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Microscopic model for d-wave charge-carrier pairing and non-Fermi-liquid behavior in a purely
repulsive two-dimensional electron system

Mona Berciu and Sajeev John
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada

~Received 27 December 1999; revised manuscript received 28 March 2000!

We investigate a microscopic model for strongly correlated electrons with both on-site and nearest-neighbor
Coulomb repulsion on a two-dimensional~2D! square lattice. This exhibits a state in which electrons undergo
a ‘‘somersault’’ in their internal spin space~spin flux! as they traverse a closed loop in external coordinate
space. When this spin-1

2 antiferromagnetic~AFM! insulator is doped, the ground state is a liquid of charged,
bosonic meron vortices, which for topological reasons are created in vortex-antivortex pairs. The magnetic
exchange energy of the distorted AFM background leads to a logarithmic vortex-antivortex attraction which
overcomes the direct Coulomb repulsion between holes localized on the vortex cores. This leads to the
appearance of preformed charged pairs. We use the configuration interaction~CI! method to study the quantum
translational and rotational motion of various charged magnetic solitons and soliton pairs. The CI method
systematically describes fluctuation and quantum tunneling corrections to the Hartree-Fock approximation. We
find that the lowest-energy charged meron-antimeron pairs exhibitd-wave rotational symmetry, consistent with
the symmetry of the cuprate superconducting order parameter. For a single hole in the 2D AFM plane, we find
a precursor to spin-charge separation in which a conventional charged spin polaron dissociates into a singly
charged meron-antimeron bound pair. This model provides a unified microscopic basis for~i! non-Fermi-liquid
transport properties,~ii ! d-wave preformed charged carrier pairs,~iii ! midinfrared optical absorption,~iv!
destruction of AFM long-range order with doping and other magnetic properties, and~v! certain aspects of
angle-resolved photoemission spectroscopy.
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I. INTRODUCTION

The microscopic understanding of the effect of char
carrier doping on spin-1

2 antiferromagnetic~AFM! Mott in-
sulators is the central issue of the high-temperature super
ducting cuprates.1 Many puzzling experimental features o
these systems2 suggest that a fundamental law of nature
mains to be recognized. Extremely low dopingd
;0.02–0.05 charge carriers per site! leads to a complete
destruction of the long-range AFM order, and a transition
an unusual non-Fermi-liquid metal. This unusual metal
comes superconducting, with the transition temperatureTc

strongly dependent on the dopingd. The maximumTc is
reached for dopings aroundd50.15. For higher dopings th
critical temperature decreases to zero, and in the overdo
region a crossover toward a~nonsuperconducting! Fermi liq-
uid takes place. Two central questions require resolut
The first one concerns the nature of the charge carriers
sponsible for this non-Fermi-liquid metallic behavior. This
a fundamental issue, since it lies outside the framework
Landau’s Fermi-liquid theory, and it necessitates understa
ing the appearance of non-quasiparticle-like charge carr
in a system of interacting electrons. The second ques
concerns the nature of the strong attractive pairing betw
these charge carriers, given the purely repulsive interac
between the constituent electrons. In conventional super
ductors, the pairing attraction is due to overscreening of
electron-electron Coulomb repulsion by the ionic lattice.
the case of high-temperature superconducting cuprates, i
been suggested1 that pairing is an intrinsic property of th
electron gas itself mediated by AFM spin fluctuations of t
PRB 610163-1829/2000/61~24!/16454~16!/$15.00
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doped system. Accordingly, the challenge is to identify
strong attractive force based purely on repulsive Coulo
interactions. In this paper, we derive such a force, and d
onstrate that it leads tod-wave pairing of charge carrying
holes introduced by doping a quantum, spin-1

2 , Mott-
Hubbard antiferromagnet.

The simplest model Hamiltonians used to investigate
cuprate physics are the Hubbard model and the closely
lated t-J model. Unlike the one-dimensional~1D! problem,
an exact solution for the 2D Hubbard Hamiltonian is n
known. As a result, various approximations are necess
Although the application of the mean-field theory has be
severely criticized in this context, it provides a valuable r
erence point for incorporating fluctuation effects. Moreov
even for the 1D Hubbard model, essential features of
exact solution may be recaptured by judiciously incorpor
ing fluctuation and tunneling effects into mean-field theor3

The most straightforward mean-field theory is the Hartr
Fock approximation~HFA!. At half-filling ( d50) the HFA
predicts an AFM Mott insulator ground state. As the syst
is doped, the HFA suggests that charge-carrier holes in
AFM background assemble in charged stripes, which
quasi-one-dimensional structures.4–6 A large effort has been
devoted to studying these charged stripes and relating t
to certain features of the cuprates.7

Recently, a more fundamental investigation of the ma
electron problem has suggested the possibility of an alte
tive model Hamiltonian for the cuprate physics. This mod
Hamiltonian, called the spin-flux model,8 suggests that the
long-range Coulomb interaction between spin-1

2 electrons
leads to qualitatively new physics, not apparent in the c
16 454 ©2000 The American Physical Society
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ventional Hubbard model~see Sec. II!. The results of the
Hartree-Fock study9 of this spin-flux model are summarize
in Sec. III. They suggest that the undoped parent compo
is also an AFM Mott insulator. However, unlike the conve
tional Hubbard model, the one-electron dispersion relati
of the AFM mean field in the spin-flux model match tho
measured experimentally through angle-resolved photoe
sion for undoped cuprates. A proper description of the hi
est occupied electronic states~as provided by the spin-flux
model!, is crucial to considerations of doping. The spin-fl
model and the conventional Hubbard model differ dram
cally in this regard. At the HF level, the doping holes add
to the AFM background of the spin-flux model are trapped
the core of antiferromagnetic spin vortices. This compos
object ~the meron vortex! is a bosonic charged collectiv
mode of the many-electron system~the total spin of the mag
netic vortex is zero!. The reversal of the spin-charge conne
tion provides a microscopic basis for non-Fermi-liquid b
havior.

A magnetic vortex is strongly attracted to an antivorte
This attraction increases logarithmically with the distan
between the vortex cores, and is stronger than the unscre
Coulomb repulsion between the charged meron-vortex co
In effect, the increase in Coulomb energy between a gi
pair of holes is more than offset by the lowering in exchan
energy between the background electrons as their vort
approach each other from far away. As the intervortex d
tance increases, more and more spins are rotated out of
AFM background orientation, and the total energy of t
system increases. Thus, even at the HF level, the spin-
model provides a fundamental underpinning for the origin
both non-Fermi-liquid behavior, and strong pairing betwe
the charge carriers.

While providing a good starting point, the Hartree-Fo
approximation also has serious shortcomings. For insta
the ground-state wave function in the presence of dopin
nonhomogeneous~the static meron vortices of the spin-flu
model, or the charged stripes of the conventional Hubb
model, break translational symmetry!. Physically, one ex-
pects that these charge carriers can move along the pla
resulting in a wave function which preserves the translatio
symmetry of the original Hamiltonian. The quantum dyna
ics of the charge carriers also determines whether the do
ground state is really a metal. Charge carriers in the o
mally doped cuprates are quite mobile excitations, altho
their scattering rates are radically different from electrons
a conventional Fermi liquid.

A consistent way of treating the quantum dynamics of
charge carriers is provided by the configuration-interact
~CI! method,10,3 described in Sec. IV. Here a linear comb
nation of HF wave functions is used in order to restore
various broken symmetries. For instance, in a doped sys
the CI wave function is chosen to be a linear combination
HF wave functions, with the charge carrier localized at d
ferent sites. Certain types of charge carriers can lower t
total energy substantially by quantum mechanically hopp
from one site to the next. We tested the accuracy of the
method against the exact solution11 of the one-dimensiona
Hubbard model in Ref. 3. In the 1D Hubbard model the
method describes the quantum dynamics of charged dom
wall solitons in the AFM background. By including thes
d
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effects as fluctuation corrections to the Hartree-Fock me
field theory, the CI method provides excellent agreem
with the exact Bethe ansatz solution for the ground-state
ergy of the doped 1D Hubbard chain, over the entireU/t
range. The CI method also leads to a clear demonstratio
spin-charge separation in one dimension. The addition of
doping hole to the half-filled antiferromagnetic chain resu
in the appearance of two different carriers: a charged bos
domain wall ~which carries the charge but no spin! and a
neutral spin-12 domain wall ~which carries the spin but no
charge!. This study3 demonstrates the effectiveness of the
method. In this paper we use the CI method to investigate
dynamics of charged meron vortices in the spin-flux mod
Throughout this paper we exploit and refer to the analo
between the charge excitations of the 1D Hubbard model
the 2D spin-flux model,12,13 apparent in the CI approach3

The CI results for the spin-flux model~presented in Sec. IV!
confirm that the meron vortices are very mobile, suggest
that a collection of such mobile bosonic charge carriers
non-Fermi-liquid metal. The CI method also allows us
identify the rotational symmetry of the meron-antimeron p
wave function to bed-wave for the most stable pairs. A
energetically more expensive metastables-wave pairing is
also possible. The possibility of spin-charge separation
two dimensions is elucidated. A summary of the results, a
their interpretation and conclusions, are provided in Sec.

