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We discuss the nonlinear response of impurity two-level atoms in a pseudophotonic band gap~PBG! to an
applied laser field. It is shown that in the case when the variance of resonant dipole-dipole interaction~RDDI!
is much larger than its average value and the spontaneous emission rate, a nonequilibrium second-order phase
transition occurs when the applied field strength parameter exceeds the variance of RDDI. This situation arises
when the atomic density is low and the resonance frequency is near the center of a wide PBG. At this threshold
the system changes from glassy phase to ferroelectric phase. In the case when the average value of RDDI is
larger than its variance and spontaneous emission decay rate, this phase transition becomes first order, leading
to optical bistability. This situation arises when the atomic density is high or when the photon localization
length within the PBG extends over many optical wavelengths. The influence of RDDI fluctuation on bista-
bility is discussed. These results suggest that disordered, impurity-doped, PBG materials may exhibit very low
threshold switching properties.@S1050-2947~96!02111-7#

PACS number~s!: 42.65.An, 42.50.Fx, 42.65.Pc

I. INTRODUCTION

The concepts of photon localization@1# and photonic band
gaps ~PBG’s! @2,3# have provided the basis for a new re-
search direction of potential technological importance@4–6#.
Since the initial fabrication@5# of a three-dimensional PBG
structure in the microwave regime, considerable effort has
been concentrated on designing and microfabricating PBG
structures in the near-infrared and visible frequency regimes.
The original three-cylinder structure of Yablonovitch, Gmit-
ter, and Leung@5# has been reproduced in the visible spec-
trum using reactive ion etching techniques. The relative dif-
ficulty in drilling to a depth of more than a few unit cells of
the periodic structure in the visible spectrum has spurred
other researchers to design alternative structures more ame-
nable to layer-by-layer microfabrication using well-known
chemical etching techniques@6#. Most notable of these is the
structure constructed by Ozbayet al. @7# and the so-called
A-7 structures proposed by Chanet al. @8#. These consist of
stacked wafers of either GaAs, Si, or alumina, grown layer
by layer and chemically etched to produce a three-
dimensional periodic structures with the point group symme-
try of a diamond lattice. Photonic band gaps as large as 30%
of the center frequency have been demonstrated in such
structures. Photonic crystals using silicon wafers have been
fabricated for wavelengths approaching 600mm using these
concepts. The ultimate goal is to design and fabricate photo-
nic crystals for use at 1.5mm, the canonical wavelength used
in the optoelectronics industry. Recently, Fanet al. @9# have
designed a class of photonic crystals for fabrication at sub-
micrometer length scales using Si and SiO2 layers. These
structures involve layered growth, followed by selective
chemical etching of the two dielectric materials, followed in
turn by the etching of long cylindrical holes from the top
surface of the sample. This approach may soon lead to large
scale PBG microstructures in the visible and near-visible
wavelength regimes. We mention finally the striking discov-
ery of certain self-organizing periodic dielectrics in the near
infrared. Gruning, Lehmann, and Engelhardt@10# have fab-

ricated a very large scale two-dimensional PBG structure us-
ing macroporous silicon. Using the appropriate electrochemi-
cal etching methods, these researches have shown that a
highly ordered array of macropores can be induced to form
even without recourse to methodical layer-by-layer growth.
The recent progress, described above, in microfabrication of
PBG materials further motivates our theoretical study of this
new field which crosses the boundary between quantum op-
tics and solid state physics.

Photonic band-gap materials constitute a fundamentally
new class of dielectric materials in which the basic electro-
magnetic interaction is controllably altered. It has been sug-
gested that this would be accompanied by the inhibition of
spontaneous emission and fractionalized single atom inver-
sion @1,11#, photon localization@3,12#, photon hopping con-
duction@13#, vacuum Rabi splitting, and photon-atom bound
states@14#. Numerous applications of PBG materials have
been discussed in Refs.@12,15,16#. These include zero-
threshold, high efficiency microlasers, as well as high modu-
lation speed laser systems which operate even in the absence
of a cavity mode@12#. One of the key points which distin-
guishes quantum electrodynamics~QED! in a PBG from
QED in free space is that in addition to suppression of spon-
taneous emission, certain coherent propagation effects can be
selectively preserved. In particular, when an atomic transi-
tion lies deep inside the gap, the spontaneous emission is
strongly suppressed whereas coherent dipole-dipole interac-
tion between identical atoms persists on a length scale given
by the localization length of the dielectric microstructure
@14,17# as a result of the exchange of high-energy virtual
photons between atoms. This leads to coherent processes
such as photon hopping conduction@13# and the formation of
a quantum-optical spin-glass state accompanied by a Bose-
glass state of photons in the localized cavity mode@18#.

