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Topological Magnetic Solitons in the Two-Dimensional Mott-Hubbard Gap
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We derive from first principles the existence of deep level localized electronic gap states, induced
by hedgehog solitons, in the two-dimensional Hubbard model. These arise naturally as excitations
in a new topological magnetic condensate of the many-electron system associated with m; (80(8)).
The condensate exhibits local spin % magnetic moments as well as topological “spin flux.” This flux
emerges microscopically from a homotopically nontrivial phase rotation of the electron spinor field
and leads to an intriguing relativistic structure for the Mott-Hubbard gap.

PACS numbers: 71.27.+a, 74.20.Hi, 75.30.Fv

The discovery of high temperature superconductivity
[1] has sparked broad interest in the magnetic properties
of strongly correlated electron systems. It was suggested
by Anderson [2] that a spin-liquid phase of strongly in-
teracting electrons may be responsible for many of the
anomalous electronic and magnetic features observed in
such systems [3]. In this paper we describe a new topo-
logical feature of the interacting electronic system in two
dimensions which may give rise to such anomalies.

In a recent series of papers [4-6], we have presented
a careful study of the magnetic and electronic proper-
ties of the strongly correlated Hubbard model starting
from a mean field theory of spiral magnetism and con-
tinuing to the lowest order fluctuation corrections. The
fluctuation Hamiltonian led to a physical picture of the
doped Mott-Hubbard system as a highly nontrivial metal
in which there was strong coupling between collective
charge and spin excitations. The aim of this study was
to isolate those normal state properties of the copper-
oxide high temperature superconductors which may be
associated with small fluctuations about a spiral mag-
netic mean field, from those which require large ampli-
tude nonlinear corrections or an entirely new condensate
at the mean field level. We found that certain features
such as the twist of the magnetic background, the closure
of the Mott-Hubbard gap [4,5], and the sign change of the
Hall coefficient {6] with doping & could be described in
standard spin-density-wave mean field theory of the in-
termediate coupling Hubbard model. However, other im-
portant features such as the rapid loss of magnetic long
range order with §, the marginal Fermi-liquid behavior
[7], and the striking mid-infrared absorption [8] could not
be accounted for in a natural way.

In this paper we discuss the properties of a topological
fluctuation correction which connects the previous mean
field ground state to a possible new condensate at large
doping. Unlike the standard spiral magnetic states, the
many-electron wave function for this topological conden-
sate is a Slater determinant of single electron spinor wave
functions in coordinate space which change sign under 27
rotation about an axis 2, passing through the center of
any lattice plaquette. These single electron states are
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obtained by applying a homotopically nontrivial phase
rotation to the electron spin for paths that encircle an el-
ementary plaquette of the 2D square lattice, in addition
to any rotation of the local spin orientation detectable by
neutron scattering. These wave functions are physically
admissible provided that the resulting phase change ac-
quired around any plaquette is 41, in accordance with
the topology of the rotation group SO(3). If the phase
change is —1, this is formally equivalent to passing a
“spin flux” of w through the plaquette. A key difference
between our topological condensate and previously dis-
cussed flux phases [9] is that the phase change is in fact
opposite for opposite spins. Accordingly, the currents for
up and down spin electrons circulate in opposite direc-
tions, leading to zero net charge current. S

An important simplification of the many-electron prob-
lem occurs if an €% phase factor is created in this man-
ner around each plaquette of the 2D square lattice. The
effective one-electron Hamiltonian, in this case, contains
not only the usual magnetic scattering potential of the
spin-density-wave mean field, but also a spin-dependent
hopping matrix element. Hopping from one lattice site
to a nearest neighbor is now described by an SU(2) ma-
trix which accounts for the phase change of the electron
spinor from site to site. The resulting matrices which
describe hopping between unit cells in the x and y direc-
tions, respectively, satisfy an anticommutation algebra.
This leads to a remarkable relativistic Dirac spectrum for
low energy excitations. We derive the electronic struc-
ture of this condensate in the presence of topologically
charged magnetic hedgehog solitons. These solitons de-
scribe local tunneling events between the two degenerate
antiferromagnetic vacua. In addition, for unit values of
topological charge, they correspond to the addition or
removal of an elementary quantum of spin flux. These
solitons induce localized electronic states within the rel-
ativistic Mott-Hubbard gap. Magnetic textures of this
nature can be excited optically and may account for the
anomalous broadband infrared absorption in high T, su-
perconductors. These solitons are free to move within the
two-dimensional plane, greatly enhancing the destruction
of long range magnetic order with doping and possibly
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leading to the marginal Fermi-liquid behavior of the nor-
mal state.