II. SPIN-FLUX MODEL

The effective 2D Hamiltonian that we use to describe
strongly correlated electrons residing in th
O(2p) –Cu(3dx2-y2) orbitals of the isolated CuO2 plane is
the tight-binding model

H52 (
i , j ,s

~ t i j cis
† cj s1H.c.!1(

i , j
Vi j ninj , ~1!

wherecis
† creates an electron at sitei with spin s, t i j is the

hopping amplitude from sitej to site i on the square lattice
ni[(s51

2 cis
† cis is the total number of electrons at sitei, and

Vi j is the Coulomb interaction between electrons at sitei
and j. The dominant terms are the nearest-neighbor hopp
t i j 5t0 and the on-site Coulomb repulsionVii 5U/2. If only
these two terms are considered, and we shift the chem
potential by U, this reduces to the well-known Hubbar
model. The neglect of the dynamical consequences
longer-range Coulomb interaction (Vi j 50, if iÞ j ), in the
Hubbard model, is based the assumption of uniform cha
distribution and on the Fermi-liquid theory notion of scree
ing of the effective electron-electron interaction. Howev
Fermi-liquid theory fails to explain many of the crucial fe
tures of the high-Tc cuprates. In our description, we includ
the nearest-neighbor Coulomb repulsion, which we assu
is on the energy scale oft. This has important dynamica
consequences in our model, and cannot simply be abso
into the Madelung constant. In particular, it leads to the g
eration of spin flux, to our knowledge, an entirely new ty
of broken symmetry in the many-electron system, which
show leads naturally to bosonic charge carriers in the form
meron vortices, non-Fermi-liquid behavior, and a strong
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tractive pairing force between holes in the AFM backgrou
In order to extract the relevant physics from our start
Hamiltonian,

H52t0 (
^ i , j &s

~cis
† cj s1H.c.!1U(

i
ni↑ni↓1V(

^ i , j &
ninj ,

~2!

we introduce bilinear combination of electron operatorsL i j
m

[cia
† sab

m cj b , m50,1,2, and 3, foriÞ j ~summation over
multiple indexes is assumed!. Heres0 is the 232 identity
matrix, andsW [(s1,s2,s3) are the usual Pauli spin matrice
The notation̂ i , j & means that sitesi and j are nearest neigh
bors. The quantum expectation value^ & of theL i j

m operators
are associated with charge currents (m50) and spin currents
(m51,2, and 3!. Nonvanishing charge currents lead to a
pearance of electromagnetic fields, which break the tim
reversal symmetry of the Hamiltonian. Experimentally, th
does not occur in the cuprates. In the following, we adopt
ansatz that there is no charge current in the ground s
L i j

0 50, but circulating spin currents may arise and take

form L i j
a 5(2t0 /V) iD i j n̂a ,a51,2, and 3, whereuD i j u5D

for all i and j, and n̂ is a unit vector. These spin curren
provide a transition state to the uniform spin-flux mean fi
that we use in this paper. In principle, nonuniform states
spin flux may arise, in whichuD i j u has a nontrivial depen
dence oni and j. One such case was discussed earlier,8 in
which Skyrmion textures in the AFM background car
quantized units of spin flux. In this caseD i j is a dynamical
variable. However, for the purpose of this paper, we cons
only a uniform, static, mean-field configuration of the sp
flux.

Using the Pauli spin-matrix identity1
2 sab

m (sa8b8
m )*

5daa8dbb8 , it is possible to rewrite the nearest-neighb
electron-electron interaction terms asninj52ni

2 1
2 L i j

m(L i j
m)1. If we neglect fluctuations in the spin current

we can use the mean-field factorizationL i j
m(L i j

m)1

→^L i j
m&(L i j

m)11L i j
m^L i j

m&* 2^L i j
m&^L i j

m&* . Thus the quartic
nearest-neighbor Coulomb interaction term is reduced t
quadratic term that is added to the hopping term leading
the effective Hamiltonian:

H52t(
^ i , j &
ab

~cia
† Tab

i j cj b1H.c.!1U(
i

ni↑ni↓ . ~3!

Here Tab
i j [(dab1 iD i j n̂•sW ab)/A11D2 are spin-dependen

SU~2! hopping matrix elements defined by the mean-fi
theory, and t5toA11D2. In deriving Eq. ~3! we have
dropped constant terms which simply change the zero
energy as well as terms proportional to( ini which simply
change the chemical potential. It was shown previously8,14

that the ground state energy of the Hamiltonian of Eq.~3!
depends on the SU~2! matricesTi j only through the plaquette
matrix productT12T23T34T41[ exp(in̂•sWF). Here F is the
spin flux which passes through each plaquette, and 2F is the
angle through which the internal coordinate system of
electron rotates as it encircles the plaquette. Since the e
tron spinor wave function is two valued, there are only tw
possible choices forF. If F50 we can setTab

i j 5d i j , and
.
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Hamiltonian ~3! describes conventional ordered magne
states of the Hubbard model. The other possibility is tha
spin flux F5p penetrates each plaquette, leading
T12T23T34T41521. This means that the one-electron wa
functions are antisymmetric around each of the plaquet
i.e., that as an electron encircles a plaquette, its wave fu
tion in the internal spin space of Euler angles rotates byp
in response to strong interactions with the other electrons
effect, the electron performs an internal ‘‘somersault’’ as
traverses a closed path in the CuO2 plane.8 This spin-flux
phase is accompanied by an AFM local-moment backgro
~with reduced magnitude relative to the AFM phase of t
conventional Hubbard model!. In the spin-flux phase, the
kinetic-energy term in Eq.~3! exhibits broken symmetry a
though a spin-orbit interaction has been added. Howeve
is distinct from the smaller, conventional spin-orbit effec
which give rise to anisotropic corrections to superexcha
interactions between localized spins in the AFM.15 In the
presence of charge carriers this mean field is unstable to
proliferation of topological fluctuations~magnetic solitons!
which eventually destroy AFM long-range order. In th
sense, the analysis which we present below goes bey
simple mean-field theory. The quantum dynamics of th
magnetic solitons, described by the configuration-interact
method, corresponds to tunneling effects not contained in
Hartree-Fock approximation. For simplicity, throughout th
paper we assume that the mean-field spin flux parameterTi j

are given by the simplest possible choiceT12521,T23

5T345T4151 ~see Fig. 1!. In order to go beyond a mean
field description of the spin-flux, these matrices may also
treated as dynamical variables. In this paper, we go bey
mean-field theory in describing the antiferromagnetic d
grees of freedom, but restrict ourselves to a mean-field mo
of the spin flux.

FIG. 1. Choice of the gauge for describing the mean-field sp
flux background. Physical observables depend on the rotation
trices Ti j only through the plaquette matrix productT12T23T34T41.
Shown above is the simplest~spin independent! gauge choice de-
scribing a 2p rotation of the internal coordinate system of the ele
tron ~described by three Euler angles! as it encircles an elementar
plaquette. To our knowledge, this is a new form of spontane
symmetry breaking for a strongly interacting electron system,
which the mean-field Hamiltonian acquires a term with the symm
try of a spin-orbit interaction. This is a dynamical consequence o
nearest-neighbor Coulomb repulsionV which is comparable to the
nearest-neighbor hopping matrix elementt.
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III. HARTREE-FOCK RESULTS FOR THE SPIN-FLUX
MODEL

The configuration-interaction method utilizes a line
combination of judiciously chosen Hartree-Fock wa
functions.10,3 In this section, we provide a short review of th
relevant Hartree-Fock results for the spin-flux model. A f
comparison between the HFA for the spin-flux model and
conventional Hubbard model was published elsewhere.9

A. Static Hartree-Fock approximation

One of the most widely used approximations for t
many-electron problem is the static Hartree-Fock approxim
tion. In this approximation the many-body problem is r
duced to one-electron problems in which each elect
moves in a self-consistent manner depending on the m
field potential of the other electrons in the system. While t
method is insufficient, in itself, to capture all of the physi
of low-dimensional electronic systems with strong corre
tions, it provides a valuable starting point from which ess
tial fluctuation corrections can be included. In particular,
use the Hartree-Fock method to establish the electronic s
ture and the static energies of various magnetic soliton st
tures. In the more general CI variational wave function,
solitons acquire quantum dynamics and describe large am
tude tunneling and fluctuation effects that go beyond me
field theory.

In the HF approximation, the many-body wave functi
uC& is decomposed into a Slater determinant of effect
one-electron orbitals. The one-electron orbitals are fou
from the condition that the total energy of the system
minimized:

d
^CuHuC&

^CuC&
50. ~4!

In order to approximate the ground state of the spin-fl
Hamiltonian@Eq. ~3!#, we consider a Slater determinant tri
wave function of the form

uC&5 )
p51

Ne

ap
†u0&, ~5!

where u0& is the vacuum state,Ne is the total number of
electrons in the system, and the one-electron states are g
by

an
†5(

is
fn~ i ,s!cis

† . ~6!

