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Optical bistability and phase transitions in a doped photonic band-gap material
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We discuss the nonlinear response of impurity two-level atoms in a pseudophotonic bai®B@ao an
applied laser field. It is shown that in the case when the variance of resonant dipole-dipole intéRIDmiM
is much larger than its average value and the spontaneous emission rate, a nonequilibrium second-order phase
transition occurs when the applied field strength parameter exceeds the variance of RDDI. This situation arises
when the atomic density is low and the resonance frequency is near the center of a wide PBG. At this threshold
the system changes from glassy phase to ferroelectric phase. In the case when the average value of RDDI is
larger than its variance and spontaneous emission decay rate, this phase transition becomes first order, leading
to optical bistability. This situation arises when the atomic density is high or when the photon localization
length within the PBG extends over many optical wavelengths. The influence of RDDI fluctuation on bista-
bility is discussed. These results suggest that disordered, impurity-doped, PBG materials may exhibit very low
threshold switching propertieS1050-294{©6)02111-1

PACS numbds): 42.65.An, 42.50.Fx, 42.65.Pc

I. INTRODUCTION ricated a very large scale two-dimensional PBG structure us-
ing macroporous silicon. Using the appropriate electrochemi-
The concepts of photon localizatifh] and photonic band cal etching methods, these researches have shown that a
gaps(PBG’s) [2,3] have provided the basis for a new re- highly ordered array of macropores can be induced to form
search direction of potential technological importafwe6]. even without recourse to methodical layer-by-layer growth.
Since the initial fabricatiofi5] of a three-dimensional PBG The recent progress, described above, in microfabrication of
structure in the microwave regime, considerable effort ha$®BG materials further motivates our theoretical study of this
been concentrated on designing and microfabricating PB@ew field which crosses the boundary between quantum op-
structures in the near-infrared and visible frequency regimedics and solid state physics.
The original three-cylinder structure of Yablonovitch, Gmit-  Photonic band-gap materials constitute a fundamentally
ter, and Leund5] has been reproduced in the visible spec-new class of dielectric materials in which the basic electro-
trum using reactive ion etching techniques. The relative dif-magnetic interaction is controllably altered. It has been sug-
ficulty in drilling to a depth of more than a few unit cells of gested that this would be accompanied by the inhibition of
the periodic structure in the visible spectrum has spurredgpontaneous emission and fractionalized single atom inver-
other researchers to design alternative structures more amsion[1,11], photon localizatior3,12], photon hopping con-
nable to layer-by-layer microfabrication using well-known duction[13], vacuum Rabi splitting, and photon-atom bound
chemical etching techniqu¢6]. Most notable of these is the states[14]. Numerous applications of PBG materials have
structure constructed by Ozbay al. [7] and the so-called been discussed in Ref$12,15,18. These include zero-
A-7 structures proposed by Chanal. [8]. These consist of threshold, high efficiency microlasers, as well as high modu-
stacked wafers of either GaAs, Si, or alumina, grown layetation speed laser systems which operate even in the absence
by layer and chemically etched to produce a three-of a cavity modg12]. One of the key points which distin-
dimensional periodic structures with the point group symme-guishes quantum electrodynami¢®ED) in a PBG from
try of a diamond lattice. Photonic band gaps as large as 30%QED in free space is that in addition to suppression of spon-
of the center frequency have been demonstrated in sudaneous emission, certain coherent propagation effects can be
structures. Photonic crystals using silicon wafers have beeselectively preserved. In particular, when an atomic transi-
fabricated for wavelengths approaching 60® using these tion lies deep inside the gap, the spontaneous emission is
concepts. The ultimate goal is to design and fabricate photostrongly suppressed whereas coherent dipole-dipole interac-
nic crystals for use at 1.am, the canonical wavelength used tion between identical atoms persists on a length scale given
in the optoelectronics industry. Recently, Fetral. [9] have by the localization length of the dielectric microstructure
designed a class of photonic crystals for fabrication at subf14,17 as a result of the exchange of high-energy virtual
micrometer length scales using Si and Si@yers. These photons between atoms. This leads to coherent processes
structures involve layered growth, followed by selectivesuch as photon hopping conductidr8] and the formation of
chemical etching of the two dielectric materials, followed ina quantum-optical spin-glass state accompanied by a Bose-
turn by the etching of long cylindrical holes from the top glass state of photons in the localized cavity motig].
surface of the sample. This approach may soon lead to large In this paper we investigate nonequilibrium phase transi-
scale PBG microstructures in the visible and near-visiblgions and bistability in the nonlinear response of impurity
wavelength regimes. We mention finally the striking discov-two-level atoms in an imperfect PBG to an applied laser
ery of certain self-organizing periodic dielectrics in the nearfield. The atomic resonance frequency is assumed to lie suf-
infrared. Gruning, Lehmann, and Engelhaftif] have fab- ficiently far from the band edge that non-Markovian effects
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caused by irregularity of the density of modes at the bandHered; and u are the unit vector and the absolute values of
edge can be ignored. We show that when the variance dhe dipole moment of theth atom,V is the sample volume,
resonant dipole-dipole interactig®DDI), J, is much larger and ¢, is the Coulomb constanf)=uE/% is the resonant
than its average valug, and the atomic population decay Rabi frequency wherkE is the amplitude of the applied field.
1/T, rate as well as the rate of dipole dephasing,l/a  The generalnon-Markoy Bloch equations, resulting from
second-order nonequilibrium phase transition occurs at &he Hamiltonian(1), are derived in Appendix A. Here, we
specific threshold intensity of the applied field. The value offocus only on the case when the atomic resonant frequency
this threshold intensity is controlled by the parameleAt lies deep in the pseudogap where the density of modes does
this threshold the system changes from a glassy phase intorat change considerably over the immediate surrounding
ferroelectric phase. In the opposite case in which the averaggpectral regions. In such a case, non-Markov effects caused
valueJ, is larger than) and 1T ,, this nonequilibrium tran- by the irregularity in the density of states at the edges of a
sition is first order, leading to optical bistability. This is simi- PBG can be ignoredl3,18,23 and the Bloch equation#5)