The topological structure of the many-electron Hilbert
space may be described formally by considering the set
of all physically admissible local gauge transformations
on the Hubbard model [10,11]:

H=—t E[bl’.abja + H.C.] + Uann,—l. (1)

(i5) i
o

Here b:.fa creates an electron at site ¢ of spin a. We con-
sider a local gauge transformation on this operator which
implements a Euler angle rotation of the electron’s inter-
nal coordinate system. Denoting the three Euler angles
by n; = (714, M2i, N3i), we define the rotated electron op-
erator ¢}, by the relation bl = [ein:e)/ 2]a5ciﬂ. Here
o = (0!,0%,0°%) are the three Pauli spin matrices and
there is an implicit summation over the repeated index
B. It is clear that such a substitution leaves the inter-
action term invariant. However, if the Euler angle field
1, varies with index 1, the electron hopping terms will
be modified. Defining a SU(2) gauge field A* by the
relation

J
(s — ”Im‘)"'g,@ = / di - A"Uiﬂa (2)
13
the gauge transformed Hamiltonian becomes

H= Z[CIQT;‘%ng +Hel]+U Z NNl (3a)
(i5) i

where the hopping coefficient ¢ for the link (Z, j) has been

replaced by the SU(2) matrix

By ']
T4 — _¢ exp(i/2 f dl - A“a“). (3b)

Here, we assume for simplicity that each of the Euler
angle rotations is about some fixed axis fi.

There is a crucial difference between the nature of
physically admissible gauge transformations for spin 1/2
electrons and those familiar from elementary scalar quan-
tum mechanics. In the latter case, the wave function 9(r)
is required to be single-valued in three-dimensional Eu-
clidean space. A relabeling of the phase of the wave func-
tion ¥ — exp[if(r)]y leads to the introduction of a U(1)
gauge field into the Schrédinger equation. Provided that
the gauge field is chosen to have the form A = V@ for
some single-valued field 6(r), the spectrum is unchanged.
The introduction of more general configurations of the
gauge field for which V x A # 0, however, corresponds
to the addition of electromagnetic forces [12]. For the
case of spin 1/2 electrons, the internal wave function
defined on the space of Euler angles is two-valued [13].
There are two distinct spinors which describe the same
physical state of the electron and two distinct SU(2) ma-
trices, =T, which describe the same physical rotation of
the electron’s internal coordinate system. This is a di-
rect consequence of the doubly connected topological na~
ture of the group manifold of SO(3). It follows that the
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one-electron spinor wave function x*(r) = [¢3(r), ¢}(r)]
describing the up and down spin amplitudes can be re-
labeled at each point in space by a local SU(2) gauge
transformation x — T'(r)x which creates a phase change
of either X1 for any closed locop in the coordinate space
r. In the case of a phase change €'", it is apparent that
V x A 0. Nevertheless, such a gauge field is admissible
without the introduction of an external Yang-Mills force.
It does, however, describe a distinct topological sector of
the many-electron Hilbert space which may be accessible
in the presence of strong electron-electron interactions.

We consider a general Hartree-Fock, mean-field, factor-
ization [4-6] of the Hubbard model! in which the ground
state expectation value of the electron spin operator is
given by 1(cl o*Fc;g) = shy, where fi; = £i(r) is a unit
vector describing the orientation of the local magnetic
moment at each lattice site ¢, and fi(r) is a slowly varying
plaquette variable which defines the axis of quantization
of the local antiferromagnetic ordering. For the uniform
antiferromagnet one can choose i(r) = +%. [Later, we
will introduce magnetic textures by allowing fi(r) to vary
slowly with r.]

A simple topological variant of this spin-density wave
state may now be obtained by associating the SU(2) ma-
trix T = —texp{iF[fi(r) - o]} with each directed link of
the lattice as depicted in Fig. 1. With this choice it is
apparent that the product of SU(2) matrices around any
elementary plaquette of the 2D square lattice is equal
to —1.