In this paper we investigate nonequilibrium phase transi-
tions and bistability in the nonlinear response of impurity
two-level atoms in an imperfect PBG to an applied laser
field. The atomic resonance frequency is assumed to lie suf-
ficiently far from the band edge that non-Markovian effects
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caused by irregularity of the density of modes at the band
edge can be ignored. We show that when the variance of
resonant dipole-dipole interaction~RDDI!, J, is much larger
than its average valueJ0 and the atomic population decay
1/T1 rate as well as the rate of dipole dephasing 1/T2, a
second-order nonequilibrium phase transition occurs at a
specific threshold intensity of the applied field. The value of
this threshold intensity is controlled by the parameterJ. At
this threshold the system changes from a glassy phase into a
ferroelectric phase. In the opposite case in which the average
valueJ0 is larger thanJ and 1/T2, this nonequilibrium tran-
sition is first order, leading to optical bistability. This is simi-
lar in some respects to intrinsic optical bistability of a dense
medium in free space, described in numerous papers@19,20#.
The difference here is that the decay timesT1 andT2 can be
very large in a PBG and as a result the optical bistability may
occur at very low intensity of an applied field and the re-
quired density of atoms is relatively small. This suggests that
bistable PBG materials may act as very low threshold
switches and amplifiers in integrated optical circuits. The
influence of fluctuations of RDDI on bistability is discussed
in detail.

II. THE BASIC EQUATIONS

We study the response to an applied field of two-level
atoms placed within a PBG material with a pseudogap of
localized states. This pseudogap consists of surface-localized
modes, localized defect modes in the interior of the photonic
crystal, and in certain cases@21#, isolated propagating modes
along specific symmetry direction of the periodic microstruc-
ture.

The Hamiltonian which describes the system in the
rotating-wave and the electric dipole approximation is given
by ~in the interaction picture!
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Here,s i
1 andsi describe atomic excitation and deexcitation

of the i th atom with coordinatesrW i , respectively;s
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scribes the atomic inversion;al andal
† are the radiation field

annihilation and creation operators for photons of the al-
lowed modes~l[kW ,eWl whereeWl are the two transverse unit
polarization operators!; d5v2va anddl5vl2va whereva ,
v, and vl are the atomic resonant frequency, the applied
field frequency, and the frequency of a model, respectively;
kW0 andkW are the wave vectors of the applied field and of the
radiation model; andgl i is the atomic field coupling con-
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HereuW i andm are the unit vector and the absolute values of
the dipole moment of thei th atom,V is the sample volume,
and e0 is the Coulomb constant.V5mE/\ is the resonant
Rabi frequency whereE is the amplitude of the applied field.
The general~non-Markov! Bloch equations, resulting from
the Hamiltonian~1!, are derived in Appendix A. Here, we
focus only on the case when the atomic resonant frequency
lies deep in the pseudogap where the density of modes does
not change considerably over the immediate surrounding
spectral regions. In such a case, non-Markov effects caused
by the irregularity in the density of states at the edges of a
PBG can be ignored@13,18,22# and the Bloch equations~A5!
and ~A6! simplify to
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whererW i j5rW i2rW j and P stands for the principal part as usual.
The Lamb shiftdL simply leads to a redefinition of the
atomic resonant frequency and hereafter we simply ignore it.
Clearly, 1/T2 andgi j are proportional to the density of states
at the atomic resonant frequencyva . Deep inside the gap
where the density of modes is very small, 1/T2 andgi j are
negligible. In the case when additional homogeneous broad-
ening is present,T1 andT2 may be considered as empirical
constants. While 1/T2 andgi j are very small inside the gap,
the dipole-dipole interaction~RDDI! Ji j may behave differ-
ently because of the exchange of virtual photons. For an
isotropic PBG [vl[vk5v(k)] after converting the mode
sum over transverse plane waves into an integral and per-
forming the angular integral, Eq.~8! can be written as
@14,17,23#
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Here

t~x!5a
sinx

x
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where

Ha50, b52 for Dm50 transition
a51, b521 for Dm561 transition, ~11!

r i j5urW i j u, andk5ukW u. The numerical simulations ofJi j as a
function of r i j for typical isotropic PBG dispersion relations
v(k) were conducted in Refs.@14,17#, where it has been
shown thatJi j approaches its free space value for atomic
distances much smaller than the optical wavelength. For
atomic distances larger than the localization length, the
RDDI becomes negligible@14#.