Here the one-particle wave-functionsfn( i ,s) form a com-
plete and orthonormal system.

Using wave function~5! in Eq. ~4!, and minimizing with
respect to the one-particle wave functionsfn( i ,s), we ob-
tain the Hartree-Fock eigenequations

Enfn~ i ,a!52t (
j PVi ,b

Tab
i j fn~ j ,b!1U

3(
b

S 1

2
dabQ~ i !2sW abSW ~ i ! Dfn~ i ,b!, ~7!
r

l
e

-
-
n
n-
s

-
-

c-
c-
e
li-
n-

e
d
s

x

en

where (sx ,sy ,sz) are the Pauli spin matrices and the char
density

Q~ i !5^Cucia
† ciauC&5 (

p51

Ne

ufp~ i ,a!u2 ~8!

and spin density

SW ~ i !5K CUcia
† sW ab

2
cibUCL 5 (

p51

Ne

fp* ~ i ,a!
sW ab

2
fp~ i ,b!

~9!

must be computed self-consistently. The notationj PVi ap-
pearing in Eq.~7! means that the sum is performed over t
sites j which are nearest neighbors of the sitei. The self-
consistent Hartree-Fock equations~7–9! must be satisfied by
the occupied orbitalsp51, . . . ,Ne , but can also be used t
compute the empty~hole! orbitals.

The ground-state energy of the system in the HFA
given by

EGS5^CuHuC&5 (
p51

Ne

Ep2U(
i

S 1

4
Q~ i !22SW ~ i !2D ,

~10!

where the single particle energies are obtained from Eq.~7!.
The approximation scheme described above is called

unrestricted Hartree-Fock approximation, because we did
impose constraints on the wave functionuC& which would
require it to be an eigenfunction of various symmetry ope
tions which commute with Hamiltonian~3!. If these symme-
tries are enforced, the method is called the restricted Hart
Fock approximation. We use the unrestricted HFA, since
leads to lower energies. The breaking of symmetries in
case implies that electronic correlations are more effectiv
taken into account.16 The restoration of these symmetries
deferred until the CI wave function is introduced.

In the undoped ~half-filled! case, the self-consisten
Hartree-Fock equations can be solved analytically for an
finite system, using plane-wave one-particle wave functio
In the unrestricted Hartree-Fock approach, doping the sys
leads to the appearance of inhomogeneous solutions, w
break the translational invariance. In this case, we solve
unrestricted self-consistent Hartree-Fock equations num
cally on a finite lattice. Starting with an initial spin an
charge distributionsSW ( i ) andQ( i ), we numerically solve the
eigenproblem@Eq. ~7!# and find the HF eigenenergiesEn and
wave functionsfn( i ,a). These are used in Eqs.~8! and ~9!
to calculate the new spin and charge distribution, and
procedure is repeated until self-consistency is reached.
merically, we define self-consistency by the condition th
the largest variation of any of the charge or spin compone
on any of the sites of the lattice is less that 1029 between
successive iterations.

B. Undoped ground state

For the undoped system, Hartree-Fock equations~7! for
an infinite system are easily solved. In the cuprates, lo
range AFM order is experimentally observed. According
we choose a spin distribution at the sitei 5eW xi xa1eW yi ya of
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the formSW ( i )5(21)( i x1 i y)SeW , whereeW is the unit vector of
some arbitrary direction, while the charge distribution
Q( i )51. In the spin-flux phase, it is convenient to choos
square unit cell, in order to simplify the description of theTi j

phase factors. We make the simplest gauge choice com
ible with the spin-flux condition for theT matrices, namely,
that 2T125T235T345T4151 ~see Fig. 1!. This leads to the
reduced square Brillouin zone2p/2a<kx<p/2a,2p/2a
<ky<p/2a. A detailed comparison of the Hartree-Fock e
ergies of the spin-flux phase relative to that of the cor
sponding non-spin-flux phase were presented elsewhe14

Here it was shown that in the range ofU/t and doping rel-
evant to high-Tc superconductors, a uniform spin-flux sta
has a lower Hartree-Fock energy than a conventional sp
antiferromagnet. From the Hartree-Fock equations we
two electronic bands, characterized by the dispersion r
tions

Es f
(6)~kW !56Es f~kW !56Aes f

2 ~kW !1~US!2, ~11!

where each level is fourfold degenerate andes f(kW )5

22tA@cos(kxa)#21@cos(kya)#2 are the noninteracting electro
dispersion relations in the presence of spin flux. The
ground-state energy of the spin-flux AFM background
given by @see Eq.~10!#

EGS
s f 524(

kW
Es f~kW !1N2US S21

1

4D , ~12!

where the AFM local-moment amplitude is determined
the self-consistency condition~9!:

S5
2

N2 (
kW

US

Es f~kW !
. ~13!

At half-filling the valence band (Es f
(2)(k),0) is com-

pletely filled, the conduction band (Es f
(1)(k).0) is com-

pletely empty, and a Mott-Hubbard gap of magnitude 2US
opens between the valence and conduction bands.
ground state of the undoped spin-flux model is an AFM M
insulator. It is interesting to note that the quasiparticle d
persion relation obtained in the presence of the spin flux@Eq.
~11!# closely resembles the dispersion as measured thro
angle-resolved photoemission spectroscopy~ARPES! in a
compound such as Sr2CuO2Cl2 ~Ref. 17! ~see Fig. 2!. There
is a large peak centered at (p/2,p/2) with an isotropic dis-
persion relation around it, observed on both the (0,0)
(p,p) and (0,p) to (p,0) lines. The spin-flux model in the
HFA exhibits another smaller peak at (0,p/2) which was
observed in more recent experimental data.18 The quasipar-
ticle dispersion relation of the conventional Hubbard mo
(T125T235T345T4151) has a large peak at (p/2,p/2) on
the (0,0) to (p,p) line ~see Fig. 2!, but it is perfectly flat on
the (0,p) to (p,0) line ~which is part of the large neste
Fermi surface of the conventional 2D Hubbard model!. Also,
it has a large crossing from the upper to the lower band e
on the (0,0) to (0,p) line. This dispersion relation is ver
similar to that of thet-J model ~see Ref. 17!.

While both the conventional and spin-flux models pred
AFM insulators at half-filling~at least at the HF level!, the
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spin-flux model also provides a much better agreement w
the dispersion relations, as measured by ARPES. As in
1D case,3 the effect of doping is the appearance of discr
levels deep inside the Mott-Hubbard gap. These levels
drawn into the gap from the top~bottom! of the undoped
valence~conduction! bands. Accordingly, the type of excita
tions created by doping depends strongly on the topology
the electronic structure near the band edges.

C. Charged solitons in the doped insulator: Spin bag and
meron vortex

1. Spin bag

If we introduce just one hole in the plane, the se
consistent HFA solution is a conventional spin polaron
‘‘spin bag’’ @see Fig. 3~a!#. This type of excitation is the 2D
analog of the 1D spin polaron.3 The doping hole is localized
around a particular site, leading to the appearance of a s
ferromagnetic core around that site. The spin and charge
tribution at the other sites are only slightly affected. In fa
the localization length of the charge depends onU/t, and
becomes very large asUS→0, since in this limit the Mott-
Hubbard gap closes. For intermediate and largeU/t, the dop-
ing hole is almost completely localized on the five sites
the ferromagnetic core.

FIG. 2. A comparison between the experimentally determin

E(kW ) quasiparticle dispersion relation, from angle-resolved pho
emission studies~ARPES!, for the insulating Sr2CuO2Cl2 ~open
circles with error bars! and the HF AFM spin-flux model dispersio
relation ~full line! and the HF AFM conventional Hubbard mod

dispersion relation~dash-dotted line!. Three directions inkW space
are shown: (0,0) to (p,p), (p,0) to (0,0), and (p,0) to (0,p).
While the peak in the (0,0) to (p,p) direction is equally well
described in both models, the mean-field spin-flux model give
much better agreement for the (p,0) to (0,0) and (p,0) to (0,p)
directions. The fitting corresponds toU52.01 eV andt50.29 eV
for the spin-flux phase, andU51.98 eV andt50.21 eV in the
conventional phase. The experimental results are the ARPES re
of Ref. 17.
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The spin bag is a charged fermion, as can be seen
direct inspection of its charge and spin distributions. This
also confirmed by its electronic structure@see Fig. 3~b!#. The
spin bag is accompanied by a total of four discrete levels
split off from the valence band and conduction band. T
localized electronic states emanate from the top and bot
of the valence band. Two more such localized levels ema
from the top and bottom of the conduction band. Of the
four discrete levels only the state below the valence ban
occupied. The occupation of this low-lying bound level by
spin-12 electron ensures that the overall spin-bag configu
tion is a charged fermion. The occupied continuum state
the valence band are spin paired, and do not contribute to

