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Abstract
We demonstrate the coherent control of spontaneous emission for a
three-level atom located within a photonic band gap (PBG) material, with
one resonant frequency near the edge of the PBG. Spontaneous emission
from the three-level atom can be totally suppressed or strongly enhanced
depending on the relative phase between the steady-state control laser
coupling the two upper levels and the pump laser pulse used to create an
excited state of the atom in the form of a coherent superposition of the two
upper levels. Unlike the free-space case, the steady-state inversion of the
atomic system is strongly dependent on the externally prescribed initial
conditions. This non-zero steady-state population is achieved by virtue of
the localization of light in the vicinity of the emitting atom. It is robust to
decoherence effects provided that the Rabi frequency of the control laser
field exceeds the rate of dephasing interactions. As a result, such a system
may be relevant for a single-atom, phase-sensitive optical memory device on
the atomic scale. The protected electric dipole within the PBG provides a
basis for a qubit to encode information for quantum computations. A
detailed literature survey on the nature, fabrication and applications of PBG
materials is presented to provide context for this research.

Keywords: Photonic band gap materials, photon localization, coherent
control, spontaneous emission, optical memory
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1. Introduction

Photonic band gap (PBG) materials are periodic dielectric
structures that exhibit a range of frequencies for which
electromagnetic wave propagation is classically forbidden.
These systems lead to strong localization of light at the
classical level and suppression of spontaneous emission,
leading to interesting phenomena in quantum optics as well
as important technological applications. Near a photonic
band edge, spontaneous emission is anomalous and leads to
fractionalized steady-state inversion for a single atom. On
the other hand, driving a multi-level atom with a sufficiently
strong resonant field alters the radiative dynamics in a
fundamental way, even in ordinary vacuum. It leads to such
interesting effects as the enhancement of the index of refraction

with greatly reduced absorption, electromagnetically induced
transparency and optical amplification without population
inversion.

In view of these results, it would be interesting to
investigate the combined effects of coherent control by an
external driving field and photon localization facilitated by
a PBG on spontaneous emission from a three-level atom
embedded in a PBG material. This is precisely what is done
in this paper. In section 2 an extensive literature survey on
the nature, fabrication and applications of PBG materials is
presented to provide context for this research. Section 3
introduces the model system in the leading approximation,
whereby a number of spontaneous emission effects and non-
radiative interactions are neglected. It is demonstrated that
storage of quantum information in a single three-level atom is
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facilitated by the localization of light in the vicinity of the atom,
suggesting an application of the model system as a memory
device on the atomic scale.

The effects of higher-order terms on the basic results found
in section 3 are discussed in section 4. This includes a semi-
quantitative analysis of phonon-relaxation mechanisms for the
model system. We have demonstrated that such dephasing
effects can be offset by intense driving fields. Different ways of
realization of the model system are also discussed in section 4.

The appendices contain supplementary material. The
Hamiltonian of a three-level atom interacting with a quantized
radiation field is derived in appendix A. The various
expressions for the Green functions used in the main body of
the paper are calculated in appendix B. Solution of the relevant
equations of motion by means of Laplace transformation and
the complex inversion formula is carried out in appendix C.
Details of the quantum beats problem for both the free-space
and PBG cases are discussed in appendix D. The radiative
dynamics of a two-level atom embedded in a PBG material is
discussed in appendix E.

2. Photonic band gap materials: introductory survey

2.1. Introduction

A new paradigm has emerged in which the band
structure concepts of solid-state physics are applied to
electromagnetism, leading to the invention of artificial
electromagnetic crystal structures. These structures are called
photonic crystals (PCs) and were originally proposed by John
and Yablonovitch as a means to realize two fundamentally new
optical principles—the localization and trapping of light in
bulk material [1, 2], and the complete inhibition of spontaneous
emission [3, 4] over a broad frequency range.

A PC is the photonic analogue of an electronic crystal.
Rather than a periodic array of atoms which scatters and
modifies the energy–momentum relation of electrons, a
PC consists of a three-dimensionally ordered dielectric
structure having spatially periodic dielectric constant, with
a lattice parameter comparable to the wavelength of the
electromagnetic wave. The band structure of a PC is referred
to as a photonic band structure (PBS). Provided that the
conditions of sufficiently high index-contrast between the
high-and low-index regions, appropriate spatial structure, and
dielectric filling ratio are met, photonic states inside a PC
will be classified into bands separated by band gaps. These
frequency gaps are termed PBGs and a PC with a PBG is often
referred to as a PBG material. Figure 1 shows the PBS for the
lowest ten bands of a PBG material made of silicon (n = 3.45)
inverse opal. The PBG occurs between the eight and ninth
bands.

The concepts of reciprocal space, Brillouin zones,
dispersion relations, Bloch wavefunctions, Van Hove
singularities etc of solid-state physics are now being applied
to PBG materials [5–9]. Unlike electrons in a semiconductor
crystal which are constrained by Fermi statistics and therefore
have to be excited from the valence band to the conduction band
to become mobile, photons are bosons which propagate freely
at frequencies both above and below the PBG. Thus the terms
‘valence band’ and ‘conduction band’ may not be appropriate

in the context of a PC. Instead, the bands above and below
a PBG can be distinguished by applying the electromagnetic
variational theorem [10]. According to this theorem, for modes
in the lower photonic band, the power of modes lies primarily
in the high-index regions, whereas for modes in the upper
photonic band the power lies in the low-index regions. In PCs,
the low-index regions are often air regions. For this reason it
is more meaningful to refer to the band above a PBG as the
‘air’ band, and the one below the gap as the ‘dielectric’ band.

Most of the promising applications of PBG materials
depend on the widths and locations of their PBGs. The gap
size in a PBG material is determined by the refractive index
contrast of the two materials that constitute the 3D structure,
and by the filling ratio of the higher-index material [11]. The
location of the gap is determined by the lattice constant of the
PC. For a face-centred cubic (fcc) lattice, the gap is centred at
roughly twice the index modulation wavelength.

The extent of a PBG is characterized by a dimensionless
parameter called the gap–midgap ratio. It is the ratio r ≡
�ω/ω0 of the width �ω = ωc − ωv of the gap to the midgap
frequency ω0, where ωv and ωc are the lower and upper band
edge frequencies of the gap, respectively. This characterization
of the extent of a PBG is independent of the scale of the
crystal. If the system is compressed (expanded) by a factor
s, all the relevant frequencies (ωv , ω0 and ωc) will increase
(decrease) by the same factor so that the r stays the same. For
example, a gap–midgap ratio of r = 10%, which is readily
achievable in present-day PBG materials [12], translates to a
gap width of about 0.2 eV at an optical midgap frequency (the
energy (h̄ω) of an optical transition (ω ∼ 2π × 1015 Hz) is of
the order E ∼ 2 eV). By contrast the electronic band gap of
germanium at room temperature is 0.67 eV, while that of GaAs
is 1.43 eV [13].

For the frequency range spanned by the gap, a PBG
material is completely free of propagating electromagnetic
modes. Put another way, the density of propagating photon
modes is absolutely zero within a PBG (see figure 2). The effect
is analogous to the existence of gaps in the electron density of
states in crystalline solids. By contrast, in free space (or a
cavity of infinite volume), the density of photon modes ρ(ω)

varies as ω2 and exhibits no gap. In a cavity of finite volume,
the density of states is substantially modified for frequencies
close to the cavity cutoff. Below cutoff, the cavity sustains no
modes at all1, and near and above cutoff, the density of states
can be increased relative to the continuum case [14].

The absence of propagating electromagnetic modes, in a
refractive medium without dissipation, is due to a synergetic
interplay between the microcavity resonances of individual
dielectric particles of the PC and the Bragg scattering
resonance of the array. One of the conditions for the
appearance of a PBG is that the density of dielectric scatterers
be chosen such that the microscopic (Mie) scattering resonance
of a single unit cell of the PC occurs at the same frequency as
the macroscopic (Bragg) resonance of the periodic array [15].
This is a highly restrictive condition in three dimensions. It

1 A laser will oscillate in a cavity only if the round-trip phase shift �φ

is an integral multiple of 2π or the round-trip optical path length l is an
integral number of wavelengths. For a linear bare cavity of length L , we have
�φ = 2π(2L/c)ν, and l = 2L . The axial resonant modes of the cavity are
thus νm = mc/2L; and the cavity cutoff is νc = c/2L .
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Figure 1. The PBS for the lowest ten bands of a PBG material made of silicon (n = 3.45) inverse opal. The filling ratio of silicon is 25%. In
units of ωa/2πc, where a is the lattice constant, the width of the gap is 0.822 whereas the gap–midgap ratio is 8.94%. (Courtesy of Ovidiu
Toader, Department of Physics, University of Toronto.)
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Figure 2. Summary of photon density of states in different cases. For free-space or independent-point scatterers (dotted curve) there is no
gap in the photon density of states. For a PBG material (solid curve), there is a complete PBG between the band edge frequencies ωv and ωc.
A cavity of finite volume sustains no modes below cutoff, whereas near but above cutoff, the density of states can be increased relative to the
free-space case.
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Figure 3. The PBG arises from a synergetic interplay between macroscopic and microscopic resonances. This effect is maximized when the
lattice constant L and the sphere radius a are chosen in such a way that the two resonance conditions coincide.
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Figure 4. The gap–midgap ratio r = �ω/ω0 of a PC as a function
of the volume filling fraction f of the solid material. The maximum
gap occurs at 1/(2n) where n is the refractive index of the solid.

may be illustrated (see figure 3) by a simple example of one-
dimensional (1D) wave propagation through a periodic array
of square wells of width a and spaced by a distance L . Suppose
the refractive index is n inside each well and is unity outside.
Then the Bragg scattering condition is given by λ = 2L where
λ is the vacuum wavelength of light. The analogue of a Mie
resonance in one dimension is a maximum in the reflection
coefficient from a single well and this occurs when a quarter
wavelength fits into the well: λ/(4n) = 2a. Combining
these two conditions yields the optimal volume filling fraction
f ≡ 2a/L = 1/(2n). The generic form of the magnitude of
the PBG with volume filling fraction f of dielectric material
is shown in figure 4.

The vanishing of the density propagating photon modes
within a PBG means that, for the frequency range spanned
by the gap, linear propagation of electromagnetic waves is
forbidden in any direction in the PBG material. Thus, light
incident on a PBG material with a frequency in the gap
region will be backscattered from the material, independent
of the angle of incidence. In other words, a PBG material
acts as a 4π steredian stop band for the frequency range
spanned by the PBG. This effect is again analogous to the
strict prohibition of propagating electron waves in conventional
crystals for a frequency range spanned by an electronic band
gap. Strong suppression of transmission, with an associated
peak in the reflectivity at the characteristic frequencies, is then
an experimental signature of a PBG [3].