In analogy to the free space case@19,20#, we factorize the
products of the dipole operators among different atoms
~mean-field approximation!. We also ignore the small param-
etergi j which depends on the minute density of states inside
the gap and rewrite Eqs.~3! and ~4! in the form
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Analogous equations have been derived previously@13,18#
using the effective Hamiltonian
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in which the decay rates 1/T1 and 1/T2 were introduced phe-
nomenologically.

III. NONLINEAR ATOMIC RESPONSE

In this section we derive a general expression for the non-
linear susceptibility of two-level atoms in a PBG from the
applied field. For simplicity we assume that the atoms are
located in a volume with dimension smaller than the resonant
wavelength l052pc/va , leading to the simplification

e2 ikW0•rW i j'1. Equations~12! and ~13! then become
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J05[Ji j ] c is the average value of the RDDI over the random
atomic configurations andJ̃i j5Ji j2J0 is the fluctuation
about this average. A nonzero averageJ0 arises in our two-
level atom model, when the atomic density is large. If the
average interatomic spacing is much smaller than the optical
wavelength, the oscillatory spatial behavior ofJi j is not im-
portant. If the excited state of the atom is a triply degenerate
p level, the functiont(x) in the equation must be replaced
@14# by a Cartesian tensortm,n(x), in which the coefficienta
is replaced by the transverse tensor (dmn2 r̂ i j

mr̂ i j
n ) and the

coefficient b is replaced by the traceless tensor
(dmn23r̂ i j

mr̂ i j
n ). Here, r̂ i j

m is them component of the unit
vector r̂ i j[rW i j /urW i j u. Deep inside a PBG, the localization
length is comparable to the optical wavelength, and the
traceless part of RDDI is dominant. This is analogous to
choosing J050 in the two-level atom~scalar! model of
RDDI. Closer to the photonic band edges, the localization
length becomes much longer than the optical wavelength. In
this case, the transverse part of RDDI becomes compara-
tively important. This is analogous to choosingJ0 to be non-
zero in the scalar model. Replacing( j (Þ i )^s j& in Eqs. ~15!
and~16! by its configuration averaged valueN^s i&, we have

d
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where J̃05J0N. If we ignore the fluctuation of RDDI, i.e.,
settingFi5Fi*50, Eqs. ~19! and ~20! reduce to those of
earlier treatments@19# describing atoms in free space. The
detailed microscopic evaluation ofJi j in an isotropic PBG
may be found in Refs.@14,17#. Here, for simplicity, we as-
sume thatJ̃i j5Ji j2J0 is a Gaussian random number with
zero mean value and with varianceJ. It is straightforward to
show that the steady-state solutions of Eqs.~19! and ~20!
satisfy the conditions

wi
21wi14~T1 /T2!upi u250 ~21!
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and

2Vwi1~d1 J̃0wi1 i /T2!pi1wi (
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Here pi[^s i&s andwi[^s i
z&s are steady-state expectation

values. It is clear from Eq.~21! that the population difference
wi is negative for all atoms and is not directly driven by
random fluctuations ofJ̃i j . On the other hand, random fluc-
tuations in RDDI drive phase changes in the atomic dipoles,
pi . These phase fluctuations dominate the system behavior in
the long time limit. That is, the configuration fluctuations of
the population difference are much smaller than the phase
fluctuations and can be ignored: ([w i

2] c>[wi ] c
2). We have

performed detailed numerical simulations of Eqs.~21! and
~22! for a small number of atoms which confirm this picture.
Below, we focus only on the analytical calculation. Configu-
ration averaging over the random atomic positions corre-
sponds to performing a statistical average over the possible
values ofJ̃i j using the Gaussian distribution. It is denoted by
the square brackets@ #c . Ignoring the fluctuations ofwi
~mean-field approximation!, we can write Eq.~21! as

w21w14~T1 /T2!q50. ~23!
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n[ upi u

2] c is the Edwards-Anderson spin-
glass order parameter@24,25# andw[(1/N)( i

N[wi ] c is the
average atomic population difference. Mean-field theory has
also been applied to Eq.~22! by replacingwi by its average
valuew. Equation~22! then becomes
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where Jl and ^lui & are the eigenvalues and orthonormal
eigenvectors ofJ̃i j , respectively. The polarization eigen-
mode,pl[( j^lu j &pj , can then be found in the form
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In the limit of largeN, the eigenvalue densityr~Jl! obeys a
semicircular law@26,27#
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whereJ̃5JAN. Using Eq.~28! it is straightforward to deter-
mine the average atomic polarizationp5(1/N)( j [pj ] c :
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Here the off-diagonal elements [^ i ul&^lu j &] c with iÞ j have
been ignored@18,26#.