FIG. 3. ~a! Self-consistent spin distribution of a 10310 lattice
with a spin bag centered at~5,5!. The spin bag has a small ferro
magnetic core, and the magnetic order is only locally affected.~b!
Electronic spectrum of a spin bag on a 10310 lattice, forU/t55 in
the spin-flux model. EigenenergiesEa are plotted as a function o
a51,200(52N2). Only the first N221599 states are occupied
There are two empty bound discrete levels deep in the M
Hubbard gap (a5100 and 101!, one of which comes from the
valence band of the undoped AFM compound~see the inset!. There
is also an occupied discrete level below the valence band (a51).
The valence band is spin paired, since it has an even numbe
levels. Thus the total spin of the spin bag comes from the disc
occupied level below the valence band. The spin bag is a char
spin-12 fermion.
by
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overall spin of this collective mode. Thus the 2D spin bag
indeed the analog of the 1D spin polaron.3

2. Meron vortex

The 2D analog of the 1D charged domain wall is t
meron vortex~see Fig. 4!. Like the 1D domain wall, the
meron vortex~antivortex! is also a topological excitation

t-

of
te
d,

FIG. 4. ~a! Self-consistent spin distribution of a 10310 lattice
with a meron vortex in the spin-flux phase. The core of the mero
localized in the center of a plaquette, in the spin-flux phase~in the
conventional phase, the core of the meron vortex is localized
site!. This excitation has a topological winding number 1, since
spins on either sublattice rotate by 2p on any curve surrounding the
core. The magnitude of the staggered magnetic moments is slig
diminished near the vortex core, but is equal to that of the undo
AFM background far from the core.~b! Electronic spectrum of a
meron vortex on a 10310 lattice, forU/t55, in the presence of the
spin flux. EigenenergiesEa are plotted as a function ofa
51,200(52N2). Only the firstN221599 states are occupied~the
valence band!. There are two discrete empty levels deep in t
Mott-Hubbard gap, one of which (a5100) comes from the valenc
band of the undoped AFM parent. Merons must be created
vortex-antivortex pairs~for topological reasons!. Each pair removes
two levels from the undoped AFM valence band. Thus the vale
band remains spin paired, and the total spin of this excitation
zero. This meron is a spinless, charged, bosonic collective ex
tion of the doped antiferromagnet.



rte
re
r

n
e

in
u

nt
d

his
o

te

f

it
-
e
at
e

u
pe
s a
.

rte
in
a
T
s
ie
in
cu

e
rg
io
o
a

, t
d
pa
ta
ro

in
te
M

, t
ce
b
ur

ing
r of

e
an-
the
of

re-
the
gi-
be-
his
nal

d

r is
ion
is of
the

he
ing
the
ron

o

16 460 PRB 61MONA BERCIU AND SAJEEV JOHN
characterized by a topological winding number11 (21)
@the spins on each sublattice rotate by 2p (22p) on any
closed contour surrounding the center of the meron vo
~antivortex!#. As such, a single meron vortex cannot be c
ated in an extended AFM background with cyclic bounda
conditions by the introduction of a single hole@just as a
single isolated charged domain wall cannot be created o
AFM ~even! chain with cyclic boundary conditions, by th
introduction of a single hole#. From a topological point of
view, this is so because the AFM background has a wind
number 0, and the winding number must be conserved,
less topological excitations migrate over the boundary i
the considered region. However, excitations can be create
pairs of total topological number 0. In the 1D case, t
means the creation of pairs of domain walls, while in tw
dimensions this means the creation of vortex-antivor
pairs.

From Figs. 4~a! and 4~b!, we can see that the total spin o
the meron vortex~antivortex! is zero, while it carries the
doping charge trapped in the vortex core. Moreover, from
electronic spectrum@Fig. 4~b!#, we can see that only the ex
tended states of the valence band are occupied. They ar
only ones contributing to the total spin. Since only one st
is drawn from the valence band into the gap, to becom
discrete bound level, it appears that an odd~unpaired! num-
ber of states remains in the valence band. However, one m
remember that, for topological reasons, merons must ap
in vortex-antivortex pairs. Therefore, the valence band ha
even number of~paired! levels, and the total spin is zero
This argument for the bosonic character of the meron vo
is identical to that for the charged domain wall
polyacetylene.13,19,20 This shows that the net spin of
charged meron plus a charged antimeron is always zero.
fact that the individual meron and antimeron are spinles
evident from the fact that neither of them have an occup
localized electronic state. This is very different from the sp
bag, which acquired its fermionic character through an oc
pied discrete level below the valence band.

Unlike in the 1D case,3 we cannot directly compare th
excitation energy of the spin bag with the excitation ene
of the meron vortex. The reason for this is that the excitat
energy of the latter increases logarithmically with the size
the sample, and therefore an isolated meron vortex is alw
energetically more expensive than a spin bag. However
pology requires that merons and antimerons are create
pairs. The excitation energy of such a meron-antimeron
is finite, allowing a meaningful comparison between exci
tion energies of a pair of spin bags and a meron-antime
pair.

3. Meron-antimeron pair

In Figs. 5~a! and 5~b! we show the self-consistent sp
and charge distributions for the lowest-energy self-consis
HF configuration found when we add two holes to the AF
background, in the spin-flux model, forU/t55. This con-
figuration consists of a meron and an antimeron centered
second-nearest-neighbor sites. As a result of interactions
cores of the vortices are somewhat distorted. If the vorti
were uncharged, vortex-antivortex pair annihilation would
possible. However, for charged vortices, the fermionic nat
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of the underlying electrons prevents two holes from be
localized at the same site, in spite of the bosonic characte
the collective excitation.

A very interesting feature of this configuration is th
strong topological attraction between the vortex and the
tivortex. The closer the two cores are to each other,
smaller the region is in which the spins are rotated out
their background AFM orientation by the vortices, and the
fore the smaller the excitation energy of the pair is. Since
holes are localized in the cores of the vortices, this topolo
cal attraction between vortices is an effective attraction
tween holes in the purely repulsive 2D electron system. T
effect is unique to the spin-flux phase. In the conventio

FIG. 5. ~a! Self-consistent spin distribution for a tightly boun
meron-antimeron pair. The meron~M! and antimeron~A! are local-
ized on neighboring sites. The total winding number of the pai
zero. The magnetic AFM order is disturbed only on the reg
where the vortices are localized. The attraction between holes
topological nature, and on a long length scale is stronger than
unscreened Coulomb repulsion between charges.~b! Self-consistent
charge distribution for a tightly bound meron-antimeron pair. T
doping charge is mostly localized on the two plaquettes contain
the meron and antimeron cores. The two holes localized in
vortex cores are responsible for the fact that the meron-antime
pair does not collapse~due to Fermi statistics, it is impossible t
have two holes at the same site!.
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Hubbard model, vortices are not stable excitations. In
spin-flux phase, the vortex-antivortex attraction increase
the logarithm of the distance between the cores. Theref
the pair of vortices remains bound even in the presenc
Coulomb repulsion between the charged cores. Eventuall
long distances the charge carriers can overcome their l
rithmic attraction by decaying into a pair of spin bags. F
this to occur the logarithmic exchange energy cost wo
need to exceed the kinetic energy of delocalization gained
the moving meron-antimeron pair. In the doping range r
evant to superconductivity, this would only occur if th
meron-antimeron pair were pulled further apart than
~doping-dependent! antiferromagnetic correlation length. A
a result, the decay of a meron-antimeron pair into a pai
spin bags is not realized in practice. The logarithmic attr
tive force provides a compelling scenario for the existence
strongly bound preformed pairs in the underdoped regim

There is another possible self-consistent state for the
tem with two holes, consisting of two spin bags far fro
each other~such that their localized wave functions do n
overlap!. The excitation energy of such a pair of spin bags
simply twice the excitation energy of a single spin ba
When this excitation energy is compared to the excitat
energy of the tightly bound meron-antimeron pair, we fi
that it is higher by 0.15t ~for U/t55). In fact, forU/t,8 the
HFA predicts that the meron-antimeron pair is the lo
energy charged excitation, while forU/t.8, the spin bag is
the low-energy charge carrier. This is analogous with
situation in one dimension, where the spin bag was predic
to be the low-energy excitation forU/t.6.5, in the HFA.3

As in one dimension, however, we expect that this conc
sion will be drastically modified once the charged solito
are allowed to move along the planes and the lowering
kinetic energy through translations is also taken into con
eration.

We complete this review of the HF results by pointing o
that the strong analogy between the 1D Hubbard model
the 2D spin-flux model is due to the similarity between t
electronic structures at zero doping. As seen from Fig. 2,
2D spin-flux model has isotropic dispersion relations ab
the (p/2,p/2) point. This acts as a Fermi point for the no
interacting system as it does in the 1D system. The
empty discrete levels drawn deep inside the Mott-Hubb
gap in the presence of the meron-vortex split from
(p/2,p/2) peaks of the electron dispersion relation. The d
ferent topology of the large nested Fermi surface of the c
ventional Hubbard model leads to an instability of t
meron-antimeron pair. In fact, in the conventional Hubba
model doping holes assemble in charged stripes, as opp
to the liquid of meron-antimeron pairs, which is the low
energy state of the doped spin-flux model.

