behavior of the DOS in the present model, we can infer t
the frequency variation in the Lamb shift in the band ed
case is not an artifact of our band-edge model which does
possess the correct high- and low-frequency behavior. Th
fore, it is clear that both pseudogap and band-edge emis
phenomena cannot simply be treated by means of a Wig
Weisskopf approximation, as has been suggested in R
@41#.

At v215v0, we find that the Lamb shift for the
pseudogap model is identical to the free space value, in
pendent of the values ofh andG. This is attributable to the
symmetry of N(v) about v0 for frequencies within the
pseudogap, which negates the contribution of the pseudo
in the evaluation of the Cauchy principal-value integral, E
~4.9!. The calculated shift may be greater or less than the
space value, depending on whetherv21 is greater or less than
v0, and, as expected, the deviation of the pseudogap La
shift from the free space value increases as the strengt
the pseudogap is increased by enlarging the value ofh. It is
interesting to note that the maximal positive and negat
values ofDLamb for fixed values ofG and h occur at the
‘‘edges’’ of the pseudogap, which occur at the valuesv21
5v06G. This is clearly due to the fact that the DOS exhi
its the greatest asymmetry about these frequencies, the
giving the largest variation when performing the Cauc
principal value integration in Eq.~4.9!. This fact suggests
that the maximal variation of the Lamb shift from the fre
space value for a system exhibiting a full PBG should oc
at the band edges, as we have demonstrated in the prev
section. For a sufficiently strong pseudogap, the maxim

y.

FIG. 5. Plot of the difference between the pseudogap Lamb s
and the free space Lamb shift,DLamb for system parametersg
5108 sec21, v2151015 sec21 and G50.05v0. Plots for various
values ofh are shown.
8-10
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value of uDLambu may be on the order of 15% of the fre
space value~see Fig. 5!, a difference that should be measu
able using conventional measurement techniques.

Spectral and dynamical results for the pseudogap mo
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ith
f
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are presented in Figs. 6~a! and 6~b!, respectively. Here, we
have incorporated the free space Lamb shift into our defi
tion of v21, so thatṽ215v211DLamb. The spectrum for this
case is given by the expression
S~v!;

2ãF12h expS v2v0

G D 2G~v/v0!

ã2F12h expS v2v0

G D 2G2

~v/v0!21$@v2v211DLamb~v/v0!#/v0%
2

, ~5.9!
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whereã5g/2v0. The resulting spectrum is highly Lorentz
ian in nature, with a linewidth that depends on the DOS
the vicinity of the atomic transition. As a result, we see th
there is a narrowing of the linewidth and a correspond

FIG. 6. ~a! Emission spectrum for a two-level atom with res
nant frequency coincident with the central frequency of
pseudogap,v215v0 . G50.05v0. ~b! Temporal evolution of the
excited-state population for an initially excited two-level atom w
resonant frequency coincident with the central frequency o
pseudogap,v215v0 . G50.05v0. Plots for various values ofh are
shown.
n
t
g

increase in the peak of the emission spectrum for a fi
value of v21 within the pseudogap as the value ofh is in-
creased. This is in contrast to the case of an atomic trans
in the vicinity of a PBG, for which the fractional localizatio
of light in the vicinity of the emitting ‘‘atoms’’ means tha
the integrated emission intensity is not necessarily prese
as the parameters of the system are changed. As expe
the corresponding curves for the emission dynamics@Fig.
6~b!# are highly exponential, with a decay rate equal to t
spectral linewidth for a given set of system parameters.
thus see that, in contrast to the case of a PBG, the spe
and dynamical characteristics of active media with radiat
transitions within a pseudogap may be treated using a pe
bative approach, in which we define a decay rate prop
tional to the DOS at the atomic resonant frequency. Such
approach is valid in the present case because of the smo
ness of the DOS in our pseudogap model within the vicin
of the atomic transition frequency. A more accurate char
terization of the LDOS in a strongly scattering PC, howev
shows that even in the absence of a PBG, there will b
number of sharp features in the DOS and the LDOS, in p
ticular van Hove singularities@32#, whose effect on the ra
diative properties of an active medium cannot be descri
by such a perturbative treatment. Our formalism is theref
useful in obtaining a complete characterization of the pres
problem, including the Lamb shift, and in a broader sen
allows us to describe the effect of virtually any feature of t
DOS within a PC on radiative emission within the sam
straightforward framework.