In a similar manner, the spin-glass order parameter can be
found as
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The susceptibility per atom can be defined asx5p/V.

x5
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224w2J̃ 2#1/2%.
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For comparison we introduce the scaled spin-glass order
parameterqV[q/V2, which can be related to the suscepti-
bility through Eqs.~29! and ~30!:

qV52T2wx9. ~32!

Herex5x81ix9, andx8 andx9 are the real and imaginary
parts of the atomic susceptibilityx. Putting Eq.~32! into Eq.
~23! we have

w5Ix921, ~33!

where I[4T1V
2 is a scaled intensity parameter. Equations

~31!–~33! are the main results of this section. In the case of
J̃,J̃0!1/T2 , Eq. ~31! reduces to the result of the conven-
tional nonlinear susceptibility@28#:

x52~d2 i /T2!/@d211/T2
214T1V

2/T2#. ~34!

The conventional nonlinear susceptibility~34! exhibits satu-
ration inboth the real and imaginary parts. A second limiting
case may be recaptured for weak applied fieldI!1. Here,
w>21 and the linear susceptibility is written as

xL52
1

2J̃ 2
$d2 J̃01 i /T22@~d2 J̃01 i /T2!

224J̃ 2#1/2%.

~35!

In particular, for the case ofJ̃!1/T2 the linear susceptibility
reduces to

xL52
1

d2 J̃01 i /T2
. ~36!

It is apparent from Eqs.~35! and ~36! that when the mean
value of RDDI is nonzero, the resonant frequency shifts to
v5va2 J̃0 . The value2J̃0 is called the ‘‘blue’’ or ‘‘red’’
shift depending on whetherJ̃0 is negative or positive. The
magnitude of this shift depends on the density of the atomic
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medium and has been discussed extensively as a means to
obtain information about the spatial, coherent properties of
distant objects@29,30#.

In the case of largeJ̃, the saturation effect described by
Eq. ~34! is modified dramatically. In particular, we have
shown @31# that although strong nonlinear suppression of
absorption occurs, the~real! nonlinear index of refraction
remains large in a certain domain of applied field intensity.
This occurs due to the formation of a glassy state of the
atomic dipoles. Although optical absorption to these dipoles
has been saturated, they remain highly polarizable due to
their random phases. In this paper we examine the nonequi-
librium phase transitions which occur among these dipoles as
a function of the applied field, using the general susceptibil-
ity equation~31!.

IV. SECOND-ORDER PHASE TRANSITION
AND THE OPTICAL SPIN-GLASS STATE

The equilibrium second-order phase transition for disor-
dered spin systems has been discussed extensively in the
context of spin glasses@24,25#. For two-level atoms with a
transition in the optical domain the role of thermal fluctua-
tion is unimportant. We focus instead on the nonequilibrium
phase transition, induced by the external field, from a spin-
glass state to a ferroelectric state. For simplicity we assume
in this section thatJ0>0 and the decay rates 1/T1, 1/T2 are
much smaller than the varianceJ̃ of RDDI between atoms.
As discussed earlier, the assumptionJ0>0 can be satisfied
deep inside the PBG in a realistic description when the
RDDI in Eq. ~9! is replaced by a traceless tensor interaction
for atomic transitions between degenerate atomic states. The
susceptibility in Eq.~31! becomes imaginary~x850! at the
exact resonanced50 and has the form

x95@~114w2T2
2J̃ 2!1/221#/~2uwuT2J̃ 2!. ~37!

It is instructive to consider the relative importance of glassy
configurations which are measured by the ratio of the ferro-
electric to the ferroglass order parameter.

xq[
uxu2

qV
5@~114w2T2

2J̃ 2!1/221#/~2w2T2
2J̃ 2!. ~38!