IV. CONFIGURATION INTERACTION METHOD
RESULTS FOR THE 2D SYSTEM

A. Configuration interaction method

The essence of the CI method is that the ground-s
wave function, for a system withNe electrons, is not repre
sented by just a singleNe3Ne Slater determinant~as in the
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HFA!, but a judiciously chosen linear combination of su
Slater determinants.10 Given the fact that the set of all pos
sible Slater determinants~with all possible occupation num
bers! generated from a complete set of one-electron orbi
constitute a complete basis of theNe-particle Hilbert space,
our aim is to pick out a subset of Slater determinants wh
captures the essential physics of the exact solution.

Consider the CI ground-state wave function given by

uC&5(
i 51

N

a i uC i&, ~14!

where eachuC i& is a distinctNe3Ne Slater determinant, and
the coefficientsa i are chosen to satisfy the minimizatio
principle

d

da i
S ^CuHuC&

^CuC& D50, i51,N. ~15!

This leads to the system of CI equations

(
j 51

N

Hi j a j5E(
j 51

N

Oi j a j , i 51,N, ~16!

whereE5^CuHuC&/^CuC& is the energy of the system i
the uC& state,Hi j 5^C i uHuC j& are the matrix elements o
the Hamiltonian in the basis of Slater determinants$uC i&,i
51,N%, andOi j 5^C i uC j& are the overlap matrix element
of the Slater determinants~which are not necessarily or
thogonal!. The CI solution is easily found by solving th
linear system of equations~16!, once the basis of Slater de
terminants $uC i&,i 51,N% is chosen. If we denote by
fp

(n)( i ,s) thep51, . . . ,Ne one-electron occupied orbitals o
the Slater determinantuCn&, these matrix elements are give
by

Onm5U b1,1
nm . . . b1,Ne

nm

A A

bNe,1
nm

. . . bNe ,Ne

nm U . ~17!

The matrix elements of Hamiltonian~3! can be written as

Hnm52t•Tnm1U(
i

Vnm~ i !, ~18!

where the expectation values of the hopping and on-site
teraction terms are:
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Tnm5 (
p51

Ne U b1,1
nm . . . t1,p

nm . . . b1,Ne

nm

A A A

bNe,1
nm

. . . tNe ,p
nm

. . . bNe ,Ne

nm U
and

Vnm~ i !5 (
p1Þp2

U b1,1
nm . . . u1,p1

nm ~ i ! . . . d1,p2

nm ~ i ! . . . b1,Ne

nm

A A A A

bNe,1
nm

. . . uNe ,p1

nm ~ i ! . . . dNe ,p2

nm ~ i ! . . . bNe ,Ne

nm U .
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bph
nm5(

is
fh

(n)* ~ i ,s!fp
(m)~ i ,s!,

tp1 ,p2

nm 5(
^ i , j &
ab

@fp1

(n)* ~ i ,a!Tab
i j fp2

(m)~ j ,b!1H.c.#,

up1 ,p2

nm ~ i !5fp2

(n)* ~ i↑ !fp1

(m)~ i↑ !,

and

dp1 ,p2

nm ~ i !5fp2

(n)* ~ i↓ !fp1

(m)~ i↓ !.

We now consider the specific choice of the Slater de
minant basis$uC i&,i 51, . . . ,N%. Strictly speaking, one may
choose an optimized basis of Slater determinants from
general variational principle:

d

dfp
(n)~ i ,s!

S ^CuHuC&

^CuC& D50, n51,N, p51,Ne . ~19!

However, implementation of this full trial-function minimi
zation scheme~also known as a multireference se
consistent mean-field approach16! is numerically cumber-
some even for medium-sized systems. Instead, we selec
Slater determinant basis$uC i&,i 51,N% from the set of bro-
ken symmetry, unrestricted Hartree-Fock wave functio
@Eq. ~5!#, their symmetry-related partners, and their exci
tions. Clearly, Eq.~5! satisfies Eq.~19! by itself, provided
that thea coefficients corresponding to the other Slater d
terminants in Eq.~14! are set to zero@see Eq.~4!#. Since this
unrestricted HF wave function is not translationally invaria
~the doping hole is always localized somewhere on the
tice!, we can restore the translational invariance of the
ground-state wave function by also including in the basis
Slater determinants all the possible lattice translations of
unrestricted HF wave function. Furthermore, if the se
consistent configuration is not rotationally invariant~e.g., a
meron-antimeron pair!, all possible rotations must be pe
formed as well. By rotation we mean changing the relat
position of the meron and antimeron while keeping their c
ter of mass fixed.

Clearly, all the translated HF Slater determinants lead
the same HF ground-state energy^CnuHuCn&5EGS as de-
r-
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fined by Eq.~10!. The CI method lifts the degeneracy b
tween states with the hole-induced configuration localized
different sites@see Eq.~16!#, thereby restoring translationa
invariance. We may identify the lowering in the total ener
due to the lifting of this degeneracy as quantum-mechan
kinetic energy of deconfinement which the doping-induc
configuration saves through hopping along the lattice. In
dition, quantum fluctuations in the internal structure of
magnetic soliton can be incorporated by including t
lowest-order excited-state configurations of the sta
Hartree-Fock energy spectrum. Such wave functions
given by ap

†ahuC&, wherep.Ne labels an excited particle
state andh<Ne labels the hole which is left behind@see Eq.
~5!#. Once again, all possible translations~and nontrivial ro-
tations! of these ‘‘excited’’ configurations must be include
in the full CI wave function. These additions can descri
changes in the ‘‘shape’’ of the soliton as it undergo
quantum-mechanical motion along the plane. However, s
particle-hole-excited configurations have much higher en
gies than the ground-state HF configurations. This is due
the fact that the valence band is filled at all dopings,
particle-hole excitations involve at least the excitation of
electron from the valence band to one of the empty midg
electronic levels trapped in the vortex cores, raising the to
energy by roughlyU/2. As a result, these much highe
energy states do not contribute significantly to the CI grou
state, but rather to states higher up on the dispersion c
~roughly fromU/2 above the CI ground-state energy!. In this
paper we concentrate on the CI ground states. Accordin
we do not include such high-energy particle-hole-exci
states in the set of Slater determinants$uC i&,i 51, . . . ,N%.

The CI method was described in more detail in Ref.
where it was used to study the 1D Hubbard chain in orde
gauge its accuracy by comparing its results with the ex
Bethe ansatz solution. We showed that the CI method rec
tures the essential physical features of the exact solutio
the 1D Hubbard chain, such as spin-charge separation
well as leading to a remarkable agreement of ground-s
energies of doped chains for all values ofU/t. The main
difference between the 1D and 2D cases is the computa
time required. The computation time for one matrix eleme
Hnm scales roughly likeN9, whereN is the number of sites
The number of configurations included in the CI set scales
N!/Ns!(N2Ns)! when Ns solitons are present. For both a
N-site chain and anN3N lattice, the HF ‘‘bulk’’ limit is
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reached forN>10. In the 1D case3 we used chains withN
510–25, and numerical calculations can be easily p
formed. However, in two dimensions the smallest accepta
system has 100 sites, leading to an enormous increase i
computation time. Nevertheless, our sample of results in
dimensions suggests a simple and clear physical pic
which we describe below.

B. Spin-bag dissociation: Spin-charge separation precursor
effects in two dimensions

The charged spin bag carries a spin of 1/2. L
uC1&,uC2& be the HF determinants for a spin bag cente
at any two nearest-neighbor sites, respectively, and leŜz

5( i Ŝz( i )5 1
2 ( i ,sscis

† cis be the total spin operator in thez

direction. ThenŜzuC1&5 1
2 uC1& while ŜzuC2&52 1

2 uC2&
~or vice versa!, since moving the center of the spin bag
one site leads to a flip of its total spin@see Fig. 3~a!#. Con-
sequently,^C2uC1&50. Since the Hubbard Hamiltonia
commutes withŜz , it follows that ^C2uHuC1&50. From
the CI equation~16! we conclude that there is no mixin
between states with different total spins. As a result, it
enough to include in the CI set only those configuratio
with the spin bag localized on the same magnetic sublatt
Let us denote byuC (0,0)& the initial static Hartree-Fock con
figuration, and by uC (n,m)& the configuration obtained
through its translation byn sites in thex direction andm sites
in the y direction ~cyclic boundary conditions are imposed!.
The condition that only configurations on the same sublat
are included means thatn1m must be an even number, an
the cyclic boundary conditions mean that 0<n<N21,0
<m<N21, for aN3N lattice. As explained in detail in the
1D analysis,3 mixing configurations with the charged sp
bag localized at different sites and then subtracting out
contribution of the undoped AFM background allows us
calculate the dispersion band of the spin bag itself:

Esb~kW !5E~kW ,N!2N2eGS. ~20!