lar in some respects to intrinsic optical bistability of a denseand (A6) simplify to

medium in free space, described in numerous pdd&20.

The difference here is that the decay tinTfgsand T, can be
very large in a PBG and as a result the optical bistability may
occur at very low intensity of an applied field and the re-
quired density of atoms is relatively small. This suggests that
bistable PBG materials may act as very low threshold
switches and amplifiers in integrated optical circuits. The
influence of fluctuations of RDDI on bistability is discussed d

d o
i (o) =(16+1 8.~ 1UT,)(0y) i Qe (o)

+‘2 ‘y|J<0'|ZO']>+|E \]ij<0'i20'j>v (3)
i(#0) i(#0)

in detail. gt (oD =—((oD+DIT1+2i0((o7" e li—(o)e o M)
Il. THE BASIC EQUATIONS —2_;) [yij(oi oj+ 0] o))
J(#Fi
We study the response to an applied field of two-level R
atoms placed within a PBG material with a pseudogap of +idij(o oj— 0] 07)]. 4
localized states. This pseudogap consists of surface-localiz
modes, localized defect modes in the interior of the photonic
crystal, and in certain casg®1], isolated propagating modes
along specific symmetry direction of the periodic microstruc- UT,=1/2T,)= w; gfié(wx— wa), (5)
ture.
The Hamiltonian which describes the system in the
rotating-wave and the electric dipole approximation is given 5= gz-P( 1 ) (6)
by (in the interaction picture L4 SN oy —w, )
f _ iK-Ti _
H:ﬁ})\: 5)\a1a>\—§ 52 o? Yij_W; O1ighj€" 10w\~ wy), (7)
—inY, gy(aloe ™ fi—orae ) Jj=—> gMgMeik'FiJP( — ) (8)
N \ W)\~ Wy
_» Q(o._efilzo-r'i_’_o_freilzo-ﬂ) 1) whererj;=r;—r; and P stands for the principal part as usual.
- | I :
I

The Lamb shift § simply leads to a redefinition of the
atomic resonant frequency and hereafter we simply ignore it.
Clearly, 1T, and y; are proportional to the density of states
at the atomic resonant frequenay, . Deep inside the gap
where the density of modes is very smallT1land y; are
negligible. In the case when additional homogeneous broad-
‘ening is presentT; and T, may be considered as empirical
constants. While T7, and y; are very small inside the gap,
he dipole-dipole interactiodRDDI) J;; may behave differ-
ntly because of the exchange of virtual photons. For an

N o isotropic PBG p,=w,= w(k)] after converting the mode
Ko andK are the wave vectors of the applied field and of thegm over transverse plane waves into an integral and per-

radiation mode\; andg,; is the atomic field coupling con- forming the angular integral, Eq8) can be written as
stant [14,17,23

2 2 2
_ Wal h ve L M fw k_ N
hi=77 (W) ot @ i dmleoh Jo oy (krij)P

Here,o;” ando; describe atomic excitation and deexcitation
of the ith atom with coordinates;, respectively;o” de-
scribes the atomic inversiom; anda, are the radiation field
annihilation and creation operators for photons of the al
lowed modeg\=K,€, whereé, are the two transverse unit
polarization operatojs 6= w—w, andd, = w, — wy Wherew,,

w, and w, are the atomic resonant frequency, the applie
field frequency, and the frequency of a modeespectively;