VI. DISCUSSION

The formalism developed and applied in the preced
sections applies exactly to the case of a system of two-le
atoms in a defect-free photonic crystal. Clearly, real syste
will in general differ significantly from this idealized con
figuration. Any large-scale PC microfabricated at optic
wavelengths will likely posses a significant number of d
fects, which may take the form of point defects, dislocatio
and grain boundaries within the bulk of the crystal. The e
plicit incorporation of these effects into our formalism
though possible in principle, would be extremely compu
tionally intensive. Qualitatively, we expect that there may
emission into directions for which photon propagation is p

a
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hibited in a perfect crystal. This is a result of the scattering
radiation into the direction of a PC stop band by defects t
are close enough to the crystal surface so that the scat
light passes through only a small number of crystal lay
before reaching the crystal boundary, and therefore does
feel a significant Bragg scattering effect. As discussed
Megenset al. @18#, this ‘‘defect-assisted’’ emission would b
eliminated for an atomic transition frequency deep insid
PBG, as the active elements would not be able to emit
any direction within the bulk of the crystal. Therefore, t
absence of emitted radiation at frequencies within the b
gap is a strong signature of the existence of a full PBG, e
in the presence of defects. It is also interesting to note
the presence of a small number of defects may actually ai
the characterization of a PC via fluorescence experiment
the presence of defects breaks the exact mode symmetry
given Bloch mode. This may permit us to observe emiss
from a Bloch mode of the crystal that may otherwise
uncoupled to externally propagating modes.

We have also made certain idealizations with respec
our description of the active medium. First, we have n
glected the effects of various broadening mechanisms.
effect of a small amount of homogeneous broadening
not modify the qualitative behavior of the system, and m
be minimized by considering an active medium at low te
peratures. Inhomogeneous broadening effects may be in
duced into our formalism by convolving our results with
probability distributionF(v) over the transition frequencie
of the constituents of the active medium being considered
has been pointed out that certain active media, such as
ganic dyes, possess both a small degree of homogen
broadening, along with substantial inhomogeneous broad
ing @19#. The narrow linewidth of the individual molecules i
such a dye allows one to probe the LDOS over small f
quency ranges, whereas the broad distribution of emis
frequencies permits one to scan the full range of frequen
for which a modification of the emission properties may
expected~for a full PBG, this may correspond to 5–20 %
the midgap frequency, depending on the structure being c
sidered!. Such dyes are therefore ideal candidates for
characterization of PCs via fluorescence experiments,
their emission may be well described using our formalism

Finally, we note that for active elements located near
electric surfaces, and within the bulk of the dielectric, t
atom-field coupling may be modified by so-called local fie
04380
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effects@30,42#. These effects are a result of the microscop
interaction between individual active elements and the c
stituent atoms of the dielectric material, which results in
radiation reaction on the active elements. Local field effe
may then serve to modify the time scales for the emiss
dynamics, as well as the value of the Lamb shift. Therefo
our description will apply most accurately to active eleme
located within the void region of a PC, away from dielectr
surfaces. It is clear that each of the effects outlined ab
should be considered when interpreting the results of fl
rescence experiments. However, such considerations do
detract significantly from the usefulness of our formalism
the characterization of fluorescence from active media
PCs.

In summary, we have developed a general formalism
the description of fluorescence from active media in photo
crystals. We have used a Bloch mode expansion of the e
tromagnetic field modes in order to express the fluoresce
properties of the system in terms of the local density
modes available to the active elements. In the process,
have derived general expressions for the Lamb shift, em
sion spectrum, and emission dynamics in PCs that are rea
amenable to numerical calculation in the absence of an a
lytic form for the local density of states. Our formalism wa
then applied to model densities of states in order to dem
strate the validity of the approach. Most notably, we trea
the case of an anisotropic effective mass model of a photo
band edge. We showed that while this simple model provi
a reasonable characterization of band-edge emission be
ior, the limitations of the model motivate a more accura
determination of the band-edge density of states in orde
provide a quantitatively accurate description. Finally, w
have discussed how our idealized description may be m
fied by various effects inherent to experimental systems.
formalism presented here may find application to the cha
terization of photonic crystals via fluorescence experime
as well as to the description of the interaction between
atom and the electromagnetic reservoir, which is of releva
to virtually any radiative phenomenon within a photon
crystal.
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