Here the total energy of the lattice with the spin bag,

E~kW ,N!5
^CkWuHuCkW&

^CkWuCkW&
,

and the CI wave function,

uCkW&5 (
(n,m)

exp@ i ~kxn1kym!a#uC (n,m)&,

are the solutions of the CI equations~16!. The finite size of
the lattice and cyclic boundary conditions restricts the cal
lation to kW points of the formkW52p/Na(aeW x1beW y), where
(a,b) is any pair of integer numbers. As usual, onlykW points
inside the first Brillouin zone need to be considered.

An analysis of the dependence of the spin-bag disper
relation Esb(kW ) on the sizeN3N of the lattice is shown in
Fig. 6, for the conventional Hubbard model~upper panel!
and the spin-flux model~lower panel!, andU/t55. We used
636, 838, 10310 and~only for the spin-flux model! 12
312 lattices. The dispersion relation is plotted along lines
high symmetry of the full Brillouin zone. For compariso
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we also show the excitation energyEsb
HF obtained in the static

HFA as a full line. For both models, we see that the spin-b
dispersion band is almost converged, even though we u
quite small lattices. The convergence is somewhat slowe
the spin-flux case, as seen most clearly at the~0,0! point.
Although the values obtained from the four lattices all diff
at ~0,0!, the extremum values correspond to the 636 and 8
38 lattices, while the values for the 10310 and 12312
lattices are indistinguishable. We conclude that the fit@Eq.
~20!# is legitimate.

From Fig. 6 we also see that the dispersion relations
the spin bag in the two different models are very differe
The dispersion relations over the full 2D Brillouin zone a
shown in Fig. 7, and they are seen to mimic the electro
dispersion relation of the underlying undoped AFM bac
ground, shown in Fig. 2. This is consistent with the qua
particle nature of this charged spin-1

2 spin bag. In the con-
ventional Hubbard model, the undoped AFM backgrou
has a large nested Fermi surface along the (0,p) to (p,0)

FIG. 6. Dispersion relation of the charged spin bagEsb(kW ) ~in
units of t) plotted along lines of high symmetry in the Brilloui
zone. The upper plot shows the dispersion band of the spin ba
the conventional model, while the lower one shows the dispers
band of the spin bag in the spin-flux model.U/t55 in both cases.
Circles, squares, diamonds, and triangles show the results obta
from CI analysis of 636, 838, 10310, and 12312 lattices. We
conclude that the results are already almost converged, even
such small lattices. The full lines show the excitation energy of
spin bag at the static HF level.
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line, and it is exactly along this line that the spin bag disp
sion band has a minimum. Similarly, the lowest energy
the spin bag of the spin-flux model is at (p/2,p/2), corre-
sponding to the Fermi points of the underlying undoped sp
flux AFM background.

The extra kinetic energyEsb(p/2,p/2)2Esb
HF saved by

the spin bag through quantum hopping is 0.37t in the con-
ventional model and 0.56t in the spin-flux model~for U/t
55). Since the spin bag is confined to one magnetic sub
tice, it must tunnel two lattice constants to the next allow
site. Consequently, the energy gained through hopping~of
order t2/U) is small. This is displayed, for the spin bag
the spin flux model, in Fig. 8, where we plot the lowering
kinetic energy of the deconfined spin bagEsb(p/2,p/2)
2Esb

HF as a function oft/U. A similar dependence for the
spin bag of the conventional Hubbard model was presen

FIG. 7. Dispersion band of the spin bag in the conventio
model ~upper panel! and the spin-flux model~lower panel!, for
U/t55. We show the full 2D Brillouin zone (k is measured in units
of p/a). The spin-bag dispersion relations have the same symm
as the dispersion relations of the underlying undoped AFM ba
ground, shown in Fig. 2. While the (p/2a,p/2a) point corresponds
to the minimum excitation energy of the spin-flux spin bag, in t
conventional model all points along the (0,p) to (p,0) direction
have almost the same energy.
-
f

-

t-
d

d

elsewhere.10 As in the 1D case, we conclude that the sp
bag in two dimensions is a rather immobile quasiparticlel
excitation.

In the 1D model it is energetically favorable for the im
mobile spin bag to decay into a charged bosonic domain w
and a neutral fermionic domain wall, resulting in spin-char
separation.3 The analog of the 1D charged bosonic doma
wall is the 2D charged bosonic meron vortex of the spin-fl
model. If the spin bag decays into a charged meron-vorte
magnetic antivortex must also be created for topological r
sons. Unlike the pair of domain walls in the 1D case, t
vortex-antivortex pair is tightly bound by a topological bin
ing potential that increases as the logarithm of the vort
antivortex separation. Therefore, we expect that the dop
charge is shared between the two magnetic vortices.
technical problem for testing this hypothesis is that suc
configuration~a vortex-antivortex pair sharing one dopin
hole! is not self-consistent at the static Hartree-Fock level.
the static approximation we require two doping holes to s
bilize two vortex cores and create a meron-antimeron p
We can, however, construct a trial wave function to descr
the singly charged vortex-antivortex pair, by adding o
electron in the first empty state of the self-consistent dou
charged meron-antimeron configuration. The first empty l
els of the meron-antimeron pair are the localized lev
bound in the vortex cores, two for each vortex@see Fig.
4~b!#. Because of degeneracy between the two lower disc
levels of the pair, we have in fact two distinct trial wav
functions, obtained by adding one electron in either of th
two lower localized gap electronic states of a self-consist
meron-antimeron pair. These wave functions are not inv
ant to rotations~see Fig. 5!. Therefore, in the CI set of Slate
determinants we must include the configurations obtai
throughp/2 rotations of the vortex-antivortex pair about i
fixed center of mass in addition to translated configuratio
As a result, we have a total of 8N2 configurations describing

l

ry
-

FIG. 8. The extra kinetic energy~in units of t) gained by the
spin bagDE5Esb(p/2,p/2)2Esb

HF ~circles! as a function oft/U.
The log-log graph clearly shows the linear dependence. Thi
expected, since the spin bag must tunnel two sites to the nex
lowed position. This is a second-order hopping process, and th
fore this charged excitation is rather immobile.
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the singly charged vortex-antivortex pair localized at all p
sible sites with all possible orientations about the cente
mass.

We performed this CI analysis for a 10310 lattice and
U/t55. The HF energy of a simple static spin bag
20.82t ~measured with respect to the HF energy of the
doped AFM background, equal to276.76t). The energy of
the static singly charged vortex-antivortex pair is20.23t.
Thus we see that because this singly charged pair trial w
function is not self-consistent, in the static case this confi
ration is energetically much more costly than the se
consistent spin-bag configuration. However, if we allow
quantum motion of these configurations, the situat
changes dramatically. Performing a CI analysis for the se
all possible translated spin-bag configurations, we find t
the energy of the spin bag is lowered to21.24t. Performing
a CI analysis for the set of all translated and rotated sin
charged vortex-antivortex pairs, we find that this configu
tion’s energy is lowered to22.18t. This shows that the
vortex-antivortex pair has lowered its translational and ro
tional kinetic energy by almost 2t, thereby becoming a low
energy charge carrier. This large number is not surpris
since, unlike the spin bag, the vortex-antivortex pair is
constrained to motion on one magnetic sublattice. As a
sult, such configurations lower their kinetic energy by
amount on the scale oft, as opposed tot2/U for the spin-bag
configuration. For largerU/t values this effect is even mor
pronounced.

We conclude that these results strongly support the
pothesis of spin-bag dissociation into a much more mo
singly charged vortex-antivortex pair, analogous to the
spin-bag dissociation into a pair of a charged bosonic dom
wall and a neutral fermionic domain wall.3 Unlike in the 1D
case, however, we do not have distinct charge and spin
riers for the composite excitation. Instead, the spin a
charge are shared equally between the vortex and antivo
If, on the other hand, there was a mechanism whereby
vortices became unbound, complete spin-charge separ
could occur, in which one vortex traps the hole~and is there-
fore a charged meron! and the other vortex carries the spi
in a lotus-flower12,13 ~or undoped magnetic meron! configu-
rations. At very low doping, the strong vortex-antivortex t
pological attraction binds the spin and charge together. T
is different from the 1D case, where the absence of lo
range interactions between the domain walls allow fo
complete spin-charge separation even if there is just one
ing hole on the chain, and even at zero temperature.

This scenario opens an avenue for research into how
system evolves with doping. If each hole is dressed int
singly charged vortex-antivortex pair, when two such pa
overlap it is possible that both doping charges move to
same pair, creating a more stable meron-antimeron pa
charged bosons. Such preformed charge pairs may cond
into a superconducting state at low temperatures. The o
uncharged vortex-antivortex pair may either collapse a
disappear~this is likely to happen at low temperatures! or
remain as a magnetic excitation of the system~at higher tem-
peratures!, mediating the destruction of the long-range AF
order, the renormalization of the spin-wave spectrum,
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the opening of the spin pseudogap. Thus, at higher dop
we effectively see spin-charge separation even in a t
dimensional system.