) dk. (9

Wy— Wy
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Here d ) "
gt (o=~ (oD)+ DIT1+210((ai") —(03))
Sinx SinK  cox
)Za St S e ) (19
—2i3o| (o7") 2 (o) —(oi) 2 (7)
where i1 i(#0)
—2i(a{" )F+2i{o)F} . 16
a=0, =2 for Am=0 transition tiF, {oF (10
a=1, B=—1 for Am==x1 transition, (11) Here,
rij=|Fi;|, andk=|K|. The numerical simulations af; as a Jij:JO+jij (17)

function of r;; for typical isotropic PBG dispersion relations
w(k) were conducted in Ref§14,17, where it has been gnd
shown thatJ;; approaches its free space value for atomic
distances much smaller than the optical wavelength. For ~
atomic distances larger than the localization length, the Fi= 2 Ji(o)). (18)
RDDI becomes negligiblgl4]. 10

In analogy to the free space cdd®,20, we factorize the 3 —[J,] is the average value of the RDDI over the random
products of the dipole operators among different atomsomic configurations and;;=J;—J, is the fluctuation
(mean-field approximationWe also ignore the small param- apout this average. A nonzero averalgearises in our two-
etery; which depends on the minute density of states insidgeve| atom model, when the atomic density is large. If the

the gap and rewrite Eq$3) and(4) in the form average interatomic spacing is much smaller than the optical
q wavelength, the oscillatory spatial behaviorJgf is not im-
oV =(—=1T-+idN o) —iQeko T i( g2 portant. If the excited state of the atom is a triply degenerate
dt {oi)=( 219){0) ~1Qe (o) p level, the function7(x) in the equation must be replaced

[14] by a Cartesian tensot, (x), in which the coefficientr
+i Y, Jy(oD) o), (12)  is replaced by the transverse tens@,(—7 {7 jj) and the
i(#0) coefficient B is replaced by the traceless tensor
(8mn— 37 [T 1}). Here, 1 is the m component of the unit
vector f;j=F;; /|F;;|. Deep inside a PBG, the localization
length is comparable to the optical wavelength, and the
traceless part of RDDI is dominant. This is analogous to
o TN N TN choosing J;=0 in the two-level atom(scalaj model of
2';;) Il )ey) = (o) oi)] (13 RDDI. Closer to the photonic band edges, the localization
length becomes much longer than the optical wavelength. In
Analogous equations have been derived previoli$8,18  this case, the transverse part of RDDI becomes compara-

% (o)== (oD + 1)/ Ty + 21 Q (o ko — (o) ko)

using the effective Hamiltonian tively important. This is analogous to choosidgto be non-
5 zero in the scalar model. Replaciy..(o;) in Egs. (15
Hop=— - 52 a?—ﬁQZ (orje~ kol 4 cri*e‘kofi) and(16) by its configuration averaged vald¥ o), we have
I I

d ~
— (o) =(—1T,+i N—iQ{at)+i S o
+Z JijUrUJ, (14) dt <UI> ( /TZ 5)<0-|> <U|> J0<0|><0|>
|
. +i(oDF;, (19
in which the decay rates{ and 1T, were introduced phe-
nomenologically. d |, , ) N .
at (o)==(o)+DIT1+21Q((0; ) (o)) = 2i(0o; )F;
11Il. NONLINEAR ATOMIC RESPONSE
+2i{ay)F}, (20
In this section we derive a general expression for the non-
linear susceptibility of two-level atoms in a PBG from the Wherej'O:JoN_ If we ignore the fluctuation of RDDI, i.e.,
applied field. For simplicity we assume that the atoms areetting F,=F*=0, Egs.(19) and (20) reduce to those of
located in a volume with dimension smaller than the resonandayier treatment§19] describing atoms in free space. The
wavelength Ag=27C/w,, leading to the simplification  getailed microscopic evaluation df; in an isotropic PBG
e ko fij~1. Equationg12) and(13) then become may be found in Refd[14,17). Here, for simplicity, we as-
sume that);;=J;;—J, is a Gaussian random number with
d , _ , zero mean value and with variangdelt is straightforward to
at (01)=(=1UT,+i6)(a)— 1 (o) show that the steady-state solutions of E(®) and (20)
satisfy the conditions

(o) 2 () FieDFL a9 Wi+ 4T3 T p2=0 @
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and ~
p= Wg fzJ (432_J2)1/2 df}\ .
~ ~ 272 J-2) M ST+ JoW+wd,
j(#Ei