Although PBSs are analogous to electronic band
structures, there are major differences between them [16].
Electrons have spin 1/2 and are fermions, and electronic band
structure is obtained by solving the appropriate Schrödinger
equation. Frequently, the electronic spin is ignored in band
structure calculations, and Schrödinger’s equation is treated
in the scalar wave approximation [13, 17]. On the other
hand, photons are spin 1 bosons and it is generally never
a good approximation to neglect the vector (polarization)
character of the electromagnetic field (that is to treat the two
polarizations of the field independently) in band structure

calculations [18, 19]. One consequence of the vector nature
of the electromagnetic field is that the band structures for
transverse-electric (TE) and transverse-magnetic (TM) modes
can be completely different. In particular, there can be PBGs
for one and not for the other [10]. To have a complete band
gap for all polarizations, a PC should not only have TM and
TE band gaps, but these band gaps should also overlap. While
there are a number of techniques for band structure calculations
of electronic crystals [17], PBS calculations are largely based
on the plane-wave expansion of the electromagnetic fields and
use of Bloch’s theorem to reduce the problem to the solution
of a set of linear equations [9, 10, 12].

PBG materials have been attracting considerable atten-
tion in the scientific and engineering community due to
their potential capabilities which are of immense practi-
cal and commercial importance. There have already been
a number of books [10], special journal issues [20–22],
conference proceedings [23–26], bibliographies [27], and
surveys [28–30]. Many applications have been pro-
posed [10, 24, 25, 31], including those which would consider-
ably enhance the performances of quantum electronic devices
such as semiconductor lasers, and those which would drasti-
cally reduce the sizes of devices such as couplers, beam split-
ters, filters, cavities and lenses, paving the way for the integra-
tion of a large number of highly compact optical components
onto an all-optical microchip. In this paper the application
of PBG materials for optical memory on an atomic scale is
considered.

2.2. Vacuum fluctuations, spontaneous emission and the
Lamb shift

The electromagnetic vacuum is characterized by the absence
of photons—the mean value of the electric (or magnetic) field
at any given point in vacuum is identically zero. However, due
to the quantum mechanical nature of the field, the root mean
square deviation of the electric (or magnetic) field in vacuum
is different from zero. This means, for example, that if we
perform one measurement of the field in vacuum, it is possible
to find randomly varying non-zero results [32]. We say that
the ‘vacuum state’ of photons is subject to vacuum fluctuations
or zero-point fluctuations (ZPFs).

One effect of ZPFs is that, even in the absence of incident
photons, they can perturb an excited atom to fall back to a lower
energy state by emitting a photon, the energy of the global
system being conserved in the process. This is the well known
phenomenon of spontaneous emission [33–36]. Most of the
light around us is ultimately the result of spontaneous emission.
The phenomenon goes by various names, depending on the
context. The term luminescence, for instance, is often used
to describe spontaneous emission from atoms or molecules
excited by some means other than by heat. If excitation
occurs in an electric discharge such as a spark, the term
electroluminescence is used. If the excited states are produced
as a by-product of a chemical reaction, the emission is called
chemiluminescence, or if this occurs in a living organism,
bioluminescence, a good example being the luminescence of
fireflies. Photoluminescence (PL) or fluorescence refers to
spontaneous emission from an excited state produced by the
absorption of light. Phosphorescence describes the situation in
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which the spontaneous emission persists long after the exciting
light is shutoff, and is associated with a meta-stable (long-
lived) level [37].

Another effect of ZPFs is to impart to the atomic electrons
an erratic motion which slightly modifies the energy of the
atomic levels. This modification in the energy levels due
to the coupling of the atom to the electromagnetic vacuum
is known as the Lamb shift and was of utmost importance
for the development of QED. To explain the Lamb shift, it
was necessary to assume that the electrons in an atom were
continually emitting and re-absorbing photons. The emission
and absorption processes are virtual in that the associated
energies are not subject to energy conservation. (According to
the uncertainty relation between energy and time [38], energy
is sharply defined only when a measurement is performed
over a sufficiently long period of time. It is thus completely
consistent with energy conservation that an electron can emit
a quantum even without having the necessary energy, as long
as the quantum is re-absorbed quickly enough.) Such photons
are called virtual photons and energy shifts caused by virtual
processes are termed self-energy.

2.3. Markovian and non-Markovian photon reservoirs

Atom–photon reservoir interaction depends crucially on the
behaviour of the density of photon modes of the reservoir,
ρ(ω), near the relevant atomic transition frequency ω0. If,
near ω0, ρ(ω) is a smoothly varying function of frequency,
the atom–reservoir interaction will be characteristically
Markovian [14, 39]. In such an interaction, the future of the
atomic system is entirely determined by the present and not by
the past, that is the atom loses all memory of its past. Moreover,
the spontaneous emission from the atom may be described by
the well known Wigner–Weisskopf formalism [40]. In this
formalism, spontaneous decay is characteristically exponential
(with a decay rate γ ), the spectrum of the spontaneously
emitted photons has a Lorentzian shape of half-width γ centred
at the radiatively shifted frequency ω0 + δω0 (where ω0 is the
bare atomic transition frequency); and both the γ and δω0

depend only on the density of modes in the photon reservoir.
As an example, atom–photon interaction in free space is
Markovian, free space being an infinitely broad featureless
photon reservoir.

On the other hand, if, near ω0, ρ(ω) changes on a
frequency scale comparable to the spontaneous-emission rate
(estimated on the basis of the local photon mode density),
the atom–reservoir interaction may be non-Markovian. In
this case, the Wigner–Weisskopf approximation can no
longer be used, and the atomic decay necessarily becomes
non-exponential and the emission spectrum non-Lorentzian.

There are several situations in which the Wigner–
Weisskopf approach breaks down [41, 42]. One such situation
occurs in a microcavity where the cavity decay rate is much less
than the spontaneous emission decay rate of the atomic system
so that there will be an oscillatory exchange of the energy
between the atomic and photonic degrees of freedom before
the spontaneously emitted photon leaks out of the cavity. The
atom–photon interaction is then sufficiently strong to split the
atomic level into a doublet which, in turn, leads to the splitting
of the spontaneous emission spectrum. Such a splitting is

known as the vacuum Rabi splitting [43]. The qualitative
change of the spectrum from a single Lorentzian peak into
a two-peaked structure is a clear indication of the onset of a
non-Markovian (non-exponential) decay.

Non-Markovian system–reservoir interaction is also
expected to occur in the case when the density of photon modes
of the reservoir exhibits a threshold-like behaviour, that is,
when ρ(ω) exhibits a sudden jump or some weaker kind of
singular non-analytic behaviour. Such a behaviour occurs, for
example, in a waveguide close to its fundamental frequency. If
the atomic transition frequency lies close to the threshold, non-
exponential (usually algebraic) temporal behaviour dominates
the whole decay process, leading to strong modifications in the
shape of the spontaneous-emission spectrum. Specifically, the
emission spectrum becomes non-Lorentzian (non-Markovian)
and may even exhibit additional peaks or valleys [41, 42].

In this paper, we consider a non-Markovian interaction
caused by a PC possessing gaps in its photonic density of
modes. Quantum electrodynamics in such a reservoir is the
subject of the next section.

2.4. Inhibition of single-photon spontaneous emission

Spontaneous emission rate was, at one time, regarded as
an intrinsic property of a material over which we have no
control [40]. In spectroscopy, it gave rise to the term natural
line width. However, in 1946 Purcell [44] already suggested
that the spontaneous emission rate of radiating dipoles can be
tailored by using a cavity to modify the dipole–field coupling
and the density of available photon modes. If the modal density
in the vicinity of the frequency of interest is greater than that of
free space, the spontaneous emission will be enhanced (Purcell
effect); if it is less, spontaneous emission will be inhibited.
This important concept is now well established thanks to the
experimental and theoretical development of cavity quantum
electrodynamics [26, 45–47].

The challenging application of Purcell’s concept to
optoelectronics has been intensively pursued. A number of
interesting experimental [45, 48] and theoretical [49] studies
with metallic cavities have shown the basic soundness of the
idea of engineering atomic spontaneous emission by imposing
boundary conditions on the electromagnetic field other than
those of free space. A microcavity with perfectly reflecting
walls can considerably inhibit or enhance spontaneous
emission of atoms placed inside it, depending on whether
the cavity is tuned to or detuned from the relevant atomic
transition frequency [25, 46, 50]. Spontaneous emission is
predicted [48] to be eliminated altogether from an atom placed
in a waveguide, provided the atomic transition frequency is
below the fundamental frequency of the waveguide.

Although extremely interesting in their own right, metallic
cavities are less important in practice, because they do not
scale well into optical frequencies. At high frequencies
metallic cavities become more and more lossy (because metals
are transparent in the ultraviolet [51]). Moreover, simple
geometries for the boundaries, such as single- and parallel-
plane mirrors do not lead to suppression of spontaneous
emission in all directions and, therefore, entail only minor
modifications of the spontaneous emission rate [52–54]. On
the other hand, PCs made of positive-dielectric-constant
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materials (such as glasses and insulators) can be almost free
of dissipative losses at any prescribed frequency. Moreover,
3D PBG materials are able to confine optical waves in all three
dimensions.

A rough picture of spontaneous emission in a PBG
material follows from Fermi’s golden rule. Suppose that
we have a single two-level atom in an initial excited state
written as |i, 0k〉, where 0k indicates the absence of photons
of wavevector k. Let the final state of the system consist of
the atom in the final state | f 〉, after the emission of a single
photon of wavevector k. The final state of the system is then
| f, 1k〉. In the weak atom–field coupling regime, the atomic
spontaneous emission rate is given by Fermi’s golden rule [55]:

W f i = 2π

h̄
|〈 f, 1k|d · E(ω0, r0)|i, 0k〉|2ρ(ω0). (1)

Here h̄ is Planck’s constant, d is the electric dipole moment
operator for the atomic transition, E(ω0, r0) the electric field
operator at the dipole frequency ω0 and position r0, and
ρ(ω0) is the density of electromagnetic states at the dipole
frequency ω0 available for the spontaneously emitted photon.
Equation (1) is valid, provided that ρ(ω) is smooth in the
vicinity of ω0.

Equation (1) shows that the spontaneous emission
rate can be enhanced, attenuated, or even suppressed by
changing ρ(ω0) and/or the matrix element V f i = 〈 f, 1k|d ·
E(ω0, r0)|i, 0k〉. Within a PBG, ρ(ω) = 0 which, in
turn, means that W f i = 0. In other words, single-photon
spontaneous emission is completely inhibited within a PBG.
This implies that ZPFs, which are present even in vacuum,
are absent for frequencies inside a PBG. Thus, within the
forbidden frequency band, PBG materials are emptier than
even the vacuum.

In PBG materials ρ(ω) and V f i can be engineered
to enhance spontaneous emission as well. The existence
of PBG leads to other frequency regimes where ρ(ω) is
larger than in free space. Recent experimental investigations
of the spontaneous emission properties of organic dye
molecules [56–62], semiconductor nanoparticle quantum dots
(QDs) [63] and rare-earth ions [64] embedded in PBG materials
made of inverted opals have reported pronounced modification
of spontaneous emission spectra and noticeable changes in
decay kinetics.