In the topological sector defined in Fig. 1, the unit
cell now contains four lattice sites labeled j = 1,...,4,
and accordingly we define a set of four two-component
spinor fields x*¥(r;) = (c}T,c} 1) to describe the one-
electron wave function. The mean-field Hamiltonian
can now be expressed in terms of an 8-component field
Ti(r) = [xtD, x+ @, x+6) (@] defined on the pla-
quette containing r. In addition to the usual Pauli matri-
ces o, which act on the internal spin space of the electron,
it is convenient to introduce two new sets of 4 x 4 matri-
ces which act on the four site indices of the elementary
unit cell:

T
] 1 P
1 — _fpimh-df4
fl v T te
4 T .3 14 13
L= o ——— d
7+ F+E4§ Unit
ni
T T Cell
1 2 1 2
- - -t - - -
T oy m W THE ] a ol

FIG. 1. Unit cell with four point basis. The spin-flux phase
is obtained by associating the SU(2) matrix T (see text) with
each directed link of the 2D lattice. Here x = ak and y = a¥.
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and
wo(5 2) = (8 =0 )
(4b)

Clearly, the set T and the set « individually satisfy a
cyclic Pauli spin algebra, but commute with each other:
[7,7%) = 0 for all § and k. Using the direct tensor prod-
uct of these matrices with the physical Pauli spin ma-
trices o (which act on the electron’s internal wave func-
tion), it is possible to rewrite the kinetic energy term of
the Hubbard Hamiltonian in the 8 x 8 matrix form:

Hy= -2t Z 0] [cos(kza)da + cos(kya)@y| ¥y, (5)
Kk

where
Tw + (ﬁ : U)Ty]/\/i, (6)
o — (- )7y ]72/ V2,

and ¥y = (N)~Y/235 e~ "U(r;). Here a is the lattice
constant, N is the number of unit cells, and the reduced
Brillouin zone for the k summation is |ks|, |ky| < 7/2a.
Similarly, the antiferromagnetic mean-field interaction
term U Y, €1%(s;) - 0ac? becomes

[
[

Gy
Gy

Hyy = —m > Ul (G:7) Ui, (7)
k
where &, = —(fi - 0)7,7; and m = U|(s;)| defines the

magnitude of the antiferromagnetic, Mott-Hubbard gap.

A straightforward calculation reveals that the 8 x 8
matrices @ = (Gg,0y,0,) themselves satisfy a cyclic
Pauli spin algebra with {é&;,&;} = 26,;. This im-
plies [14] that the single electron spectrum at mean-
field level has the relativistic, Dirac form E =
++/4t2[cos?(kza) + cos?(kya)] + m2. The band edges for
the lower and upper Mott-Hubbard bands occur at the
four equivalent zone-corner points kg = (7/2a)(1, +1).
An effective, one-electron, continuum Hamiltonian may
be obtained by linearizing the dispersion relation about
these points and making the replacement k — kg —
—iV = —i(8;,0y):

Het = 20ita(Gz0y + 64,0,) — Mz Yo (8)

Twist of the magnetic background away from antifer-
romagnetic alignment from one plaquette to another may
be accomplished by allowing the matrices ¢ to have slow
spatial variations through the factor fi(r) - o which they
contain. It is easy to verify [15] that the generalization of
Hes for any magnetic texture which varies slowly on the
scale of the lattice constant is obtained by symmetrizing
the kinetic energy with respect to the momentum oper-
ator p = —iV. In particular the hermiticity of Heg is
preserved for spatially varying #i(r) if we make the re-
placement - p — Lla - p + p- ). These spatial vari-
ations, while preserving the symmetry of the eigenvalue

spectrum of Hes about E = 0, give rise to localized elec-
tronic states within the relativistic Mott-Hubbard gap.

We consider a general hedgehog soliton, of topological
charge p, defined by

i(r) - o =Ule,U, (9)

where U = exp[—ioy0(r) /2] exp(ipo.$/2). Here, we have
introduced polar coordinates r = (r, ¢) and 6(r) is a gen-
eral function describing the magnetic twist in the radial
direction. A straightforward but lengthy calculation re-
veals that the z component of the electron’s total angular
momentum is a constant of motion in this texture, if and
only if the condition

Vo(r) = siusin6(r)/r, (10)

where s; = =£1 is satisfied. Remarkably, this is precisely
the condition for a local minimum (instanton) of the clas-
sical magnetic energy [16], [ d%r(8,f)2.