C. D-wave pairing of charge carriers

From the static HF analysis we found that the most sta
static self-consistent configuration with two doping hol
added to the AFM background of the spin-flux model is t
meron-antimeron pair, for 3,U/t,8. At larger U/t, two
charged spin bags become more stable, in the static HF
proximation. This is in close analogy to the prediction th
the spin bag is energetically more favorable than the st
charged domain wall forU/t.6.5, in the HFA of the 1D
Hubbard model.3 However, in the 1D case the charged d
main wall is considerably more mobile than the charged s
bag, gaining a kinetic energy on the order oft as opposed to
t2/U energy gained by the spin bag. As a result, when t
kinetic energy of deconfinement is taken into account wit
the CI method, the charged domain wall is found to be
relevant charged excitation for all values ofU/t. A similar
picture emerges in the 2D case, because the meron vor
are much more mobile than the spin bags.

For the 2D system, we have shown that the charged s
bag has a behavior very similar to that of the 1D charg
spin bag. The analog of the 1D charged bosonic domain w
is the 2D charged bosonic meron vortex. We now consi
the properties of the doubly charged meron-antimeron p
All the numerical results quoted in the rest of this secti
refer to a meron-antimeron pair on a 10310 lattice, in the
spin-flux model withU/t55.

As already discussed, the meron-antimeron pair is not
tationally invariant. We can find the rotational kinetic ener
saved by the pair as it rotates about its center of mass. In
present case, only four configurations need to be includ
corresponding to the four possible self-consistent arran
ments of the meron and antimeron about their fixed cente
mass ~see Fig. 9!. A simple rotation byp/2 of the one-
particle orbitalsfp( i ,s) about the center of mass is no
however, sufficient to generate the rotated configuratio
First of all, thep/2 rotation also changes the spin-flux p
rametrization. If the spin flux of the initial configuration i
T12521 and T235T345T4151, a p/2 rotation leads to a
state corresponding to the rotated configurationT1251,T23

FIG. 9. Schematic representation of the four different mer
antimeron pair configurations obtained throughp/2 rotation about
their fixed center of mass. The upper-left picture is a schem
representation of the self-consistent meron-antimeron pair show
Fig. 5.
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16 466 PRB 61MONA BERCIU AND SAJEEV JOHN
521, andT345T4151. Thus, following thep/2 rotation, a
unitary transformation must be performed in order to rest
the initial spin-flux parametrization. For the case cited abo
this simply implies the change in the one-particle orbit
fp( i x ,i y ,s)→2fp( i x ,i y ,s) for all sites (i x ,i y) which are
a type ’2’ site of the unit cell, in other words sites with eve
i x and oddi y ~also see Fig. 1!. The second observation is th
the rotation byp/2 also changes~flips! all the spins of the
AFM background surrounding the pair. Thus an extrap ro-
tation about an axis perpendicular to the lattice plane is n
essary to restore the alignment of the AFM background. F
lowing these transformations it is straightforward to gener
the Slater determinantsuC2&,uC3& and uC4& corresponding
to the meron-antimeron pairs rotated byp/2,p, and 3p/2
from the initial self-consistent HF meron-antimeron pair d
scribed byuC1&. The CI method can be used to find th
rotational energy saved by superposing these rotated me
antimeron configurations. The lowest CI energy found
0.46t below the energy of the static pair, and correspond
d-wave symmetry. By this we mean that the coefficientsa i ,
multiplying the four rotated states in the CI wave functi
uC&5( i 51

4 a i uC i&, satisfy the conditiona152a25a35
2a4.

Translation of a pair over the whole lattice can also
investigated. Since the pair does not carry any spin, all p
sible translations must be included~there is no restriction to
the same magnetic sublattice configurations!. This leads to a
total of N2 possible configurations for anN3N lattice.
Again, when various configurations are generated from
initial self-consistent HF meron-antimeron stateuC1&, care
must be taken to preserve the same spin-flux parametriza
and the same AFM background orientation. This can
achieved by performing transformations similar to the on
described above. As a result of performing the CI method
the set of translated states, we find the dispersion relatio
the ~unrotated! meron-antimeron pair. This is shown in Fi
10. In this plot we show the total energy of the lattice w
the moving meron-antimeron pair, as a function of the to
momentum of the pair. Quantum hopping of the mero

FIG. 10. Total energyE(kW ) ~in units of t) vs kW of the lattice with
a ~unrotated! meron-antimeron pair as a function of the total m

mentumkW of the pair. The momentum units arep/a. The HF en-
ergy of the static meron-antimeron pair is278.52t. Quantum hop-
ping lowers the overall energy of the pair by 1.29t. Since the
meron-antimeron configuration is not rotationally invariant, the d
persion relation is also not invariant top/2 rotations.
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antimeron pair lowers its total energy by an extra 1.29t. Two
other interesting features are observed in Fig. 10. The
one is that the dispersion relation of this rigidly polariz
pair is not invariant to rotations byp/2, as expected. More
important is that the minima of the dispersion relation occ
at the (p,p) points. Since the momentum of the pair is twic
the momentum of either the meron or the antimeron, this
consistent with the fact that, in their lowest-energy sta
both the meron and antimeron have momenta of (p/2,p/2)
in the spin-flux model. The doubling of the size of the Br
louin zone is also a direct consequence of this doubling
the total momentum~for comparison with undoped dispe
sion relation, see Fig. 2!.

However, to obtain the true energy of the charged pair,
must mix all 4N2 rotated and translated meron-antimer
configurations. All have the same static HF energy and
equally important in the CI method. LetuC0(0,0)& denote
the initial self-consistent static Hartree-Fock mero
antimeron configuration, anduCu(n,m)& denote the configu-
ration obtained through translation byn sites in thex direc-
tion andm sites in they direction, as well as a rotation by a
angle ofu(p/2) of the pair about its center of mass. He
0<u<3 and 0<n<N21,0<m<N21 ~cyclic boundary
conditions are imposed!. The CI wave functions are the
given by

uCkW&5 (
(n,m)

ei (kxn1kym)aS (
u50

3

auuCu~n,m!& D . ~21!

The dispersion relation

Epair~kW !5
^CkWuHuCkW&

^CkWuCkW&
2Epair

HF ,

obtained from this complete set, is shown in Fig. 11. T
reference point is the HF energy of the self-consist
meron-antimeron pairEpair

HF 5278.52t. Thus we see that the

-

FIG. 11. The lowest-energy dispersion bandEpair(kW ) ~in units

of t) as a function of the total momentumkW of the meron-antimeron
pair. The momentum units arep/a. For convenience, the referenc
energy is taken to be the static HF energy of the self-consis
meron-antimeron pair. Quantum hopping and rotation lowers
overall energy of the pair by 1.75t. The rotational symmetry of the
dispersion relation is restored~compared to Fig. 10!.
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total kinetic energy saved by the freely moving and rotat
meron-antimeron pair is 1.75t, when the total momentum o
the pair is (p,p). This energy equals the sum 0.46t11.29t
of rotational and translational kinetic energies found bef
~the number of significant figures indicates the estimated
curacy of the computational method!. The rotational invari-
ance of the dispersion band is also restored. Besides the
solute minima about the (p,p) points, there is a more
shallow minimum region about the (0,0) point.

The rotational symmetry of the meron-antimeron p
wave function, defined by the coefficients (au), is a function
of the total momentum carried by the pair, as shown in F
12. The absolute minima points (p,p) and the area aroun
them correspond to pairs with d-wave symmetry. By this,
mean that the coefficientsau have the form

au5 expS iJu
p

2 Da0 , ~22!

with J52, i.e.,a052a15a252a3. The core area, abou
the local minimum (0,0) point, corresponds to s-wave sy
metry. In this region the coefficients (au) again satisfy Eq.
~22!, but for J50, i.e.,a05a15a25a3. The intermediary
area appears to be a mixture of differentJ values. A simple
decomposition of the form of Eq.~22! is no longer possible
Instead, a sum of such terms corresponding to differenJ
values is required. Since we only have rotations byp/2, a
unique identification of the composite symmetry is not p
sible. Moreover, the energy of the states in this intermed
area is at the top of the dispersion band. In order to find
correct CI states for energies well above the static HF va
~i.e., larger than zero, in this case! we must add to the CI se
the first set of excited HF states. For a meron-antimeron p
excitation of an electron from the valence band onto
empty localized levels inside the Mott-Hubbard gap co
about 1.5t of energy, forU/t55, so such states should co
tribute significantly in the CI states with positive energi
and modify their dispersion and symmetry~for this reason,
we do not show the upper three high-energy bands in
11!. Consequently, both the energy and symmetry of

FIG. 12. The rotational symmetry of the meron-antimeron wa
function as a function of the total momentum carried by the p
~measured in units ofp/a). The outside region@containing the ab-
solute minima points (p,p)] hasd-wave symmetry (J52), while
the core region about the (0,0) point has ans-wave symmetry (J
50). The intermediary area is a mix of (s1d)-wave symmetry.
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states in the intermediate area may be modified from
ones shown in Fig. 11. However, the minima at (p,p) and
(0,0) are at energies well below zero. Their energies
rotational symmetry are unaffected by additions of high
energy configurations to the CI set.