2.5. The photon–atom bound state

The absence of propagating modes within a PBG means
that, for frequencies within the band gap, there are no
extended states expressible in Bloch form—as plane waves
with purely real wavevectors and modified by functions
invariant under translation through any lattice vector. Instead,
the wavevector is pure imaginary, which causes the modes to
decay exponentially in space. Now consider a single excited
two-level atom embedded in a PBG material with a transition
frequency ωa to the ground state which lies within the band
gap. If this atom drops to the ground state via single-photon
spontaneous emission (that is by emitting a single photon of
frequency ωa) the resulting photon state will be exponentially
decaying away from the atom, since the frequency ωa of the
emitted photon lies within the classically forbidden energy gap

of the PBG material. In other words, the spontaneously emitted
photon will tunnel through the crystal for a short length, called
the localization length, before being Bragg reflected back to
the emitting atom to re-excite it. The result is a strongly
coupled eigenstate of the electronic degrees of freedom of
the atom and the electromagnetic modes of the dielectric.
This is the photon–atom bound state first predicted by John
and Wang [5, 6] and is the optical analogue of an electronic
impurity level bound state in the gap of a semiconductor [13].
When the atomic transition frequency is at midgap (ωa = ω0)
the photon tunnelling distance is on the scale of few optical
wavelengths, for a gap to midgap ratio of �ω/ω0 = 5%.
As ωa approaches the band edge ωc, the photon localization
length ξloc grows larger and eventually diverges near ωc:
ξloc ∼ c/

√
ωc|ωc − ωa|.

In free space, Lamb shift of atomic levels is dominated by
the emission and re-absorption of high-energy virtual photons.
Within a PBG, this self-dressing is dominated by the real,
bound photon. In general this will lead to some anomalous
Lamb shift. If an atomic level lies near a photonic band edge,
a more striking effect is predicted to occur [65–67]. In this case
the atom is resonantly coupled to photons of vanishing group
velocity. The resultant self-dressing of the atom by its own
localized radiation field is sufficiently strong to split the atomic
level into a doublet. One member of the doublet is pulled into
the gap and retains a photon bound state, whereas the other
member is pushed into the continuum and exhibits resonance
fluorescence. In the nearly free photon approximation to the
electromagnetic band structure, the splitting of a hydrogenic
2p 1

2
level is predicted to be as large as 10−7–10−6h̄ωa [6]. This

is the analogue of the much weaker vacuum Rabi splitting (10–
40 MHz) well known for atoms in microcavities [43]. Unlike
the well known Mollow level splittings [68] observed when
an atom is externally dressed by an intense laser field, the
splitting in the present case is solely due to the atom’s own
localized radiation field and occurs even in the absence of any
external driving field. As a result of the interference between
the doublets, spontaneous emission from the atom displays
an oscillatory behaviour which is quite distinct from a simple
exponential decay as described by Fermi’s golden rule [65–
67]. Moreover, the photon–atom bound state leads to a novel
fractionalized steady-state atomic population in the excited
state [65–67]. Again, this is quite different from the free-space
case where the steady-state population on an excited level is
always zero, since all of the excited level population eventually
decays to the ground level.

2.6. Dynamical suppression of spontaneous emission

Atomic level splitting may be effected not only passively
through microcavities and PBG materials, but also actively by
driving the relevant atomic transition by a resonant (or nearly
resonant) laser field [69]. For a two-level atom consisting of
the ground state |0〉 and an excited state |1〉, with transition
frequency ωa between them, the driving field splits the excited
level into two levels having energies close to ωa ±�/2, where
� characterizes the strength of the driving field and is called the
Rabi frequency of the driving field [70]. This phenomenon of
level splitting induced by a driving field is known as dynamic
Stark splitting or Autler–Townes splitting [71] and has been
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observed experimentally by several groups [72, 73]. The
resulting two lines in the spontaneous emission spectrum of
the atom are known as Autler–Townes doublets.

If a driven atom resides in a region of space in
which the density of photon modes varies appreciably
on a frequency scale set by the Rabi frequency of the
driving field (such as near a photonic band edge), the
interplay between the driving field and the threshold-like
behaviour of the photon density of states may lead to
dramatic modifications of the spontaneous emission from the
atom. These modifications exhibit themselves through changes
in the resonance fluorescence spectrum of the atom. The
widths, heights, positions, and even shapes of the peaks in the
spectrum become dependent on both the intensity of the driving
field and the position of the atomic transition frequency relative
to the band edge. This effect, brought about the combined
actions of a driving field and a photon density of modes which
changes on the scale of the Rabi frequency of the driving field,
has been termed in the literature as dynamical suppression of
spontaneous emission [74].

2.7. Defect modes within a PBG

A pure semiconductor crystal such as silicon has valence and
conduction bands separated by a bandgap. However, if this
pure semiconductor crystal is doped with donor atoms (i.e. if
some of the atoms in the crystal are replaced by donor atoms
such as arsenic which contribute electrons to the conduction
band), a donor level will appear within the forbidden band
pushed down from the conduction band. Likewise, if the
crystal is doped with acceptor atoms (atoms such as boron
which accept electrons from the valence band and contribute
holes), an acceptor level will be formed within the forbidden
gap pushed up from the valence band [13]. Similarly, a PBG
material is a periodic dielectric structure in which photonic
states are classified into bands separated by band gaps. The
presence of defects (local deviations from the ideal crystalline
structure) in the crystal may drastically change the optical
properties of the PBG material. A defect destroys the perfect
3D translational symmetry of the PBG material and may lead
to the formation of a defect mode within the band gap region,
analogous to donor and acceptor defect modes in a doped
semiconductor crystal. If a single-defect mode is introduced
into the PBG, the density of states of the system will be zero
within the band gap, except for isolated peaks associated with
the defect mode (see figure 5).

Defects in a PC may be introduced by adding extra
dielectric material where it does not belong or by removing
some of the dielectric material that should be there. The first
type of defect is called a ‘dielectric defect’ and the second
an ‘air defect’ [10]. Removing a small amount of high-index
material from one unit cell (air defect) leads to the occurrence
of a localized defect mode just above the top of the lower band,
analogous to acceptor modes in semiconductors. On the other
hand, adding a small amount of high-index material to a single
unit cell (dielectric defect) causes a single localized state to
split off from the upper band edge, analogous to donor modes
in semiconductors [75]. This is a general result which applies
for one-, two-, and three-dimensional PCs. Whereas in 1D and
2D crystals even arbitrarily small defects can localize modes,
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Figure 5. Photon density of states in a PBG material with defects.
When a single dielectric defect is created, a localized defect mode
appears within the forbidden gap (a). Further disorder in the PC
gives rise to a pseudogap (b), instead of a complete gap.

in 3D crystals the defect must be larger than some critical size
before its localizing power begins. This is the electromagnetic
analogue of the quantum mechanical result that an arbitrarily
weak attractive potential can bind a state in one and two
dimensions, but not in three dimensions. Significant random
perturbation of a PC (by adding or removing a large amount
of dielectric material, for instance) may wash the gap out and
result in a pseudogap where the density of states is significantly
reduced from that of free space but is not absolutely zero (see
figure 5).

The frequency of a defect mode is an increasing function
of the volume of an air defect and a decreasing function of the
volume of a dielectric defect [10, 16, 75, 76]. In other words,
for air defect, the larger the volume of material removed, the
farther the defect mode is pushed from the lower photonic
band edge into the gap (that is, the higher the frequency of
the defect mode). Conversely, for a dielectric defect, the
larger the volume of high-index material added, the further
the defect mode is pushed from the upper photonic band edge
into the band gap (that is, the lower the frequency of the defect
mode). Thus the frequency of a defect mode can be ‘tuned’ to
any desired value within the gap by adding (or removing) the
appropriate amount of dielectric material from a unit cell.

Powerful theoretical tools have been developed for
modelling electromagnetic fields within PCs [9, 77, 78].
Numerical simulations [10, 79] and experiments [75, 80] have
confirmed the confinement of light to local defects in a PBG
material. Local defects confine photons to volumes of the
order of (λ/2n)3, where λ is the photon wavelength and n is
the refractive index of the material [31]. Thus, the high-index-
contrast systems that are often necessary for achieving PBGs
result in strong photon confinement at local defects [10]. Such
highly confined optical systems act as microcavities of very
high quality factor2 Q. They can be used to reduce the size
and power requirements of integrated optical components, to
generate single-mode operation of light-emitting devices, to
reduce the lasing threshold of semiconductor lasers, and to
allow higher modulation speed of these devices, as discussed
in section 2.10.

2 The quality factor Q of a cavity is a measure of the optical energy stored in
the cavity over the total cycle-averaged power radiated out of the cavity. It is
defined as ω/�ω, where λ is the peak frequency of the resonance and �ω is
the width of the resonance. The sharper the resonance line of the cavity, the
smaller the decay rate and the larger the Q.
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2.8. Photonic crystals in one, two and three dimensions

PCs are formed by wavelength-scale periodic patterning of
dielectric materials in one, two and three dimensions. The
unique properties displayed by such crystals depend crucially
on their dimensionality [10]. A 1D PC is nothing other than the
well known dielectric Bragg mirror consisting of alternating
layers with low and high indices of refraction. The term ‘one
dimensional’ refers to the fact that the arrangement is periodic
only in one direction (chosen here as the z-direction) and
homogeneous in the xy-plane. PBGs appear in the direction of
periodicity, the z-direction. A mode with frequency in the gap
region and propagating in the z-direction (on-axis propagation)
will be totally reflected from the PC. For off-axis propagation,
however, there are no band gaps, since the off-axis direction
contains no periodic dielectric regions to coherently scatter
light and split open a gap. Thus off-axis propagating modes
are expected to be oscillatory, with real wavevectors.

In a 1D PC, band gaps always appear for any dielectric
contrast. In other words, there is no threshold dielectric
contrast for the appearance of a PBG. The smaller the contrast,
the smaller the widths of the gaps, but the gaps open up as soon
as n1/n2 �= 1, where n1 and n2 are the refractive indices of
the dielectric materials. A defect can be introduced in a 1D
PC, for example, by making one of the layers have a slightly
different width than the rest. The defect mode is then localized
in the z-direction but is extended in the x- and y-directions.

A 2D PC is periodic along two of its axes (say the
x- and y-axes) and homogeneous along the third (the z-axis), a
typical specimen being an array of dielectric columns arranged
on a square or triangular lattice. PBGs appear in the plane
of periodicity (the xy-plane). Thus, unlike the multilayer
film which reflects light only at normal incidence, a 2D PC
can reflect light incident from any direction in the plane
of periodicity. Since the structure is homogeneous in the
z-direction, modes travelling in that direction do not see a PBG.

In two dimensions, unlike in one dimension, there is a
threshold dielectric contrast necessary for the appearance of a
PBG. In other words, in a 2D structure, a PBG does not open
up just because the structure has a refractive index contrast,
but rather requires special design considerations, as discussed
below.