Here p;=(o;)s andw;=(o?), are steady-state expectation Here the off-diagonal element$i[\){\|j)]. with i # | have
values. It is clear from Eq21) that the population difference Peen ignored18,26. _

w; is negative for all_atoms and is not directly driven by In a similar manner, the spin-glass order parameter can be
random fluctuations od;; . On the other hand, random fluc- found as

tuations in RDDI drive phase changes in the atomic dipoles,

p; - These phase fluctuations dominate the system behavior inq: i Z [pil2] :i Z NG

the long time limit. That is, the configuration fluctuations of N e M e

the population difference are much smaller than the phase

P

fluctuations and can be ignoredw(f] .=[w;] 2). We have yoo [ = 2 dJ,
performed detailed numerical simulations of E¢&1) and =-T0%w ImJ'72~J(4J -3t St/ Tot Wt W
(22) for a small number of atoms which confirm this picture. 270 A
Below, we focus only on the analytical calculation. Configu- (30

ration averaging over the random atomic positions corre-
sponds to performing a statistical average over the possible
values ofJ;; using the Gaussian distribution. It is denoted by _ _ _
the square bracketf].. Ignoring the fluctuations ofv,  y= —<={S+Jgw+i/To—[(5+IgW+i/T,)2—4wiI 2|2,
(mean-field approximatiopnwe can write Eq(21) as 2wJ? -

The susceptibility per atom can be definedyasp/Q).

w2+w+4(T,/T,)q=0. (23 _ _ _
For comparison we introduce the scaled spin-glass order
Here, g=(1/N)="[|pi|%. is the Edwards-Anderson spin- parameter,=q/Q?, which can be related to the suscepti-
glass order paramet§24,25 andw=(1/N)= N[w,]. is the  bility through Egs.(29) and (30):
average atomic population difference. Mean-field theory has ,
also been applied to E¢22) by replacingw; by its average Qo=—Tawx". (32

valuew. Equation(22) then becomes Here y=x'+ix", andy' andy” are the real and imaginary

_ - parts of the atomic susceptibility. Putting Eq.(32) into Eq.
—Qw+(5+J0w+i/T2)pi+w_(2) Jijp;=0. (24 (23 we have
J(#F1

_ /.
Using_the spectral representation of the symmetric matrix w=Ix"=1, (33
(Jij=J5) wherel=4T,0? is a scaled intensity parameter. Equations
N (3D)—(33) are the main results of this section. In the case of
3= E IV (25) J,Jp<<1/T,, Eq. (31 reduces to the result of the conven-
b ' tional nonlinear susceptibility28]:
where J, and (A|i) are the eigenvalues and orthonormal x=—(6—iITYI[ 2+ LT3+ 4T, Q%T,]. (34
eigenvectors ofJ;;, respectively. The polarization eigen- ) ) . .
mode,p,=Z;(\|j)p;, can then be found in the form The conventional nonlinear susceptibility4) exhibits satu-

ration inboththe real and imaginary parts. A second limiting
case may be recaptured for weak applied fiekil. Here,

; (i) w=—1 and the linear susceptibility is written as
Py=0QwW — = . (26)
S+iy, +Igw+wJd 1 -~ ~ -
|71 g X= = 53 (0 To T [(5-To+irT 2= 472113,
This yields (35
p=0wS (i I)\)ﬁhlj) 27) In particular, for the case af< 1/T, the linear susceptibility
' X S+iy, +Igw+wd, reduces to
In the limit of largeN, the eigenvalue densify(J,) obeys a 1 36
semicircular law[26,27] XL 5_jo+ T,
p(3,)= 1~ (4’32_J2)1/2 (29) It is apparent from Eqgs(35) and (36) that when the mean
M ong2 Mo value of RDDI is nonzero, the resonant frequency shifts to

_ w=w,—Jy. The value—J, is called the “blue” or “red”
whereJ=J/N. Using Eq.(28) it is straightforward to deter- shift depending on whethel, is negative or positive. The
mine the average atomic polarizatipr=(1/N)Z;[p;]: magnitude of this shift depends on the density of the atomic
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medium and has been discussed extensively as a means to {I/j—l for 1<J
= (40

obtain information about the spatial, coherent properties of =10 if 1>7
distant object$29,30. _ '

In the case of largd, the saturation effect described by 173 i 1<3
Eqg. (34) is modified dramatically. In particular, we have X"E{ S
shown [31] that although strong nonlinear suppression of i 1=,
absorption occurs, théea) nonlinear index of refraction

remains large in a certain domain of applied field intensity. X 2[0 if 1<J
q— 1—

(41)