The general solution to (10) takes the form

0(r) = 2tan™1[(r/pc)""], (11)

where p. is an arbitrary scale parameter which defines the
core radius of the soliton. The validity of the continuum
approximation, however, requires that p. > a. Using
condition (10), separation of variables is possible in po-
lar coordinates for the set of eight, coupled, differential
equations Hy = E, generated by the symmetrized form
of the Hamiltonian operator (8). Defining the spatially
nonvarying matrices o, = Ué&, U+ and transformed wave
function

U = /7 exp(is17,0,7/8)
xexp(—is10,¢/2) exp(ic,¢/2)Ud (12)

leads, using the separability condition (10), to the new
Schrédinger equation HU = EV where

H = 2ita (azar + %(845 + z’slo'z/2)) + mo,Ty,

—,u,tTa[sl sinf(r)mzoy — cos 8(r)o ). (13)

Some further simplifications emerge from the observa-
tion that the operators «, and i9; commute with this
Hamiltonian and can be replaced by their eigenvalues
sy ==+1 and I =0,+1/2,-1,..., respectively.

The energy levels corresponding to the localized gap
solutions of this equation for topological charge p = 1
and p = 2 are shown in Fig. 2 as a function of the soliton
core size p.. For topological charge u = 1 it is necessary
that [ # O for the physical wave function to be nonsin-
gular at the origin. Setting s; = 1 and [ = 1/2 yields
solid curve in Fig. 2. The bound state energy moves
deeper into the Mott-Hubbard gap as the core radius p.
shrinks reaching a minimum value of approximately 0.75
the midgap energy. For topological charge i = 2 a non-
singular wave function may be obtained by setting s; = 1
and ! = 0. The lowest bound state energy is depicted
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FIG. 2. Subgap electronic energy levels induced by hedge-
hog solitons of topological charge i = 1 (solid line) and p = 2
(dashed line) as a function of the dimensionless soliton core
radius (22)(2). E/(Us) =1 and 0 are the upper band edge
and midgap, respectively. Each level is doubly degenerate and
the entire spectrum is symmetric under £ — —E.

by the dotted curve in Fig. 2. The energy eigenvalue
decreases monotonically with decreasing p., approach-
ing a limiting value of approximately 0.64 of the midgap
as p. — 0. It is straightforward to prove that for any
given state of energy £ and angular momentum [, there
is a corresponding state of energy —FE and angular mo-
mentum —I[. Also, each level E is doubly degenerate.
This arises from a sublattice degeneracy of the original
square lattice. One state, with angular momentum [, re-
sides primarily on one sublattice, whereas a degenerate
state, with angular momentum —[, resides primarily on
the other sublattice. In addition, a number of near band
edge solutions appear for higher values of quantum num-
ber {. This leads to a possibility of electric-dipole allowed
transitions at mid-infrared frequencies. For example, if
6 > 0, the u = 1 soliton exhibits an electronic transition
between the states (—FE, | = 3/2) and (—FE, | = 1/2).
In addition, there is a high frequency subgap transition
from the state (—FE, [ = 1/2) to (+E, I = 3/2). A de-
tailed derivation of these solutions and discussion of their
properties will be presented elsewhere [15].

The possible existence of a topological many-electron
condensate, and magnetic soliton excitations raises a
number of important questions bearing on the anoma-
lous normal state of high temperature superconductors.
It is of particular importance to determine if, at finite
doping, a topological condensate is energetically favored
over the traditional spiral magnetic states described pre-
viously and if so whether a quantum liquid of solitons is
responsible for the destruction of magnetic long-range or-
der. Since the time scale of magnetic fluctuations is long
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compared to optical excitation time scales, it is plausible
that a well defined subgap electronic structure exists even
within a spin liquid phase. The interaction of these mag-
netic solitons with electrons near the Fermi surface need
to be carefully investigated. This may in turn lead to
new effective electron-electron interactions. In addition,
the possibility of more general topological textures such
as meron-meron configurations [17] which break cylin-
drical symmetry and the possibility of quantum num-
ber fractionalization need to be studied. It would indeed
be remarkable if the unconventional properties of doped
Mott insulators, including their high temperature super-
conductivity, could in this way be traced to the topolog-
ical structure of the physical rotation group SO(3).
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