A 2D PBG is defined as a gap for all EM waves propagating
perpendicular to the z-axis of either polarization. A complete
band gap, on the other hand, occurs only for 3D structures.
Owing to the vector nature of the electromagnetic field, PBSs
for TE and TM modes can be completely different. To
have a 2D band gap for all polarizations, a photonic crystal
should not only have TM and TE band gaps, but these band
gaps should also overlap. TM band gaps are favoured in
a lattice of isolated high-index regions, as in an array of
dielectric columns in air. On the other hand, TE band gaps are
favoured in the inverse structure, as in an array of air columns
(veins) drilled in a dielectric substrate [10]. A structure with
dielectric veins is said to be a connected structure in that the
high-index regions form a continuous path instead of discrete
spots. Thus, to design a PC that has band gaps for both TM
and TE polarizations, one has to somehow reconcile these
seemingly contradictory conditions. A triangular lattice of
low-index columns (air columns, for instance) inside a high-
index medium just does that. If the radius of the columns is

large enough, the spots between columns look like localized
regions of high-index material, which are connected (through
a narrow squeeze between columns) to adjacent spots.

In a 2D PC, made by perforating a high-index slab with
a triangular or hexagonal array of air holes, a defect can be
formed by removing an air hole and/or adjusting the diameters
of a few neighbouring air holes. A mode (or a set of modes
depending on the defect geometry) which is highly localized
to the defect region in the xy-plane but extended in the
z-direction may be formed. Photons can escape from the defect
cavity by tunnelling through the 2D PC, or by leaking out in
the z-direction. Removing rows of air holes is one way of
creating line defects in a 2D PC. Such line defects can serve
as waveguides able to transmit light around sharp corners with
very high efficiency.

A 3D PC is a dielectric structure that is periodic along
three different axes. Provided that the conditions of sufficiently
high dielectric contrast, suitable periodicity, dielectric filling
ratio and network connectivity are met, a PBG appears in all
directions. Such a 3D PBG material, unlike the 1D and 2D
ones, can reflect light incident from any direction. In other
words, a 3D PBG material behaves as an omnidirectional high
reflector.

Even though there are infinitely many possible geometries
for a 3D PC, to date the best structure found to support a
full 3D PBG is the diamond lattice [9, 81]. (Incidentally, the
common semiconductors, silicon and germanium, also have
diamond symmetry [13].) For a diamond lattice, a complete
PBG exists whether one embeds dielectric spheres in air or air
spheres in a dielectric medium, as long as the radius is chosen
appropriately. The calculated band structure of a diamond
lattice of air spheres in silicon (ε = 11.9) substrate is shown
in figure 6. Between the second and the third bands resides
a band gap with a gap–midgap ratio of 27.28%, centred at
ω0 = (2πc/a)(0.589) where a is the lattice constant. The
filling ratio of the air spheres is 81% indicating that the air
spheres are overlapping (the structure is highly porous). Both
the air and the dielectric regions are connected, in the sense
that there are no isolated spots of either.

A systematic examination of the PBSs for dielectric sphere
and air spheres on a diamond lattice, as a function of refractive
index ratio and filling ratio, was made by Ho et al [9]. In
all cases examined the lattice constant a was kept fixed and
the radius r of the spheres was varied to change the filling
fraction f . They found that when the refractive index is fixed
at 3.6, complete band gaps exist over a wide range of filling
ratios for both dielectric spheres and air spheres. (Crystalline
silicon and other semiconductors are excellent infra-red optical
materials, providing refractive indices ∼3.5.) The calculated
size of the band gap normalized to the midgap frequency is
plotted in figure 7(a) for both cases. For dielectric spheres
on a diamond lattice, a maximum gap–midgap ratio of 15.7%
was found at f = 37%, whereas for the case of air spheres,
the ratio can reach 28.8% at f = 81%. In figure 7(b) the
gap–midgap ratio �ω/ω0 is plotted as a function of refractive
index for a fixed dielectric structure, with f = 34% for the
case of dielectric spheres in air, and f = 81% for air spheres
in a dielectric background. For both cases a complete PBG
exists when the refractive index contrast exceeds 2. This is a
very important result, because in the optical region there are
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Figure 6. The PBS for the lowest ten bands of a diamond lattice of overlapping air spheres in a high-dielectric (ε = 11.9) material. The
filling ratio of the air spheres is 81%. The frequency is given in units of c/a where a is the lattice constant and c is the speed of light. A full
PBG centred at ω0 = 0.589(2πc/a) with a gap–midgap ratio of r = �ω/ω0 = 27.26% appears between the second and third bands.

(a)

(b)

Figure 7. (a) Gap–midgap frequency ratio (�ω/ω0) as a function of
filling ratio for the case of dielectric spheres in air and air spheres in
dielectric. The refractive index of the material is chosen to be 3.6.
(b) �ω/ω0 as a function of refractive index contrast for a fixed
dielectric structure. The dotted curve is for the case of air spheres in
dielectric with a filling ratio of 81%, and the solid curve is for
dielectric spheres in air with a filling ratio of 34%.

many transparent materials with refractive index above 2. For
increasing contrasts the gap–midgap ratio saturates to a value
of 21% for the case of solid spheres and to a very large value
of 46% for the case of air spheres [9].

In a 3D PBG material, just as in 1D and 2D ones,
perturbing a single lattice site may cause the appearance of
a single peak in the photon density of states at a frequency that
may lie inside the band gap. The width of this peak tends to
zero as the crystal size tends to infinity. Since no extended
states are allowed in the crystal within the band gap, the mode
in the band gap must decay exponentially away from the defect.
But in this case the decay occurs in all three dimensions. Thus,
in a 3D PBG material, the defect mode is localized at a single
point in the crystal. By contrast, one (two)-dimensional PBG
materials can only localize light on a plane (line).

2.9. Fabrication of PBG materials

There have been two main challenges in the field of PBG
materials. The first was to show that a full 3D PBG could
actually exist in some type of dielectric structure. The second
was to show that such a PBG material could be created in a
microstructure amenable to practical microfabrication. The
theoretical calculations of Ho et al predicted that periodic
dielectric materials with a diamond [9] or diamond-like [82]
symmetry would have a full 3D PBG. The gap is centred
at roughly twice the index modulation wavelength. Thus,
for microwave (MW) control, a PC should be constructed
with millimetre dimensions, for infra-red control with
micron dimensions, and for optical control with submicron
dimensions. Based on the Ho et al calculations, the first
experimental PBG material was fabricated by Yablonovitch
and co-workers [81], with a band gap in the MW region.
This structure, sometimes known as the Yablonovite, was made
by mechanically drilling cylindrical holes through a low loss
dielectric block (of refractive index n ∼ 3.6) so as to create a
structure with diamond symmetry.

While demonstrating the existence of a photonic gap,
the fabrication of the Yablonovite is a very sophisticated
process that cannot be easily reproduced or extended to
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optical wavelengths. Several different geometries have been
suggested for the fabrication of 3D PBG materials [11, 83, 84],
and 3D PBGs have been developed in the near infra-red [85–
89]. However, the microfabrication of large-scale PCs with
full 3D band gaps at infra-red and optical frequencies is a
major challenge. To achieve band gaps for the infra-red and
visible spectrum, the periodicity of the crystal should be on
the scale of the wavelength of light (about 500 nm), both
constituent materials of the crystal should be topologically
interconnected [90], and the ratio of their refractive indices
should be close to 3.0 [12]. The submicron size periodic
lattices required for optical frequency PBG materials limits the
use of microlithographic fabrication techniques [87, 91, 92].
Self-organizing systems such as colloidal crystals [93–95], and
artificial opals [96–98] provide a template for fabricating these
structures.

Colloidal particles have been synthesized from a variety
of materials, such as latex and SiO2, as monodispersed
spheres having precisely controlled diameters (<5% variation
in sphere diameter) in the range of from a few nanometres
to a few micrometres [93, 95]. A suspension of such
colloidal microspheres, with a typical concentration of
1010 particles cm−3, can sediment under gravity into a
cubic-close-packed structure with relatively large domain size
(∼1 cm2) [99]. These 3D lattices have a crystalline structure
similar to that of a natural opal. (A natural opal is a close-
packed fcc lattice of SiO2 spheres (ε = 2.1) with a filling
fraction of ∼74%.) These artificial opals are solid but present
a low mechanical stability which can be greatly improved
by a sintering process [100]. Sintering or thermal treatment
of these artificial opals at elevated temperatures reduces the
inter-particle pore volume by changing point contacts between
spheres into faceted ones, leading to the formation of a
mechanically robust crystal. Thus, colloidal crystal growth
produces inherently 3D structures, a significant advantage over
lithographic techniques which primarily produce 2D patterns.
However, neither colloids nor opals achieve the high refractive
index ratios necessary for PBG formation. These requirements
are attained by using the colloidal crystals as templates to
fabricate inverse opals which are close-packed lattices of air
balls in a dielectric matrix.

Inverse opals are fabricated in a three-step process.
First, a colloidal crystal of latex or silica spheres is self-
assembled to generate a high-quality fcc lattice template.
Next, the interstitial regions (the void spaces among the
colloidal particles of an opal-like lattice) are infiltrated with
high refractive index material [101–106]. The third step
involves the removal of the template material by heat or
chemical treatment, immersing the sample in an appropriate
chemical etching solution being one example. The end result
is a membrane consisting of highly ordered 3D arrays of air
balls interconnected by circular ‘windows’ as shown by the
computer simulation [107] displayed in figure 8.

A highly porous inverse opal, with a filling ratio of
20–30% of the high dielectric material, is needed for optimum
photonic effects [12, 84, 107]. Theoretically, it has been
demonstrated [12] that inverted opal structures exhibit near-
visible PBGs on the scale of 10% of the midgap frequency.
Such structures have been experimentally realized with TiO2

(refractive index n = 2.8) and CdSe [101, 105, 106, 108].

Figure 8. Computer representation of an inverse opal structure.
Note the circular ‘windows’ interconnecting the air balls. (Courtesy
of Ovidiu Toader, Department of Physics, University of Toronto.)

However, both of these structures are below the required
refractive index threshold for PBG formation.

An important application of PBG materials arises for the
band gap around 1.5 µm—the wavelength most commonly
used in fibre optical communication. Such a PBG structure
requires colloidal spheres with a diameter of ∼870 nm. In
this connection, an important step has been achieved [109]
through the fabrication of large-scale silicon inverse opals, with
a complete 3D PBG centred near 1.5 µm.