This occurs due to the formation of a glassy state of the T 7. (42

atomic dipoles. Although optical absorption to these dipoles

has been saturated, they remain highly polarizable due to Equations(40)—(42) show clearly the second-order non-

their random phases. In this paper we examine the nonequequilibrium phase transition in atomic population difference,

librium phase transitions which occur among these dipoles agbsorption coefficieny’, and inx, atl =J. In particular, the

a function of the applied field, using the general susceptibilphase transition from spin-glass state wjtJ+=0 to ferroelec-

ity equation(31). tric state occurs. For finite values of T4J), this transition

is smeared and there is no slope discontinuity in the response

function y or the order parametav. Unlike the conventional

phase transition described in spin-glass literaf@de25, our

phase transition occurs at=0. That is, the atomic system is
The equilibrium second-order phase transition for disor{far from equilibrium. The second-order phase transition is

dered spin systems has been discussed extensively in tla¢so shown in Fig. 1 as a result of the numerical solution of

context of spin glassd®4,25. For two-level atoms with a Eqgs.(33), (37), and(38) for the case o> 1/T,. This can be

transition in the optical domain the role of thermal fluctua-easily satisfied in a PBG. This suggests that the quantum-

tion is unimportant. We focus instead on the nonequilibriumoptical spin-glass state may be created and controllably al-

phase transition, induced by the external field, from a spiniered by means of an external laser field.

glass state to a ferroelectric state. For simplicity we assume

in this section thatl,=0 and the decay ratesTL/, 1/T, are V. OPTICAL BISTABILITY

much smaller than the variandeof RDDI between atoms. ) ) -

As discussed earlier, the assumptidy®=0 can be satisfied Optlc_al blstablll'gy occurs v_vhen there are two ;table states

deep inside the PBG in a realistic description when thef‘?r the light intensity transmltted. through a nonlinear mate-

RDDI in Eq. (9) is replaced by a traceless tensor interactionfial for one value of the input intensity,, [32-35. The

for atomic transitions between degenerate atomic states. TREaNsMitted intensity which the output settles down to de-

susceptibility in Eq.(31) becomes imaginaryy’=0) at the Pends on the excitation history. A different state is reached if
exact resonancé=0 and has the form one either decreases the incident intensjtyfrom a suffi-

ciently high original level, or if one increaség from zero.
The possibility to switch a bistable optical device between its
two states facilitates the use of such a device as a binary
optical memory. The fact that bistable elements can be ad-
It is instructive to consider the relative importance of glassydressed Simu|taneous|y by many laser beams Suggests the
configurations which are measured by the ratio of the ferropossibility of parallel optical data processifig4]. Current
electric to the ferroglass order parameter. applied research is focused on optimizing these devices by
, decreasing their size, switching times, and threshold power.
[ x| In this section we discuss optical bistability in the atomic
XQEE:[(1+4W2T§32)U2_ 1]/(2W2ngz)- (38 response in PBG materials. Spontaneous emission can be
strongly suppressed in a PBG while RDDI displays only
small deviation from the free space case for atomic separa-
tion smaller than an optical wavelendti4,17. As a result,

IV. SECOND-ORDER PHASE TRANSITION
AND THE OPTICAL SPIN-GLASS STATE

X' =[(1+4w?T2IA)Y-1]/(2w|T%). (3D

Clearly for J> 1/T,, and for sufficiently weak applied field

that the atomic_population differenc=-1, we have RDDI can dominate relaxation rates even at relatively low
Xq=1/(TzJ)<1. That is, the glassy behavior of the atomic atomic density. In contrast to the free space dd#d, the

dipoles becomes dominant relative to any macroscopic ferro- ) : : ) ; i~ . ;
electric response. For the strong applied field, the atomiéOIe of RDDI's _ﬂuctuanons in optical bistability will be dis-
system tends to be saturated witl=0. In this casey,=1, Cuiscfrdclcr)]rr?e;rliion Urboses. we bedin with the case when
i.e., the ferroelectric behavior becomes dominant. With theih P purp ! g =

: . e fluctuations in RDDI are ignored, i.€l=0 while J3#0.
help of Eqs.(33) and(37) we can write the equation for the . o . Lo - <0 .
atomic differencav and for y as In this case it is straightforward to derive a cubic equation

for the atomic population difference from Eq81)—(33) in
the form

3 2 _ ~ ~ ~
W 2w w =20 B9 F23+ 3025+ TW2+ (82 + LT3+ 4T, 0%/ T+ 280g)w

+1/T5+ 82=0. (43)
and y'=(w+1)/I. Using the solution_of Eq(39) we can _
easily findw, x”, and, in the limit of J>1/T, as For J,=0, Eqg.(43) has a solution