Clearly for J̃@1/T2 , and for sufficiently weak applied field
that the atomic population differencew>21, we have
xq>1/(T2J̃)!1. That is, the glassy behavior of the atomic
dipoles becomes dominant relative to any macroscopic ferro-
electric response. For the strong applied field, the atomic
system tends to be saturated withw>0. In this casexq>1,
i.e., the ferroelectric behavior becomes dominant. With the
help of Eqs.~33! and~37! we can write the equation for the
atomic differencew and forx9 as

w312w21wS 12
I

T2J̃
2
2

I 2

J̃ 2D 2
I

T2J̃
2

50 ~39!

and x95(w11)/I . Using the solution of Eq.~39! we can
easily findw, x9, andxq in the limit of J̃@1/T2 as

w>H I / J̃21 for I< J̃

0 if I. J̃,
~40!

x9>H 1/J̃ if I< J̃

1/I if I. J̃,
~41!

xq>H 0 if I< J̃

12 J̃ 2/ Ĩ 2 if I. J̃.
~42!

Equations~40!–~42! show clearly the second-order non-
equilibrium phase transition in atomic population difference,
absorption coefficientx9, and inxq at I5 J̃. In particular, the
phase transition from spin-glass state withxq>0 to ferroelec-
tric state occurs. For finite values of 1/(T2J̃), this transition
is smeared and there is no slope discontinuity in the response
functionx or the order parameterw. Unlike the conventional
phase transition described in spin-glass literature@24,25#, our
phase transition occurs atw>0. That is, the atomic system is
far from equilibrium. The second-order phase transition is
also shown in Fig. 1 as a result of the numerical solution of
Eqs.~33!, ~37!, and~38! for the case ofJ̃@1/T2 . This can be
easily satisfied in a PBG. This suggests that the quantum-
optical spin-glass state may be created and controllably al-
tered by means of an external laser field.

V. OPTICAL BISTABILITY

Optical bistability occurs when there are two stable states
for the light intensity transmitted through a nonlinear mate-
rial for one value of the input intensityI in @32–35#. The
transmitted intensity which the output settles down to de-
pends on the excitation history. A different state is reached if
one either decreases the incident intensityI in from a suffi-
ciently high original level, or if one increasesI in from zero.
The possibility to switch a bistable optical device between its
two states facilitates the use of such a device as a binary
optical memory. The fact that bistable elements can be ad-
dressed simultaneously by many laser beams suggests the
possibility of parallel optical data processing@34#. Current
applied research is focused on optimizing these devices by
decreasing their size, switching times, and threshold power.

In this section we discuss optical bistability in the atomic
response in PBG materials. Spontaneous emission can be
strongly suppressed in a PBG while RDDI displays only
small deviation from the free space case for atomic separa-
tion smaller than an optical wavelength@14,17#. As a result,
RDDI can dominate relaxation rates even at relatively low
atomic density. In contrast to the free space case@19#, the
role of RDDI’s fluctuations in optical bistability will be dis-
cussed in detail.

For comparison purposes, we begin with the case when
the fluctuations in RDDI are ignored, i.e.,J̃>0 while J̃0Þ0.
In this case it is straightforward to derive a cubic equation
for the atomic population difference from Eqs.~31!–~33! in
the form

J̃ 0
2w31J0~2d1 J̃0!w

21~d211/T2
214T1V

2/T212d J̃0!w

11/T2
21d250. ~43!

For J̃050, Eq. ~43! has a solution
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w52~11d2T2
2!/@11d2T2

214T1T2V
2#. ~44!

The absorption coefficientx9 can be found from Eqs.~33!
and ~44! as

x95T2 /@11d2T2
214T1T2V

2#. ~45!

Clearly, as the input applied field intensityV2 increases, the
atomic population difference, which is proportional to the
output, increases monotonically from the equilibrium value
w521 to the saturation valuew50 atV→`. Analogously,
the absorption coefficient decreases monotonically and there
is no hysteresis or bistable behavior in the system.

In the case withJ̃0Þ0, the cubic equation~43! may lead
to bistability effects. That is, as the field intensity increases
and the Rabi frequency becomes large relative toJ̃0 and
1/T2, the two-level system switches suddenly from the low-
transmission branch to the high-transmission branch. This
bistability behavior is shown in Figs. 2 and 3 where the
atomic population difference~Fig. 2! and associatedx9 are
plotted as a function ofV2. In Figs. 2 and 3, the solid and
dotted curves with positive and negative slopes, respectively,
represent stable and unstable states. These plots are obtained
by solving the cubic equation~43! as a function of the pa-
rametersV, T1, T2, and J̃0. The turning points where the
slope is infinity corresponds to points where the roots of the
cubic equation undergo a Hopf bifurcation: two complex
conjugate roots become two real roots or vice versa. The
stability of each solution is determined by doing a stability
analysis of the time-dependent Heisenberg equations of mo-
tion ~19! and~20! ~see Appendix B!. For the stable solution,
a small fluctuation about the steady-state value decreases ex-
ponentially whereas for the unstable branch, a small fluctua-