2.10. Applications of PBG materials

The ability to control spontaneous emission using PBG
materials will have profound consequences for optoelectronics
devices. It can be used to dramatically enhance the light
extraction efficiency (the ratio of the flux emitted into specified
modes to the total emitted flux) of light emitting diodes
(LEDs) [110–113], which, in turn, has the effect of reducing the
absorption loss and increasing the modulation (response) speed
of LEDs. It also has potential applications in photocatalysis—
a very large field which impacts various areas of chemical
synthesis and applications in biochemistry, fuels development,
and solar energy conversion [114]. PBG materials made
out of a semiconducting material can be used to control
the radiative recombination of electrons and holes in the
semiconductor [115]. In a semiconductor laser, this would
lead to a near-unity quantum efficiency into the lasing mode.

A PBG material can be used as a perfect dielectric mirror
which reflects light, since light incident on a PBG material
with a frequency in the gap region is backscattered from the
material, independent of the angle of incidence. This property
lends PBG materials to numerous applications, reflectivity
being the heart of so many devices such as lasers. For instance,
a PBG material might make a very good, narrow-band filter, by
reflecting all (and only) frequencies in the gap. PCs, fabricated
so as to have a PBG for only one type of polarization, can be
used as polarization filters or polarizers which reflect back
one type of polarization while allowing another independent
polarization to pass through. In these applications dielectric
structures have an advantage over metallic mirrors which rely
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on the high (frequency dependent) conductivity of metals and
suffer dissipative losses at higher frequencies.

The reflective property of PBG materials can also be
used to advantage in the design of planar antennae [116–
118] which, in integrated circuits, play the important role of
radiating signals off the chip into free space [119]. By using
a 3D PBG as an antenna substrate, it is possible to ensure that
all of the antenna power is radiated into air rather than into the
substrate, provided that the driving frequency of the antenna
lies within the band gap.

The localized mode associated with a defect in an
otherwise perfect PBG material can act as a microcavity of very
high quality factor Q (see section 2.7). This high-Q defect
mode microcavity can be considered for all the applications
in which high-Q optical microcavities are used. It can be
used to realize the optical engineer’s dream of threshold-less
lasers [120, 121]. It may also be used in experiments to
illustrate the quantum properties of light, and atom–photon
interactions, such as the Jaynes–Cummings model [122] which
describes the interaction of two-level atoms with a single
quantized mode of the radiation field.

Just as point defects in a PC are used to trap light,
extended defects (such as a line of point defects) can be
used to guide light from one location to another. If the
frequency of the guided mode lies within the PBG, the mode
is forbidden to escape into the crystal, regardless of the shape
of the waveguide, because the confinement mechanism does
not have angular dependence. Thus, a waveguide cut out of a
PBG material is capable of guiding light around sharp bends
with little or no leakage, even when the radius of curvature
of the bend is less than the wavelength of light [123–126].
Moreover, since the light is guided in a hollow waveguide
surrounded by omnidirectionally reflecting PBG material,
the propagation is primarily through air and will therefore
experience substantially lower absorption losses [125]. These
properties of a PBG waveguide are in sharp contrast to
those of conventional waveguides such as optical fibres.
Conventional waveguides are based on the principle of total
internal reflection which confines light only of a limited angle.
If a waveguide takes a tight curve, the angle of incidence will
be too large for total internal reflection to occur so that the light
escapes at the corners and is lost. Moreover, in conventional
waveguides, light is guided through a dense medium, and,
therefore, for long distances, material absorption becomes
significant even in low-loss materials. To compensate for
losses the fibre is doped with erbium which is used to amplify
the signal. This, in turn, limits the bandwidth of the fibre to
that of the narrow-band erbium excitation lines [127].

The polarization characteristics of photonic bands in PCs,
even those without a PBG, mean that these crystals can
possess large birefringence in the long-wavelength limit. The
birefringence or double refraction—defined as the difference
in the effective refractive indices seen by the electric fields
associated with two orthogonal polarizations—of 2D PCs
(composed of a triangular lattice of air cylinders in silicon) was
recently investigated both theoretically and experimentally by
van Driel and co-workers [129]. The measured birefringence
(for an electric field polarized parallel and perpendicular
to the cylinder axis) reaches a maximum value of 0.366
near the first photonic band edge at λ ≈ 6.52 µm. In

contrast, at wavelength 589.3 nm, the birefringence of quartz
(crystalline SiO2) is 0.0091 whereas that of calcite (CaCO3)
is 0.172 [130]. Photonic crystal birefringence could be used
in a wide variety of photonic devices, including wave-plates,
polarization rotators, optical isolators and beam splitters.

2D PBG materials, in contrast to 3D microstructures,
are much more amenable to controlled fabrication owing
to mature nanofabrication technology. As a consequence,
2D PCs have been more thoroughly investigated than their
3D counterparts [131–134]. Although they do not provide
3D light guiding or confinement, 2D structures could
already bring a sizable part of the advantages expected
from 3D structures. The enhancement and suppression
of spontaneous emission in thin-film 2D PCs at room
temperature have been investigated [110]. The optical and
confinement properties of 2D PCs have been studied [135–
137]. Triangular and hexagonal 2D defect mode PBG
microcavities showing a Q-factor of at least 900 have already
been demonstrated [138, 139]. One can think of such cavity
modes as filters that select only the resonant frequency [140].
The use of 2D PBG materials to localize light to a single defect
and thereby form a high-Q nanocavity laser with a modal
volume of less than 0.03 µm3, constituting the smallest laser
ever made, is reported [80, 141]. The performance and guiding
properties of waveguides fabricated in 2D PBG materials are
investigated [126, 142].

The potential applications of PBG materials for passive
devices such as filters, waveguides, antenna substrates and
reflectors have already been discussed. The possibility of
dynamically controlling the spectral and spatial properties of
PBG materials by active elements is expected to open new
application prospects [143]. The latest development in this
direction involves the use of liquid crystals as active elements
to tune PBG materials made out of inverted opals. This
novel concept of tunability was first proposed by Busch and
John [144, 145] who studied the effects of partially infiltrating
(coating) the spherical voids of an inverted opal made out of
silicon with a low-index nematic liquid crystal [146]. They
showed that the width of a band gap can be adjusted or the
band gap can be eliminated altogether by an applied electric
field which changes the orientation of the nematic director. In
this manner, the PBG can be either globally altered or locally
addressed by applied voltages. The timescale of electro-optic
modulation of the PBG may be on the scale of microseconds to
milliseconds depending on the response time of the nematic.

The recent spectacular technological advances in the
synthesis of 3D PBG materials at infra-red and optical
frequencies have made it possible to envision a PBG material
as a platform for integrating an all-optical circuitry. An array
of densely packed PC microcavities [138], waveguides [126],
prisms [128], switches [147] and light sources [80, 141] can
be integrated on a very small area of a PC by engineering the
appropriate defects inside the crystal, paving the way for all-
optical computing.

3. Coherent control of spontaneous emission near a
photonic band edge: the leading approximation

Recently, quantum interference and coherence in a multilevel
atomic system has attracted a lot of attention, because it leads
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to such interesting effects as the enhancement of the index
of refraction with greatly reduced absorption, electromagneti-
cally induced transparency, and optical amplification without
population inversion [14]. The coherent control of molecular
chemical reactions [148] is an emerging frontier in chemical
physics [149]. Using the coherence properties of an external
laser field driven interaction, radiatively controlled chemical
pathways can be enhanced or retarded by quantum mechanical
interference effects. Selective photo-dissociation of molecules
mediated by the interference between two two-photon excita-
tion processes has been reported [150]. Coherent control of
current in a semiconductor has also been demonstrated [151].
In view of these achievements, it is of great interest to consider
the combined effects of coherent control by means of external
laser fields and the coherent localization effects facilitated by
a PBG.

In this section we investigate the coherent control of
spontaneous emission for a three-level atom located within a
perfect PBG structure. The model is considered in what we call
the leading approximation whereby a number of spontaneous
emission effects and non-radiative interactions are neglected.
This renders the problem amenable to analytical solution.
Considerations beyond the leading approximation are deferred
to section 4.

3.1. Description of the model system

The physical system we consider consists of a single three-
level atom placed inside a PBG material which is then driven
by a laser field, see figure 9. We let |0〉 denote the ground
level of the atom; and |1〉 and |2〉 the two excited levels
with orthonormality conditions 〈i | j 〉 = δi j , where δi j is the
Kronecker delta function. We designate the energy of an
atomic level |i〉 by h̄ωi and the frequency separation between
levels |i〉 and | j 〉 by ωi j = ωi − ω j . The transition between
levels can be described using the atomic operators σi j = |i〉〈 j |,
with the property σi j |k〉 = δ jk |i〉, from which the commutation
relation

[σi j , σlk ] = δ j lσik − δikσl j (2)

can readily be obtained.
The upper atomic level |2〉 is dipole coupled to the

ground level |0〉 by radiation modes (photon reservoir) in a
three-dimensional periodic dielectric structure. The transition
frequency ω20 is assumed to be near the edge of the gap in
the density of the reservoir photon modes. Each mode of
the photon reservoir is characterized by a wavevector k and
a polarization index λ(= 1, 2) and can be treated as a quantum
oscillator with frequency ωk. Transitions between photon
occupation number states |nkλ〉 are described by the radiation
field annihilation (akλ) and creation (a†

kλ) operators satisfying
the standard Bose algebra

[akλ, a†
k′λ′ ] = δkk′δλλ′ . (3)

We assume that atomic operators σi j commute with the field
operators akλ and a†

kλ. The transition |2〉 → |1〉 between the
two upper levels is driven by a resonant control laser field.

We assume that spontaneous emission on the transi-
tions |2〉 → |1〉 and |1〉 → |0〉 is inhibited either by symmetry
considerations or by the presence of the PBG. This assumption

constitutes the leading approximation to our model system.
This approximation describes the essential physics contained
in the model system. In section 4, we consider corrections to
this leading approximation brought about by the inclusion of
the spontaneous emission channels |2〉 → |1〉 and |1〉 → |0〉,
and other non-radiative interactions.

First we consider a three-level atom in the so-called
V configuration (figure 9(a)). In such a configuration, the
upper levels |2〉 and |1〉 are of the same symmetry so that
single-photon spontaneous emission |2〉 → |1〉 is not dipole
allowed. Now if we assume that the transition frequency
ω10 is deep inside the gap, then single-photon spontaneous
emission for the transition |1〉 → |0〉 will lead to a photon–
atom bound state [65, 152]. Thus, for a three-level atom in
the V configuration, the leading approximation is satisfied
if ω10 lies deep inside the gap. In a V system, the external
control laser field of frequency ωL which couples levels |2〉 and
|1〉 drives a two-photon transition (2ωL = ω21), since the levels
are of the same symmetry. From a practical point of view, we
want the transition frequency ω21 to be as large as possible, as it
may be difficult to generate MW fields of sufficient amplitude
to drive the required two-photon transition. However, the
magnitude of ω21 is restricted by the width of the PBG. For
a gap centred at frequency ω0 and with a gap to midgap
ratio of r ≡ �ω/ω0, conditions that ω20 be near the edge
of the gap and that ω10 be deep inside the gap require that
ω21 = ω20 − ω10 < rω0. Thus, to make ω21 large we need a
gap with as high a central frequency as possible and as large
a width as possible. For a gap centred at an optical frequency
ω0 ∼ 1016 Hz and with a gap to midgap ratio of 10%, the
frequency separation ω21 between levels |2〉 and |1〉 must be
approximately 5 × 1014 Hz.