4484 SAJEEV JOHN AND TRAN QUANG 54

() |

1/J

1/J

FIG. 1. (@ Atomic population differencev, (b) absorption co-
efficient ¥, and (c) xq (in units of J=1) as a function ofl/J for
5=J,=0 and for 1/I,J)=10"° (solid curvey, 0.01 (dashed
curves, and 0.1(dotted curvep

w=—(1+ &T)/[1+ 6T+ 4T,T,02]. (44)

The absorption coefficient’ can be found from Eq<33)
and(44) as

X'=T,/[1+ &T5+4T,T,02]. (45)

Clearly, as the input applied field intensiy? increases, the
atomic population difference, which is proportional to the
output, increases monotonically from the equilibrium value
w=—1 to the saturation valug=0 at (}—o. Analogously,

T T T
ot e
e
i
S
o - |
|
- + " n L 1 " 1 L 5 1 5 . L L 1 L L L "
"o 0.1 0.2 0.3 0.4
2,72
0%/ J

FIG. 2. Atomic population differences as a function 0f2%J3
for Jo=—1, 6=J3=0, and for(i) 1/(T,|Jg|) = 1/(2T4|Jg|) =0.02,(ii)
0.1, and(iii) 0.25. The solid and dotted curves represent stable and
unstable states, respectively.

In the case with],#0, the cubic equatiofd3) may lead
to bistability effects. That is, as the field intensity increases
and the Rabi frequency becomes large relativeljoand
1/T,, the two-level system switches suddenly from the low-
transmission branch to the high-transmission branch. This
bistability behavior is shown in Figs. 2 and 3 where the
atomic population differencéFig. 2) and associateq’ are
plotted as a function of)?. In Figs. 2 and 3, the solid and
dotted curves with positive and negative slopes, respectively,
represent stable and unstable states. These plots are obtained
by solving the cubic equatiofd3) as a function of the pa-
rametersQ), T4, T,, andJ,. The turning points where the
slope is infinity corresponds to points where the roots of the
cubic equation undergo a Hopf bifurcation: two complex
conjugate roots become two real roots or vice versa. The
stability of each solution is determined by doing a stability
analysis of the time-dependent Heisenberg equations of mo-
tion (19) and(20) (see Appendix B For the stable solution,
a small fluctuation about the steady-state value decreases ex-
ponentially whereas for the unstable branch, a small fluctua-

20
T

10

0 0.05 0.1 0.15 0.2 0.25 0.3

QZ/ JNOZ

the absorption coefficient decreases monotonically and there FIG. 3. y” as a function 0f2%J 2 for the same parameters as in

is no hysteresis or bistable behavior in the system.

Fig. 2.



54 OPTICAL BISTABILITY AND PHASE TRANSITIONS . .. 4485

0.20 ‘ , ; N , .
oL
0.15 , s
¥ 040 L = o | il |
= !
g L
0.05 e
%00 005 o.'19 015 0.20 o oos 0.1 0.15 0.2
TIT) ,
72
0/ Jy
FIG. 4. Threshold applied field mtensny at the Idﬁzljo
(dashed curveand right switching point§) 2133 (solid curve as a FIG. 5. Atomic population difference as a function o232 o
function of 1/(T,|Jo|) and for §=J=0, T,=T/2, Jp=—1. for_ Jo=—1, 6=0, 1U(T,[Iq])=1/(2T;|Io])=0.02, and for (i)

J/Jo 0, (ii) 0.4, and(iii) 0.45. The solid and dotted curves repre-

tion grows until it reaches one of the two stable solutionssent stable and unstable states, respectively.
nearby[19,33.

Although an exact analytical solution of the cubic equa-cur at a threshold field intensit#8 much smaller than that
tion (43) can be easily found, it does not provide the mostrequired in free spacgl9,35.
transparent picture of the system behavior. However, the Tg recover the effects of RDDI fluctuations on bistability,
turning points(where the roots undergo Hopf bifurcatjdor  \ve numerically evaluate the general expression for suscepti-
w as a function of) can be determined by setting the de- pjlity given in Egs. (31) and (33). In Fig. 5 we plot the
rivative of the left-hand side of Eq43) with respect tow  atomic population differencer as a _function of)? for dif-

equal to zero. For the exact resonance ¢ased) we get ferent values of the RDDI variancg It is clear that very
5 strong fluctuation of RDDI reduces bistability effects. How-
), 2 1+4T,T,Q ever, it is interesting to note here that the increasé lefads
W24+ =W+ ——————=0. (46) ; . . ASE
3 3T§3 g to a reduction of the threshold intensity for switching from

the low-transmission branch to the high-transmission branch.