FIG. 1. ~a! Atomic population differencew, ~b! absorption co-
efficient x9, and ~c! xq ~in units of J̃51! as a function ofI / J̃ for
d5J̃050 and for 1/(T2J̃)51025 ~solid curves!, 0.01 ~dashed
curves!, and 0.1~dotted curves!.

FIG. 2. Atomic population differencew as a function ofV2/J̃0
2

for J̃0521, d5J̃50, and for~i! 1/(T2uJ̃0u)51/(2T1uJ̃0u)50.02,~ii !
0.1, and~iii ! 0.25. The solid and dotted curves represent stable and
unstable states, respectively.

FIG. 3. x9 as a function ofV2/J̃ 0
2 for the same parameters as in

Fig. 2.
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tion grows until it reaches one of the two stable solutions
nearby@19,33#.

Although an exact analytical solution of the cubic equa-
tion ~43! can be easily found, it does not provide the most
transparent picture of the system behavior. However, the
turning points~where the roots undergo Hopf bifurcation! for
w as a function ofV can be determined by setting the de-
rivative of the left-hand side of Eq.~43! with respect tow
equal to zero. For the exact resonance case~d50! we get

w21
2

3
w1

114T1T2V
2

3T2
2J̃ 0

2
50. ~46!

It yields the following necessary condition for bistability:

T2J̃0 /).A114T1T2V
2. ~47!

In a PBG, spontaneous emission is strongly suppressed while
RDDI remains strong. Under these circumstances, condition
~47! can be easily satisfied even for the relatively small
atomic density. The threshold applied field intensity at the
switching points can be found from Eqs.~43! and ~46!. In
particular, for the case ofJ̃0@1/T2 , the Rabi frequencies at
the switching from the low-transmission branch to high-
transmission branch~the right turning point!, VR , and for the
switching from low-transmission branch to high-
transmission branch~the left turning point!, VL , is given by

VR
2> J̃ 0

2T2 /~16T1!, ~48!

VL
2>0. ~49!

This is in very good agreement with Fig. 4 where we plot
~VL!

2 and ~VR!2 calculated numerically from Eqs.~43! and
~46! as a function of 1/(T2uJ̃0u). Clearly from Fig. 4, bista-
bility occurs only if

J̃0T2<0.19. ~50!

In a PBG, whereT2 is of many orders of magnitude larger
than in free space, the condition~50! can be satisfied at a
relatively small value ofJ̃0. As a result, bistability may oc-

cur at a threshold field intensity~48! much smaller than that
required in free space@19,35#.

To recover the effects of RDDI fluctuations on bistability,
we numerically evaluate the general expression for suscepti-
bility given in Eqs. ~31! and ~33!. In Fig. 5 we plot the
atomic population differencew as a function ofV2 for dif-
ferent values of the RDDI varianceJ̃. It is clear that very
strong fluctuation of RDDI reduces bistability effects. How-
ever, it is interesting to note here that the increase ofJ̃ leads
to a reduction of the threshold intensity for switching from
the low-transmission branch to the high-transmission branch.
This is clearly seen in Fig. 6, in which we plot the switching
intensities~VL!

2 and~VR!2 calculated numerically from Eqs.
~31! and ~33! as a function ofJ̃/uJ̃0u for different values of
1/(T2uJ̃0u). At the same time, the decrease of 1/T2 leads to a
decrease of the threshold energy for switching from the high-
transmission branch to the low-transmission branch~see
Figs. 4 and 6!. This means that in the case 1/T2! J̃; J̃0 , both
threshold energies for low-high and high-low switching can

FIG. 4. Threshold applied field intensity at the leftV L
2/ J̃ 0

2

~dashed curve! and right switching pointsV R
2/ J̃ 0

2 ~solid curve! as a
function of 1/(T2uJ̃0u) and ford5J̃50, T15T2/2, J̃0521.

FIG. 5. Atomic population differencew as a function ofV2/J̃ 0
2

for J̃0521, d50, 1/(T2uJ̃0u)51/(2T1uJ̃0u)50.02, and for ~i!
J̃/ J̃050, ~ii ! 0.4, and~iii ! 0.45. The solid and dotted curves repre-
sent stable and unstable states, respectively.