Another means of overcoming the above practical
limitation associated with the V system is to couple levels
|1〉 and |2〉 indirectly by way of a transition to a higher level
|3〉 which lies far above level |2〉. This will allow us to both
strongly couple levels |1〉 and |2〉 and use a narrow band gap,
even when the transition frequency ω21 lies in the near or far
infra-red. Level |3〉 is dipole coupled to level |1〉 (and hence
to level |2〉, since they are of the same symmetry) and the
transitions ω31 and ω32 are both in the visible and both lie
outside the gap, as shown in figure 9(c). The transition ω31

is then pumped by a resonant laser ωp = ω31 followed by a
stimulated emission into level |2〉 using a laser which couples
levels |3〉 and |2〉 [153].

Next we consider a three-level system in the �

configuration (figure 9(b)). In such a configuration, levels
|1〉 and |0〉 have the same symmetry and there is no dipole-
allowed single-photon spontaneous emission between these
levels. Now, if we further assume that the transition frequency
ω21 is far inside the gap, the dipole-allowed transition
|2〉 → |1〉 will create a photon–atom bound state whose
radiative lifetime is given by the two-photon spontaneous
emission time for the |1〉 → |0〉 transition. Thus, for a three-
level atom in the � configuration, the leading approximation
is satisfied if ω21 lies deep inside the gap. To reconcile the
conditions that ω20 is near the band edge and that ω21 is
deep in the gap, we require that ω10 = ω20 − ω21 � rω0.
Given the practical fact that r � 0.1, it follows that levels |1〉
and |0〉 should be close to each other but both far from level
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Figure 9. Schematic representations of a driven three-level system (a) in the V configuration and (b) in the � configuration. The transition
frequency ω20 is near the band edge frequency ωc of a PBG. Lines with arrows at both ends denote the control laser field of Rabi frequency
� driving the transition |2〉 ←→ |1〉. Double arrowed lines denote two-photon transitions. Dashed lines denote dipole-allowed transitions.
In the V configuration levels |2〉 and |1〉 are of the same symmetry and ω10 is deep inside the PBG so that there are no single-photon
spontaneous emissions on the transitions |2〉 → |1〉 and |1〉 → |0〉. Similarly in the � configuration levels |1〉 and |0〉 are of the same
symmetry and ω21 is deep inside the PBG so that there are no single-photon spontaneous emissions on the transitions |2〉 → |1〉 and
|1〉 → |0〉. The control laser field drives a two-photon transition (2ωL = ω21) in the V configuration and a single-photon transition
(ωL = ω21) in the � configuration. Figure 1(c) shows indirect coupling of levels |1〉 and |2〉 in a V system via another level |3〉. Such a
scheme will allow us to strongly couple levels |1〉 and |2〉 even when the transition ω21 lies in the infra-red or far infra-red.

|2〉, as shown in figure 9(b). This, in turn, will reduce the
decay rate of the photon–atom bound state due to two-photon
spontaneous emission from |1〉 → |0〉. However, since ω21

is within the gap, the control laser driving the single-photon
transition |2〉 → |1〉 must be injected by means of engineered
or naturally occurring defect or waveguide modes within the
band gap material.

3.2. Model Hamiltonian and equations of motion

The Hamiltonian describing the leading approximation to our
model system can be written as (see appendix A)

H = HA + HR + HAR + HAL , (4)

where

HA =
2∑

i=0

h̄ωiσi i , (5a)

HR =
2∑

λ=1

∑
k

h̄ωka†
kλakλ, (5b)

HAR = ih̄
2∑

λ=1

∑
k

gkλ(a
†
kλσ02 − σ20akλ). (5c)

Here HA represents the Hamiltonian of the bare atom whereas
HR stands for the Hamiltonian of the photon reservoir
(neglecting the zero-point energy). The Hamiltonian HAR

describes interaction between the atomic transition |2〉 → |0〉
and the photon reservoir. Here gkλ is the frequency-dependent
coupling constant (assumed to be real) between the atomic
transition |2〉 → |0〉 and the mode {kλ} of the radiation field:

gkλ = ω20d20

h̄

(
h̄

2ε0ωkV

)1/2

êkλ · d̂20. (6)

In this expression d20 and d̂20 are the magnitude and unit vector
of the atomic dipole moment d20 for the transition |2〉 → |0〉, V
is the sample volume, êkλ are the two transverse (polarization)
unit vectors and ε0 is the Coulomb constant. The coupling
constant gkλ fully characterizes the density of modes in the
photon reservoir.
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The interaction Hamiltonian HAR is written in the electric
dipole approximation [70]. It is also written in the rotating
wave approximation (RWA) [70] in which virtual processes
of excitation (de-excitation) of the atom with simultaneous
creation (annihilation) of a photon (that is, terms of the form
a†

kλσ20 and akλσ02) are neglected.
In equation (4), the Hamiltonian HAL represents the

interaction between the atom and the coherent monochromatic
laser field driving the transition |2〉 ↔ |1〉. We assume that
the driving field is sufficiently strong that it can be treated
classically. In the � configuration, levels |2〉 and |1〉 are of
opposite symmetry, and, therefore, the transition |2〉 → |1〉 is a
dipole-allowed transition. Thus, the external control laser field
which couples levels |2〉 and |1〉 drives a one-photon transition
(ωL = ω21). In this case HAL can be written as [154]

H�
AL = ih̄��[ei(ωL t+φ)σ12 − e−i(ωL t+φ)σ21], (7)

where ωL , �� and φ represent the angular frequency, the Rabi
frequency and the phase of the driving laser.

The Rabi frequency [70] is a measure of the strength of the
interaction between the driving field and the atomic transition
|2〉 → |1〉. For a dipole-allowed transition, such as |2〉 → |1〉
in the � system, the Rabi frequency of the driving field is
proportional to the product of the atomic dipole moment d21

and the amplitude E0 = |E0| of the sinusoidal optical field:

h̄�� = d21 E0. (8)

On the other hand, in the V configuration, the upper levels |2〉
and |1〉 are of the same symmetry and, therefore, the transition
|2〉 → |1〉 is not dipole allowed. Thus, the external control
laser field of frequency ωL which couples levels |2〉 and |1〉
drives a two-photon transition (2ωL = ω21). In this case, the
interaction Hamiltonian HAL will be of the form

H V
AL = h̄�V [ei(2ωL t+φ′)σ12 − e−i(2ωL t+φ′)σ21], (9)

where the Rabi frequency �V is now obtained from second-
order perturbation theory [155]

h̄�V =
∑

I

(d2I · E0)(dI1 · E0)

h̄(ωL − ωI1)
. (10)

Here the summation is over all intermediate states |I 〉 of the
atom.

For the sake of notational simplicity (not to write almost
identical equations separately for the � and V systems) we
write the interaction Hamiltonian HAL in both the � and V
cases as

HAL = h̄�[ei(ωc t+φc)σ12 − e−i(ωct+φc)σ21], (11)

assuming that what we mean by�, ωc and φc can be understood
from the context. For ω j0 in the optical regime, we can safely
assume that

�� � ω j0. (12)

Laser intensities required to make � comparable to an optical
frequency would cause dielectric breakdown and are many
orders of magnitude larger than that used in any resonance
experiment [70].

In the framework of perturbation theory, which is usually
employed in quantum electrodynamics, the Hamiltonian

H0 = HA + HR (13)

is regarded as the Hamiltonian of the unperturbed system
whereas

HI = HAR + HAL (14)

describes the perturbation. In this paper we employ
the Schrödinger picture of quantum mechanics [39] where
observables are described by time-independent operators, the
basis vectors of the appropriate Hilbert space are stationary
(like the fixed coordinate system in ordinary geometry), and
state vectors move continuously in this space according to the
time-dependent Schrödinger equation

i
∂

∂t
|�(t)〉 = H |�(t)〉, (15)

where H is the Hamiltonian of the system.
The stationary states (eigenstates) of the unperturbed

Hamiltonian H0 of equation (5b) are listed below together with
their corresponding eigenvalues:

|2, {0}〉, h̄ω2, |1, {0}〉, h̄ω1, |0, {1kλ}〉, h̄(ω0 +ωk).

(16)
Here the state vector | j, {0}〉 ≡ | j 〉|{0}〉 represents the atom
in the upper states | j 〉 and the vacuum electromagnetic field
(that is, no photons present in the system). On the other hand,
the state vector |0, {1kλ}〉 represents the atom in the ground
state |0〉 and a single photon in a mode {kλ}. The state | j, {0}〉
is a direct product of the atomic state | j 〉 and the radiation
state |{0}〉, since the atomic operators are assumed to commute
with the radiation field operators. Similarly, |0, {1kλ}〉 is
a direct product of |0〉 and |{1kλ}〉. The vectors |1, {1kλ}〉
are assumed to be inaccessible in the V system, since there
is no single-photon spontaneous emission on the transition
|2〉 → |1〉. Two-photon spontaneous emission is considered to
be negligible compared to the two-photon stimulated emission
from |2〉 to |1〉, induced by the classical control laser field.
This latter effect is described by the classical Rabi field (two-
photon transition) amplitude h̄�V ei(2ωL t+φc). Similarly, in the
� system, single-photon spontaneous emission from |2〉 to |1〉,
although allowed in the control laser mode, is assumed to
be negligible compared to stimulated emission driven by the
control laser field. (Single-photon spontaneous emission is not
allowed into the other modes having frequency ω21 because
ω21 is deep within the gap.) For the �-system, the effects of
stimulated emission are described by the classical Rabi field
(one-photon transition) amplitude h̄��ei(ωL t+φc).

We assume the following initial configuration for the
model system. At t = 0, the radiation-field reservoir is initially
in the vacuum state (no photon in the system), and the atom is
prepared in a coherent superposition of its two upper levels |2〉
and |1〉 in the form

|�(0)〉 = cos θ |2, {0}〉 + eiφp sin θ |1, {0}〉. (17)

The parameter θ measures the degree of superposition of levels
|2〉 and |1〉. A value of θ = 0 means that the atom is initially
prepared on the upper level |2〉, whereas θ = π/4 means that
the atom is initially prepared as an equal superposition of the
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upper levels |1〉 and |2〉. The factor eiφp gives the relative
phase between the expansion coefficients of |2〉 and |1〉, and
plays a significant role in physical predictions [156]. The
coherent superposition state (17) can be prepared by an ultra-
short pumping laser pulse of appropriate pulse area [70].