It yields the following necessary condition for bistability: ~ This is clearly seen in Fig. 6, in which we plot the switching

intensities((), )? and (Qg)? calculated numerically from Egs.
T230/1f3>«/1+4T1T202. (47 (31) and(33) as a function ofl/|J,| for different values of

1/(T,|Jg|). At the same time, the decrease of 1leads to a

In a PBG, spontaneous emission is strongly suppressed whitéecrease of the threshold energy for switching from the high-

RDDI remains strong. Under these circumstances, conditiotransmission branch to the low-transmission brarisbe

(47 can be easily satisfied even for the relatively smallFigs. 4 and & This means that in the caseli&J~J,, both

atomic density. The threshold applied field intensity at thethreshold energies for low-high and high-low switching can

switching points can be_found from Eqg&l3) and (46). In

particular, for the case afy>1/T,, the Rabi frequencies at

the switching from the low-transmission branch to high- 0.20

transmission brancfthe right turning point (g, and for the

switching from low-transmission branch to high-

transmission branctthe left turning poink, ), , is given by 0.15 | 8

02=J2T,/(16T)), (48)
02=0. (49)

This is in very good agreement with Fig. 4 where we plot
(©,)? and (Qg)? calculated_numerically from Eq$43) and
(46) as a function of 1/T,|Jy|). Clearly from Fig. 4, bista-
bility occurs only if

0.60 0.80

JoT,=<0.19. (50
FIG. 6. Threshold applied field mtensny at the IeﬂZtL/J2
In a PBG, whereT, is of many orders of magnitude larger (dashed curveand right switching point€) 4/J3 (solid curve as a
than in free space, the_conditiqb0) can be satisfied at a function _of J[I| for 6=0, Jy=—1, and for 1/T,Io)
relatively small value ofly. As a result, bistability may oc- =1/(2T,|J,)=0.02.
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be many orders of magnitude smaller than in free space and - -
these thresholds can be controlled by changing the param- of=2iQ(o; e*oi—gie ko)
eters of the PBG system. The magnitude Jé, can be
adjusted by varying the atomic density: Sintg=NJ, and

J=1/NJ, for a singlet atomic transition, the conditidg>J

can be satisfied by increasing the density of the impurity
atoms. In this case the bistability effe(first-order phase The formal solution of Eq(Al) has the form
transition) will prevail over the second-order phase transition .

discussed in the preceding section. In a less dense mediu — a—idyt . —i[KFi 4 Sy (b=t 47\ {47
and for a triplet atomic transitiold, may be much larger than A(H=e " a"(o)+2i ngoe : ) loy(t)at.
Jo- In this case, the second-order phase transition and for- (A4)
mation of an optical spin-glass state is expected.

—2; g)\i(ofaxe”z‘ﬂ+a:oie‘i'z‘Fi). (A3)

Puttinga, (t) into Egs.(A2) and(A3) we obtain the equa-

tions for quantum expectation values in the form
VI. CONCLUSION

We have discussed first- and second-order nonequilibrium i (ai(t))y=i8(ai(t))— iQeiko~Fi<UiZ(t)>
phase transitions in the response of two-level impurity atoms dt
in an imperfect PBG to an external laser field. The atomic ¢
resonant frequency is assumed to lie far from the band edge +f G;i(t—t")(of(t)oi(t"))dt’
so that the non-Markovian effects caused by the singularity 0
of density of modes at the band edge can be ignored. We

t
derived the general expression for atomic susceptibility and + E Gij(t—t’)(af(t)q(t’)}dt’,
have shown that in the case when the variance of the RDDI i(#) Jo
fluctuations is much larger than its average value and atomic (A5)

relaxation rates, a second-order phase transition occurs at the

threshold intensity defined by the variance of RDDI. At this  d | R, L
threshold, the system changes from a glassy phase into a g (i(1)=2iQ[e%i(a7 (1)) —e " i(ai(1))]
ferroelectric phase. In the opposite case when the average

value of RDDI is larger then its variance, the phase transition v, R ,

is first order and the system exhibits optical bistability. The —ZJOdt Gii(t—t")(a7 (t)ai(t"))
bistability in a PBG has been shown to occur at much lower

threshold intensity than in free space. The results we have L R
presented have focused on a small active region within a _Zfodt Gii (t—t")(ay () oi(1))
PBG in whichN atoms are confined to a volume given by a

cubic wavelength. It would be of considerable interest to vt R ,
extend these results into a large active region, in which the _Zj;) Odt Gij(t—t") (o (Hoy(t"))
impurity atoms are distributed over many optical wave-

lengths. The spatial and temporal evolution of the coupled L R
atom plus optical field, however, requires that we generalize —ZJ(E#) AUG (t=t") (a7 (1) ai(1)),
the optical Bloch equatiori20] to a set of coupled Maxwell-
Bloch equations appropriate for a PBG. (AB)
where
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Gij(t—t') =2, gygy,ek it (A8)
A
APPENDIX A