FIG. 6. Threshold applied field intensity at the leftV L
2/ J̃ 0

2

~dashed curve! and right switching pointsV R
2/ J̃ 0

2 ~solid curve! as a
function of J̃/uJ̃0u for d50, J̃0521, and for 1/(T2uJ̃0)
51/(2T1uJ̃0u)50.02.
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be many orders of magnitude smaller than in free space and
these thresholds can be controlled by changing the param-
eters of the PBG system. The magnitude ofJ̃/ J̃0 can be
adjusted by varying the atomic density: SinceJ̃05NJ0 and

J̃5ANJ, for a singlet atomic transition, the conditionJ̃0@ J̃
can be satisfied by increasing the density of the impurity
atoms. In this case the bistability effect~first-order phase
transition! will prevail over the second-order phase transition
discussed in the preceding section. In a less dense medium
and for a triplet atomic transition,J̃ may be much larger than
J̃0. In this case, the second-order phase transition and for-
mation of an optical spin-glass state is expected.

VI. CONCLUSION

We have discussed first- and second-order nonequilibrium
phase transitions in the response of two-level impurity atoms
in an imperfect PBG to an external laser field. The atomic
resonant frequency is assumed to lie far from the band edge
so that the non-Markovian effects caused by the singularity
of density of modes at the band edge can be ignored. We
derived the general expression for atomic susceptibility and
have shown that in the case when the variance of the RDDI
fluctuations is much larger than its average value and atomic
relaxation rates, a second-order phase transition occurs at the
threshold intensity defined by the variance of RDDI. At this
threshold, the system changes from a glassy phase into a
ferroelectric phase. In the opposite case when the average
value of RDDI is larger then its variance, the phase transition
is first order and the system exhibits optical bistability. The
bistability in a PBG has been shown to occur at much lower
threshold intensity than in free space. The results we have
presented have focused on a small active region within a
PBG in whichN atoms are confined to a volume given by a
cubic wavelength. It would be of considerable interest to
extend these results into a large active region, in which the
impurity atoms are distributed over many optical wave-
lengths. The spatial and temporal evolution of the coupled
atom plus optical field, however, requires that we generalize
the optical Bloch equations@20# to a set of coupled Maxwell-
Bloch equations appropriate for a PBG.
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APPENDIX A

In this appendix we will derive the general~non-Markov!
optical Bloch equation. The Heisenberg equations of motion
can be derived from the Hamiltonian~1! as

d

dt
al52 idlal1(

i
gl ie

2 ikW•rW is i , ~A1!

d

dt
s i5 ids i1(

l
gl ie

ikW rW is i
zal2 iVeik

W
0•rW is i

z , ~A2!

d

dt
s i
z52iV~s i

1eik
W
0•rW i2s ie

2 ikW0•rW i !

22(
l

gl i~s i
1ale

ikW•rW i1al
1s ie

2 ikW•rW i !. ~A3!

The formal solution of Eq.~A1! has the form

al~ t !5e2 idltal~0!1(
i
gl iE

0

t

e2 i @kW•rW i1dl~ t2t8!#s i~ t8!dt8.

~A4!

Puttingal(t) into Eqs.~A2! and~A3! we obtain the equa-
tions for quantum expectation values in the form

d

dt
^s i~ t !&5 id^s i~ t !&2 iVeik

W
0•rW i^s i

z~ t !&

1E
0

t

Gii ~ t2t8!^s i
z~ t !s i~ t8!&dt8

1 (
j ~Þ i !

E
0

t

Gi j ~ t2t8!^s i
z~ t !s j~ t8!&dt8,

~A5!

d

dt
^s i

z~ t !&52iV@eik
W
0•rW i^s i

1~ t !&2e2 ikW0•rW i^s i~ t !&#

22E
0

t

dt8Gii ~ t2t8!^s i
1~ t !s i~ t8!&

22E
0

t

dt8Gii* ~ t2t8!^s i
1~ t8!s i~ t !&

22 (
j ~Þ i !

E
0

t

dt8Gi j ~ t2t8!^s i
1~ t !s j~ t8!&

22 (
j ~Þ i !

E
0

t

dt8Gi j* ~ t2t8!^s j
1~ t8!s i~ t !&,

~A6!

where

Gii ~ t2t8!5(
l

gl i
2 e2 idl~ t2t8!, ~A7!