As a result of the perturbation HI applied at time t = 0, the
initial state |�(0)〉 evolves in time according to Schrödinger
equation (15). At any time t , the state vector of the system can
be written as a linear combination of the eigenstates (16) of
the unperturbed Hamiltonian H0. Accordingly, we write

|�(t)〉 = c2(t)e
−iω2 t |2, {0}〉 + c1(t)e

−iω1 t |1, {0}〉
+

∑
kλ

ckλ(t)e
−i(ωk+ω0)t |0, {kλ}〉, (18)

where the time dependences of the amplitudes due H0 are
explicitly factored out in the form of exponentials. Comparing
equations (18) and (17), we obtain

c2(0) = cos θ, c1(0) = eiφp sin θ, ckλ(0) = 0,

(19)
as the initial values for the amplitudes c1,2(t) and ckλ(t)
corresponding to the initial state (17).

The function c j (t) gives the probability amplitude to find
the atom in the excited state | j 〉 and the photon reservoir
in the vacuum state. On the other hand, ckλ(t) gives the
probability amplitude to find the atom on the ground state |0〉
and a single photon of wavevector k and polarization λ in the
photon reservoir. Thus, the probability of finding the atom in
the excited level | j 〉, more commonly known as the population
of level | j 〉, is given by

n j (t) = |c j(t)|2, ( j = 1, 2). (20)

The steady-state population of the atomic level | j 〉 is then

n js = lim
t→∞ n j (t), ( j = 1, 2). (21)

Using equation (19) in (20), we obtain

n1(0) = sin2 θ, n2(0) = cos2 θ (22)

for the initial populations of the upper levels |1〉 and |2〉. An
important quantity in applications such as quantum computing
is the cross-term

nc(t) ≡ c2(t)c
∗
1(t). (23)

This term measures the interference between the atomic
amplitudes c1(t) and c2(t) and is known as the coherence. Its
steady-state value is

ncs = lim
t→∞ nc(t). (24)

Using equations (4) and (18) in (15), and projecting the
result onto the eigenstates |0, {kλ}〉, |1, {0}〉 and |2, {0}〉 of H0,
respectively, we obtain the following (infinite) set of coupled
equations for the amplitudes c j (t) and ckλ(t):

ċkλ(t) = gkλc2(t)eiµk t , (25a)

ċ1(t) = �eiφc c2(t), (25b)

ċ2(t) = −�e−iφc c1(t) −
∑
kλ

gkλckλ(t)e
−iµk t . (25c)

Here the dot over an amplitude signifies the total time derivative
and

µk = ωk − ω20 (26)

represents the detuning of the radiation mode frequency ωk

from the atomic transition frequency ω20. Equation (25a) can
be integrated (in time), using the initial condition (19), to give

ckλ(t) = gkλ

∫ t

0
c2(t

′)eiµk t ′
dt ′. (27)

Substituting this expression for ckλ(t) in equation (25c) yields
the following two coupled integro-differential equations:

ċ1(t) = �eiφc c2(t), (28a)

ċ2(t) = −�e−iφc c1(t) −
∫ t

0
G(t − t ′)c2(t

′) dt ′, (28b)

where

G(t − t ′) =
∑
kλ

g2
kλe−iµkλ(t−t ′) (29)

is the delay Green function of the problem. In writing down
equation (28a) and (28b) we have exchanged the order of
summation over kλ and integration over time. The resulting
Green function depends very strongly on the photon density of
states of the relevant photon reservoir. In essence, G(t − t ′)
is a measure of the photon reservoir’s memory of its previous
state on the timescale for the evolution of the atomic system,
hence the alternative name memory kernel.

The main objective of this section is to solve the coupled
equations (28a) and (28b) for the amplitudes c j (t) in a given
photon reservoir. These amplitudes can then be used to
evaluate the populations and coherences of the atomic levels.
The integral on the right-hand side of equation (28b) is
a convolution integral which suggests solution by Laplace
transformation [157]. Upon taking the Laplace transforms of
equations (28a) and (28b) and using the initial condition (19),
we find that

c̃2(s) = s cos θ − �eiφ sin θ

s2 + sG̃(s) + �2
, (30a)

c̃1(s) = eiφp sin θ [s + G̃(s)] + �eiφc cos θ

s2 + sG̃(s) + �2
, (30b)

where c̃ j (s) and G̃(s) are the Laplace transforms of c j (t) and
G(t), respectively, and

φ = φp − φc (31)

is determined by the relative phase between the control and
pump lasers.

For a given dispersion relation ωk, we can calculate
G(t − t ′) from equation (29) which, in turn, can be used to
calculate G̃(s). This G̃(s) can then be used in equations (30a)
and (30b) and the resulting expressions inverted to find
analytical expressions for the amplitudes c j (t).
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3.3. Model system in vacuum

First we consider the case of a three-level atom in free space.
Besides being an interesting case in its own right [14], the free-
space case will be useful to compare and interpret the results of
the PBG case which is discussed in later sections. The leading
approximation described by the Hamiltonian (4) can be valid
in free space if γ10 � γ20 in a V system (so that spontaneous
emission on the transition |1〉 → |0〉 can be ignored), or if
γ21 � γ20 in a � system (so that spontaneous emission on the
transition |2〉 → |1〉 can be ignored).

The electromagnetic vacuum is characterized by the
dispersion relation

ω(k) = ck. (32)

For such a dispersion relation the Green function (29) takes
the form

G(t − t ′) = γ20δ(t − t ′), (33)

where

γi j = 1

4πε0

4ω3
i j d

2
i j

6h̄c3
(34)

is half the spontaneous emission rate �i j for the transition
|i〉 → | j 〉, and δ(t − t ′) is the Dirac delta function (see
appendix B). Thus, in free space, the memory kernel is
proportional to the delta function. This is because free space
is an infinitely broad photon reservoir (flat spectrum) and,
therefore, its response should be instantaneous. Interactions
governed by such a delta-function-dependent memory kernel
are said to be Markovian [14].

From equation (33) we obtain

G̃(s) = γ20, (35)

and using this in equation (30a) and (30b) we obtain

c̃2(s) = s cos θ − �eiφ sin θ

D(s)
, (36a)

c̃1(s) = eiφp sin θ(s + γ20) + �eiφc cos θ

D(s)
, (36b)

where

D(s) = s2 + γ20s + �2 =
2∏

j=1

(s − q j ), (37)

and q j ( j = 1, 2) are the roots of the quadratic equation

x2 + γ20x + �2 = 0, (38)

found by substituting x = s in the equation D(s) = 0. They
are given by

q1,2 = −γ20

2
±

√(
γ20

2

)2

− �2. (39)

Equations (36a) and (36b) are easily inverted to give

c2(t) =
2∑

j=1

D j eq j t , c1(t) =
2∑

j=1

E j eq j t , (40)

where

D j = q j cos θ − �eiφ sin θ

q j − qk
, ( j �= k), (41a)
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Figure 10. Atomic population n2(t) in ordinary vacuum as a
function of the scaled time γ20t for the initial conditions θ = π/4
(that is equal superposition of the upper levels), for φ = −π/2, and
for different values of �. The results are obtained in the leading
approximation making them applicable to both the � and V
configurations.

E j = (q j + γ20)eiφp sin θ + �eiφc cos θ

q j − qk
, ( j �= k).

(41b)
From equation (39) we see that both roots q j are

(a) negative when � � γ20/2, and (b) complex (with a
negative real part equal to −γ20/2) when � > γ20/2. Thus the
time evolution of amplitudes c j (t) (and hence of the upper-
level populations n j (t)) can be divided into two regimes of
different behaviour. For � > γ20/2, the populations display
pronounced oscillations before decaying to zero. On the other
hand, when � < γ20/2 the populations barely complete an
oscillation before decaying to zero. Thus, the driving field
induces oscillations on the populations of the upper levels.
The stronger the driving field (i.e. the larger the �), the faster
the oscillations. This behaviour of the populations is depicted
in figure 10 where n2(t) is plotted as a function of the scaled
time γ20t for various of �. Even if � � γ20/2 (so that both
roots q1,2 are real), the coefficients D1,2 of equation (41a)
may have opposite signs leading to a minimum in n2(t) as is
the case for � = 0.35γ20 in figure 10. When � = γ20/2,
equation (38) has a double root q1 = q2 = −γ20/2 and
inversion of equations (36a) and (36b) gives

c2(t) = {cos θ−[(γ20/2) cos θ+�eiφ sin θ ]t}e−(γ20/2)t, (42a)

c1(t) = eiφp {sin θ + [(γ20/2) sin θ + �e−iφ sin θ ]t}e−(γ20/2)t .

(42b)

Equation (39) shows that both roots q1,2 have a negative
real part, irrespective of the value of �. This means that the
amplitudes c1,2(t) decay in time and tend to zero as t → ∞ so
that the steady-state populations n1s and n2s are both zero:

n js ≡ lim
t→∞ |b j (t)|2 = 0, ( j = 1, 2). (43)

In other words, in free space, the populations of the excited
states |2〉 and |1〉 eventually decay to the ground level |0〉 (there
is no population trapped on the upper levels), independent of
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the strength � of the driving field. The only effect of the
driving field is to cause transfer of populations from |2〉 to
|1〉 and vice versa until all the upper-level population decays
to the ground level. This is a general result valid for almost
any broad-band smoothly varying electromagnetic density of
states. On the other hand, when the density of electromagnetic
modes vanishes in the vicinity of an atomic transition (such as
near a photonic band edge) photon localization leads to non-
zero steady-state atomic populations on the excited levels [65].
The extent of localization depends sensitively on �, and on the
initial atomic state, as will be seen in section 3.4.

3.4. Model system in a PBG material

We now turn our attention to the case when the three-level atom
is located within a PBS. First, we introduce a model dispersion
relation for the PBG material from which we evaluate the
corresponding Green function according to equation (29).
The Laplace transform of this Green function is then used in
equations (30a) and (30b) to evaluate c̃ j (s) which, in turn, is
inverted to find analytic expressions for the amplitudes c j (t)
from which the relevant populations and coherences can be
evaluated.

3.4.1. Model dispersion relation. In a PBG one finds
a modified dispersion relation for the photons in the
radiation reservoir, with a gap(s) in the photon density of
states. We begin by considering an isotropic effective mass
approximation [5, 6] for the photon dispersion relation in a
PBG material:

ωk ≈ ωc + A(k − k0)
2. (44)

Here ωc is the upper band edge frequency, k is the modulus of
the wavevector k, k0 is a constant characteristic of the periodic
structure, and the constant A = (1/2)(∂2ω/∂k2)k=k0 measures
the curvature of the dispersion curve ω(k) at k = k0 [65]. For
an isotropic dispersion relation A ≈ ωc/k2

0 ≈ c2/ωc. The
dispersion relation (44) is valid for frequencies close to the
upper photonic band edge. If the PBG is large, and if the
relevant atomic transitions are near the upper band edge, it is a
very good approximation to completely neglect the effects of
the lower band.