The fact that we obtain two distinct minima is not ve
surprising. As argued above, we expect that individ
merons and antimerons are created with momenta
(6p/2,6p/2). As a result, two different couplings are po
sible. A (p/2,p/2) meron can pair with a (p/2,p/2) antim-
eron, creating a pair of total momentum (p,p). This is the
most stable coupling, leading to the lowest possible ene
of 21.75t below the static HF energy. This pair hasd-wave
symmetry. The second possible coupling is between
(p/2,p/2) meron and a (2p/2,2p/2) antimeron. This pair
has a total momentum of (0,0), ands-wave symmetry. How-
ever, this coupling is less strong. For theU/t55 case con-
sidered, the energy of thes-wave (0,0) pair is 1.28t above
the energy of thed-wave (p,p) pair. The existence of both
d- and s-wave pairings, and the dominance of thed-wave
pairing, have been established experimentally for the highTc
cuprates.21 We are not aware of any other microscopic theo
that predicts the two types of pairing to appear in differe
regions of the Brillouin zone.

The total kinetic energy saved by the meron-antime
pair through quantum hopping and rotation is of ordert, as
expected, since the pair is not restricted to one magn
sublattice, and tunneling is not required for motion. Con
quently, we expect that the energy saved by the mer
antimeron pair for larger values ofU/t is comparably large.
On the other hand, the energy saved by the spin bag thro
tunneling motion scales liket2/U. In fact, we argued that a
spin bag may dissociate into a singly charged vort
antivortex pair in order to enhance its mobility. Howeve
even if dissociation does not occur, the kinetic energy sa
by a pair of spin bags is significantly smaller than the kine
energy saved by the meron-antimeron pair. This shows
for U/t55 the meron-antimeron pair is even more favora
energetically than the HFA predicts, and suggests that
U/t range where meron-antimeron pair formation occ
may extend well beyond theU/t58 limit found within the
HFA.9 In the 1D case, the range of stability of the charg
domain wall versus the charged spin bag is extended~from
the HF prediction ofU/t56.5) to allU/t ranges.3 A numeri-
cal analysis is needed to determine if the limit is extended
infinity in the 2D case as well.

V. SUMMARY AND CONCLUSIONS

The configuration-interaction approximation incorpora
crucial quantum translational and rotational motion of t
charge carriers, which are absent in the static Hartree-F
approximation. Given the accuracy of the CI method in
capturing certain features of the exact Bethe ansatz solu
of the 1D Hubbard model,3 we believe that the CI method i
likewise a very powerful tool for describing effects beyon
mean-field theory in two dimensions. For 2D systems,
merical calculations are much more time consuming. Ho
ever, our small sample of results is quite suggestive o
simple physical picture. In direct analogy with the 1D r
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sults, we find that the bosonic charged meron vortices
much more mobile than the fermionic charged spin ba
The extra kinetic energy gained by the meron vortices v
likely extends their region of stability beyond theU/t58
limit suggested in the HFA.9 There are also strong indica
tions that a charged spin bag is unstable to decay int
singly charged bound vortex-antivortex pair. This appear
be a 2D precursor to the spin-charge separation in the
case. Nucleation of such pairs of vortices with doping
expected to further influence the magnetic behavior of
cuprates. The bound state and the unbound continuum s
of the singly charged meron-antimeron pair may account
the anomalous ‘‘quasiparticle’’ spectral widths observed
angle-resolved photoemission experiments.

The symmetry of the meron-antimeron pairs emerges v
clearly from the CI treatment. We find two regions of stab
ity of the meron-antimeron pair. Pairs with a total mome
tum of (p,p) have d-wave symmetry, and are the mo
stable. Pairs with a total momentum (0,0) haves-wave sym-
metry and have a smaller gap. Thus we find that differ
pairing appears in different regions of the Brillouin zon
These results appear to have a direct bearing on nume
experiments, which show a mixture of a strongd-wave com-
ponent and a smallers-wave component in the superconduc
ing state of the cuprates.21

Many other features of our model are in agreement w
experimentally observed properties of the cuprate super
ductors. Nucleation of magnetic vortices with doping e
plains a variety of magnetic properties, starting with co
plete destruction of the long-range AFM order for very lo
doping concentration. As we can see from Fig. 5~a!, a tightly
bound meron-antimeron pairs disturbs the long-range A
ordering of most of the spins on the 10310 lattice. For very
low dopings, these pairs are far from each other, and th
are many spins on the plane whose orientations are no
fected by any pair. Thus most of the spins maintain lon
range AFM order. However, as the doping increases to ab
5% ~which is roughly equivalent to having two meron
antimeron pairs on the 10310 lattice! the areas occupied b
each meron-antimeron pairs start to overlap with those oc
pied by the neighboring pairs. At this doping the orientati
of all the spins on the CuO2 planes is affected by at least on
pair of vortices, and therefore the long-range order~LRO! is
severely disrupted. The local ordering, however, is s
AFM. This picture explains the extremely low doping ne
essary for the disappearance of LR AFM order, as well as
fact that the spin correlation length is basically equal to
average distance between holes~vortices! and does not de
pend strongly on the temperature.22 Each hole carries its vor
tex with it, and the spins in each vortex are correlated w
each other. The correlation length is thus roughly equa
the average size of the vortex which is defined by the av
age intervortex~interhole! distance. The nucleation of mag
netic vortices also explains the split of the (p,p) AFM
Bragg peak into the four incommensurate peaks whose p
tions shift with doping,23 as observed in LaCuO and, mo
recently, in YBaCuO.24 The form factor of any given vortex
already gives rise to an apparent splitting of the neutron s
tering peak. As demonstrated in Ref. 9, even at the me
field level we recapture the neutron scattering data usin
random distribution of meron vortices.
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The optical behavior of the cuprates is also explain
naturally using our model. Two features develop in t
optical-absorption spectra with doping: a broad midinfrar
temperature-independent absorption band, and a stro
temperature-dependent low-frequency Drude tail.25 In our
model the broad midinfrared band is related to the excitat
of electrons from the valence band onto the empty lev
bound in the vortex cores,9 which are localized deep insid
the Mott-Hubbard gap@see Fig. 4~b!#. The number of local-
ized levels scales with the number of vortices, and interv
tex interactions lead to their splitting into a broad band.
such, this mechanism is similar to the one leading to a br
midinfrared absorption band in polyacetylene with doping26

The polyacetylene band is due to electronic excitations
side the cores of the polyacetylene domain-wall soliton19

which are the topological analogues of meron vortices.12,13

Another strong argument in favor of this interpretation
provided by photoinduced absorption experiments.27 If the
undoped parent compounds are illuminated with intense
ible light, they develop absorption bands that resemble
midinfrared bands of the doped compounds. A similar b
havior is observed in polyacetylene, and is attributed to
nucleation of solitons by photoexcited electron-hole pairs28

The second component of the optical spectrum is the Dr
tail. It results from the response of the freely moving charg
vortices to the external electric field. The strong temperat
dependence of this tail is determined by the scatter
mechanism for merons~presumably due to interactions wit
other merons and spin waves!. This interpretation is also
supported by the fact that the superconducting transi
leaves the midinfrared absorption band unchanged. Mer
with internal electronic structure are still present on t
planes, but pair condensation leads to a collapse of the D
tail into a d(v) response.

As already discussed, nucleation of charged meron vo
ces with doping provides a microscopic basis for non-Fer
liquid behavior, due to the bosonic nature of the mob
charged excitations. The model also predicts the existenc
preformed pairs withd-wave symmetry, which are thought t
be responsible for the pseudogap effects.29 As the number of
pairs of charged bosons increases with doping and the t
perature is lowered, the meron-antimeron pairs Bose c
dense and become coherent, leading to superconducti
This mechanism naturally explains the puzzling scaling
the superfluid density with dopingrs;d, in other words
with the number of holes, not of electrons. In our model, it
the doping-induced positively charged meron vortices t
are the mobile charge carriers. As a result, the density
preformed meron-antimeron Cooper pairs is obviously p
portional to doping. Finally, for large dopings (d
.0.30–0.40) the average vortex size become extrem
small, and the very cores of the merons start to overlap
this limit the Mott-Hubbard gap is completely filled in by th
discrete levels, and the spin-flux state becomes energetic
unstable relative to a normal Fermi liquid.9

It is noteworthy that all of the independent features d
scribed above are in qualitative agreement with our mod
which has essentially no free or adjustable parameters.
choice ofU/t is fixed by the experimentally measured size
the Mott-Hubbard charge-transfer gap at zero doping. M
detailed comparisons with specific experiments may req
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the incorporation of specific~smaller energy scale! interac-
tions which are not included in this simplest version of t
spin-flux Hamiltonian. A derivation of the explicit conse
quences of this picture appears to be worthy. A more co
prehensive and quantitative comparison with the experim
may prove quite fruitful.
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