Gi j ~ t2t8!5(
l

gl igl je
ikW•rW i j2 idl~ t2t8!. ~A8!

Here rW i j5rW i2rW j .
Gii (t2t8) andGi j (t2t8) are delay Green’s functions and

their implicit form strongly depends on the dispersion rela-
tion vkW5v(kW ). For example, at the edge of the isotropic
PBG, the Green functionGii (t2t8);(t2t8)21/2 @12#; rather
thanGii (t2t8);d(t2t8) as in a free space, this leads to
non-Markov phenomena in spontaneous emission@11# and
superradiance@12#. The calculation of the Green’s function
Gi j (t2t8) at the edge of a PBG and a study of non-Markov
effects on the phase transitions near the band edge goes be-
yond the scope of this paper and we plan to present them
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elsewhere. In this paper we have considered only the case
when the atomic resonant frequency lies deep in the
pseudogap where the density of modes does not change con-
siderably. In such a case, the memory effects caused by the
irregularity in the density of states at the edges of a PBG can
be ignored~Markov approximation!. More specifically,t8 in
two-time correlation functions in Eqs.~A5! and ~A6! are
replaced byt and the correlation functions can then be taken
out of the integral. The integrals* 0

t Gii (t8)dt8 and
* 0
t Gi j (t8)dt8 can be calculated easily as for the free space

case@36# and Eqs.~A5! and~A6! can be written in the form
of Eqs.~3! and ~4!.

APPENDIX B

In this appendix we give a linear stability analysis for the
solutions of Eq.~43!. For simplicity we consider only the
case of exact resonanced50. Ignoring the fluctuation of
RDDI, i.e., settingFi5Fi*50, Eqs.~19! and ~20! become

d

dt
^s&52^s&/T21 i J̃0^s

z&^s&2 iV^sz&, ~B1!

d

dt
^sz&52~^sz&11!/T112iV~^s†&2^s&!, ~B2!

and (d/dt)^s†&5[(d/dt)^s&] * . For infinitesimal perturba-
tions of the system from the steady state

^s&5p1dp, ^s†&5p*1dp* , ^sz&5w1dw,
~B3!

where p and w are the steady-state values of the atomic
polarization and population inversion. Neglecting the nonlin-
ear terms ofdp anddw we find equations of motion fordp
anddw from Eqs.~B1! and ~B2! as

d

dt
dp52

dp

T2
1 i J̃0pdw1 i J̃0wdp2 iVdw, ~B4!

d

dt
dw52

dw

T1
12iVdp*22iVdp, ~B5!

and (d/dt)dp*5[(d/dt)dp] * . The eigenvalue equation for
Eqs.~B4! and ~B5! can be written as

UL1
1

T2
2 i J̃0w 0 iV2 i J̃0p

0 L1
1

T2
1 i J̃0w 2 iV1 i J̃0p*

2iV 22iV L1
1

T1

U50.

~B6!

The relation betweenp andw can be found from Eq.~B1!
as

p5
VT2w

T2J̃0w1 i
5V~x81 ix9!. ~B7!

With the help of Eqs.~B7! and~33!, the eigenvalue equa-
tion ~B6! can be written as

L31a1L
21a2L1a350, ~B8!

where

a15
2

T2
1

1

T1
, ~B9!

a25
2

T1T2
1

1

T2
2

1 J̃0
2w21

4V2

11T2
2J̃0

2w2
, ~B10!

a35
J̃0
2

T1
S 3w212w1

114T1T2V
2

T2
2J̃0

2 D . ~B11!

The system is stable if a small fluctuation about the
steady-state value decreases exponentially. That is, the real
part of all the eigenvaluesL must be negative. According to
the Routh-Hurwitz criterion@37#, the condition for all nega-
tive real parts of eigenvalues and the condition of the system
stability isai.0 ~i51,2,3! ~Lienard-Chipart test!. Clearly,a1
and a2 are positive values and the condition of the system
stability isa3.0. It is straightforward to show from Eq.~43!
that

dw

dV2
5
4T1uwu

T2J̃0
2 F3w212w1

114T1T2V
2

T2
2J̃0

2 G5
4uwu

T2

1

a3
.

~B12!

It is apparent from Eq.~B12! that the turning points are
the points wherea350. The solution with the negative slope
dw/dV2,0 means thata3,0. As a result, the state with the
negative slope corresponds to the unstable state and is rep-
resented by the dotted curves in Figs. 2, 3, and 5.
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