In this appendix we will derive the gener@on-Markoy Herer;=ri—r;.

optical Bloch equation. The Heisenberg equations of motio

can be derived from the Hamiltonidn) as

dt

d . e
aax:_ltsxax“LZ onie gy, (A1)

oi=ido+ 2}\: 0,i€ io7a, —iQekoTig?,  (A2)

Gji(t—t") andG;j;(t—t’) are delay Green’s functions and

I?heir implicit form strongly depends on the dispersion rela-

tion wg=w(K). For example, at the edge of the isotropic
PBG, the Green functio6; (t—t')~ (t—t') ~¥2[12]; rather

than G;;(t—t')~48(t—t') as in a free space, this leads to
non-Markov phenomena in spontaneous emis$idj and
superradianc¢l2]. The calculation of the Green’s function
Gjj(t—t') at the edge of a PBG and a study of non-Markov
effects on the phase transitions near the band edge goes be-
yond the scope of this paper and we plan to present them
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elsewhere. In this paper we have considered only the case - _ .
when the atomic resonant frequency lies deep in the | A+ T——iJoW 0 12—iJop
pseudogap where the density of modes does not change con- 2
siderably. In such a case, the memory effects caused by the 0
irregularity in the density of states at the edges of a PBG can
be ignored(Markov approximation More specificallyt’ in

1 -~ -
A+ —+iJgw —iQ+iJgp*| =0.
Tz

two-time correlation functions in EqgA5) and (A6) are 2i0 —-2i0 A+i
replaced byt and the correlation functions can then be taken Ty
out of the integral. The integralsf}G;(t’)dt’ and (B6)

J4Gij(t')dt’ can be calculated easily as for the free space The relation betweep andw can be found from EqB1)
case[36] and Egs(A5) and(A6) can be written in the form gs
of Egs.(3) and (4).

QTow

=——=Q(x'+ix"). (B7)
ToJoW+i (X' +ix

p

APPENDIX B
] . ) . - ) With the help of Eqs(B7) and(33), the eigenvalue equa-
In this appendix we give a linear stability analysis for thetion (B6) can be written as

solutions of Eq.(43). For simplicity we consider only the 5 5
case of exact resonanc®=0. Ignoring the fluctuation of A°+a;A+aA+az=0, (B8)
RDDI, i.e., settingF;=F =0, Egs.(19) and(20) become

where
d 2 + ! (B9)
—~ a [ — _'
i ()= () To+iJ(0?)(0)~iQ(c?),  (BD) YT, T,
W 40’ (B10)
a2: 5 OW —!
d , , ; T.T, T2 1+ T232w?
&<0'>——(<0'>+1)/T1+2|Q(<0' y—(o)), (B2
B 1+4T,T,02
and @/dt)(o"y=[(d/dt)(o)]*. For infinitesimal perturba- 3= 3w +2W+W : (B1D
tions of the system from the steady state 1 270

The system is stable if a small fluctuation about the
_ T\ _ ok % 2 _ steady-state value decreases exponentially. That is, the real
(0)=p+op, (oh)=p*+dp", (ofh=w+ow, (B3) part of all the eigenvalueA must be negative. According to
the Routh-Hurwitz criterior}37], the condition for all nega-
where p and w are the steady-state values of the atomictive real parts of eigenvalues and the condition of the system
polarization and population inversion. Neglecting the nonlin-Stability isa;>0 (i=1,2,3 (Lienard-Chipart test Clearly,a,
ear terms ofsp and dw we find equations of motion foép and a, are positive values and the condition of the system

and sw from Egs.(B1) and (B2) as stability isa;>0. It is straightforward to show from E¢43)
that
d op  ~ . _ dw 4T, |w]| ) 1+4T,T,0%| 4|w| 1
— p=——+iJgpSw+iJowSp—iQdéw, (B4) — = =y | 3w+ 2w+ = = —.
dt T2 do?  T,33 T535 T, a;
(B12)
d _ow . It is apparent from Eq(B12) that the turning points are
dt ow=— T—1+2I95p —2iQp, (BS)  the points where;=0. The solution with the negative slope

dw/dQ?<0 means thah;<0. As a result, the state with the
and @d/dt) sp* =[(d/dt) sp]*. The eigenvalue equation for negative slope corresponds to the unstable state and is rep-

Egs.(B4) and (B5) can be written as resented by the dotted curves in Figs. 2, 3, and 5.
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