The dispersion relation (44) is isotropic since it depends
only on the magnitude k of the wavevector k. While there is
no physical PBG material with an isotropic gap, this provides
an instructive toy model for studying quantum optical effects.
Such a dispersion relation associates the band edge wavevector
with a sphere in k space, |k| = k0 (spherical Brillouin zone).
By associating the band edge with the entire sphere |k| = k0,
the isotropic model (44) artificially increases the true phase
space available for photon propagation near the band edge.
This results in a photonic density of states ρ(ω) which, near the
band edge ωc, behaves as (ω − ωc)

−1/2 for ω > ωc, the square-
root singularity being characteristic of a 1D phase space [5, 6].

In a real 3D dielectric crystal with an allowed point-group
symmetry, the gap is highly anisotropic and the band edge
is associated with a point k = k0 (or a finite collection of
symmetry-related points) in k space [67], rather than with the
entire sphere |k| = |k0|. In other words, the magnitude of
the band edge wavevector varies as k is rotated throughout

the Brillouin zone. Thus, a more realistic picture of the band
edge behaviour requires the incorporation of the Brillouin-zone
anisotropy. In the effective mass approximation, the photon
dispersion relation takes the vector form

ωk ≈ ωc + A(k − k0)
2. (45)

In this case, however, we cannot use the approximation
A ≈ c2/ωc because the dispersion curve, in general, exhibits
different slopes in different directions. Instead, we use A ≈
f c2/ωc where f is a dimensionless scaling factor, whose
value depends on the nature of the dispersion relation near the
band edge ωc. The anisotropic effective mass dispersion (45)
relation leads to a photonic density of states at a band edge
ωc which behaves as ρ(ω) ∼ (ω − ωc)

1/2 for ω > ωc,
characteristic of a 3D phase space [5, 6].

The isotropic dispersion relation (44) leads to qualitatively
correct physics. However, the anisotropic model (45)
introduces important quantitative corrections [5]. The most
significant difference between the anisotropic and isotropic
models comes out more explicitly when considering an
undriven two-level atom with frequency near the edge of a
PBG. In this case the isotropic model leads to a non-zero
steady-state population on the upper level, even when the
transition frequency is slightly outside the gap [65]. On the
other hand, the anisotropic model leads to a fractionalized
steady-state population on the upper level only when the
transition frequency is inside the gap [67] (see appendix E).

Using the anisotropic effective mass dispersion
relation (45) in equation (29) we can evaluate the correspond-
ing Green function. For (t − t ′) large enough to satisfy
ωc(t − t ′) � 1, we obtain (see appendix B)

G(t − t ′) = −α
ei[δ(t−t ′)+π/4]√

4π(t − t ′)3
, ωc(t − t ′) � 1, (46)

where
δ = ω20 − ωc (47)

represents the detuning of the atomic transition frequency
ω20 from the upper band edge frequency ωc. The full
expression for G(t − t ′), including its short-time behaviour,
is rather complicated [158] but differs from the approximate
expression (46) only in the region (t − t ′) → 0+, which is not
of much interest to us [158], as we are mainly interested in
long-time memory effects.

The constant α in equation (46) is given by (see
appendix B)

α2 ≈ 1

16 f 3

(
γ20

ω20

)2

ωc, (48)

where γ j0 (given by equation (34)) is half the vacuum
spontaneous emission rate � j0 for the transition |2〉 → |0〉,
and f is the dimensionless scaling factor mentioned above. At
optical frequencies γ20 ∼ 108 Hz and ω20 ∼ 2π × 1015 Hz so
that α2 ∼ 10−17 f −3ωc. For f = 103 , we have α2 ∼ 10−8ωc

which translates to α2 ∼ 107 Hz when ωc is in the optical
regime.

Equation (46) shows that, for an anisotropic PBG in the
effective mass approximation, the memory kernel G(t − t ′)
decays with time as (t − t ′)−3/2. This is unlike the free-
space case (33), where G(t − t ′) exhibits a delta function time
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dependence. Thus, equation (46) describes long-time memory
effects in atom–photon interaction due to the presence of the
PBG material, indicating that atom–photon interaction within a
PBG material is highly non-Markovian [158]. For the isotropic
dispersion relation (44) the memory kernel G(t − t ′) decays
in time more slowly as (t − t ′)−1/2 (see appendix B). This
enhanced memory for the isotropic model is an artifact of the
singular phase space occupied by the band edge photons of
vanishing group velocity.

3.4.2. Populations and coherences. From equation (46) we
obtain

G̃(s) = αeiπ/4
√

s − iδ, (49)

and using this in equations (30a) and (30b) we obtain

c̃2(s + iδ) = (s + iδ) cos θ − �eiφ sin θ

D(s)
, (50a)

c̃1(s + iδ) = (s + αeiπ/4√s + iδ)eiφp sin θ + �eiφc cos θ

D(s)
,

(50b)
where

D(s) = (s + iδ)2 +αeiπ/4(s +iδ)
√

s +�2 =
4∏

j=1

(
√

s −eiπ/4u j ).

(51)
Here u j( j = 1, . . . , 4) are the roots of the quartic equation

x4 + αx3 + 2δx2 + αδx − (�2 − δ2) = 0 (52)

found by substituting x = e−iπ/4√s in the equation D(s) = 0.
These roots are given by [159]

u1,3 = −σ1 ± [A − r/2 + σ 2
1 ]1/2, (53a)

u2 = u∗
4 = −σ2 − i[A + r/2 − σ 2

2 ]1/2, (53b)

where
A = (r 2/4 + �2 − δ2)1/2, (54a)

σ1,2 = 1
4

(
α ±

√
α2 − 8δ + 4r

)
, (54b)

r = (B − q/2)1/3 − (B + q/2)1/3 + η1/3, (54c)

B =
[(

p

3

)3

+
(

q

2

)2]1/2

, (54d)

p = −η2
1

3
+ η2, q = −2

(
η1

3

)3

+
η1η2

3
+ η3, (54e)

η1 = 2δ, η2 = α2δ + 4(�2 − δ2), (54f)

η3 = (α2 − 8δ)(�2 − δ2) − α2δ2. (54g)

Numerical analysis shows that the roots u1,3 are real (u1 is
positive but u3 is negative) whereas the roots u2,4 are complex
conjugates of each other with a negative real part (u2 and u4

lie in the third and second quadrants, respectively).
The amplitude c j(t) is found by inverting c̃ j(s + iδ) using

the complex inversion formula [157] which involves a contour
integration in the complex s plane (see appendix C). We obtain

c2(t) =
2∑

j=1

Pj Q j e
i(u2

j +δ)t +
αeiπ/4

π

∫ ∞

0

g2(x)e−(x−iδ)t

Z(x)
dx,

(55a)

c1(t) =
2∑

j=1

Pj R j e
i(u2

j +δ)t +
α�ei(φc+π/4)

π

∫ ∞

0

g1(x)e−xt

Z(x)
dx,

(55b)
where

Pj = 2u j

(u j − ul)(u j − um)(u j − un)
,

(l, m, n = 1, . . . , 4, j �= l �= m �= n),

(56a)

Q j = (u2
j + δ) cos θ + i�eiφ sin θ, (56b)

R j = (u2
j + αu j + δ)eiφp sin θ − i�eiφc cos θ, (56c)

g2(x) = [(−x + iδ) cos θ − �eiφ sin θ ](−x + iδ)
√

x, (56d)

g1(x) = [(−x + iδ) cos θ − �eiφ sin θ ]
√

x, (56e)

Z(x) = [(−x + iδ)2 + �2]
2

+ iα2(−x + iδ)2. (56f)

Since u1 is real, and u2 is complex (with negative real
and imaginary parts), the first term in the right-hand side of
equation (55a) is a non-decaying oscillatory term, whereas the
second term is also oscillatory but decays exponentially to zero
as t → ∞. The last term containing the integral represents the
branch cut contribution (arising from the deformation of the
contour of integration around a branch point in the complex
inversion formula). This also decays to zero as t → ∞, albeit
faster than the second term.

Equation (55a) shows that level |2〉 is split into two dressed
states. This dressed-state splitting is the combined effect of
vacuum-field Rabi splitting by the gap [43] and the Autler–
Townes splitting [71] by the external field. The dressed states
occur at frequencies (noting that root u1 is real, whereas
Re{u2

2} < 0)

ω20 − (δ + Im{iu2
1}) = ωc − Im{iu2

1} = ωc − u2
1,

ω20 − (δ + Im{iu2
2}) = ωc − Im{iu2

2} (57)

= ωc − Re{u2
2} = ωc + | Re{u2

2}|.
The dressed state at frequency ωc − u2

1 lies inside the gap and
corresponds to the photon–atom bound dressed state with no
decay in time. A photon emitted by an atom in such a dressed
state will exhibit tunnelling on a length scale given by the
localization length ξloc before being Bragg reflected back to the
emitting atom to re-excite it. For a band gap to centre frequency
ratio of �ω/ω0 ∼ 5%, the photon localization length ξloc � L ,
where L is the lattice constant of the dielectric [5, 6]. The
photon–atom bound state is the optical analogue of an electron–
impurity level bound state in the gap of a semiconductor.

The dressed state at the frequency ωc + | Re{u2
2}| lies

outside the gap and decays at a rate of Im{u2
2}. It results in

highly non-Markovian decay of the atomic population n2(t).
As ω20 is detuned further into the gap (i.e. as δ becomes more
negative), a greater fraction of the light is localized in the
gap dressed state. Conversely, as ω20 is moved out of the
gap, total emission intensity from the decaying dressed state
is increased [65, 158]. As a result of interference between
the three terms in equation (55a), the spontaneous emission
dynamics displays oscillatory behaviour [65]. As can be seen
from equations (55a) and (55b), the dynamics of spontaneous
emission strongly depends on the detuning δ = ω20 − ωc

of level |2〉 from the upper band edge, the initial coherent
superposition state as defined by the parameter θ , the intensity
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Figure 11. Atomic population n2(t) in a PBG material as a function
of the scaled time α2t for �/α2 = 2, δ/α2 = 1, θ = π/4, and for
various values of the relative phase φ. The photon dispersion is
described by the anisotropic effective mass approximation (45). The
steady-state population of level |2〉 is largest for the relative phase
φ = −π/2. The results are obtained in the leading approximation
making them applicable to both the � and V configurations.

� of the control laser driving the transition between the upper
levels, and the relative phase φ = φp − φc between the cw
control laser field and the pumping laser pulse.

In figure 11 we plot the atomic population n2(t) as a
function of the scaled time α2t for various values of the
relative phase φ. This figure shows that, all other conditions
being equal, the fractionalized steady-state population on the
excited states is maximum or minimum when the relative phase
is φ = −π/2 or π/2, respectively. Figure 12 depicts the
population n2(t) for various values of �. From this figure we
note that, as � is increased, n2(t) oscillates faster and reaches
its steady-state value more quickly. Moreover, the steady-state
value n2s increases with �.

In the long-time limit, only the first terms in
equations (55a) and (55b) remain dominant, since u1 is real
whereas u2 is complex with a negative real part. The steady-
state populations n js on the upper levels |2〉 and |1〉 are thus
given by

n2s = |P1 Q1|2, n1s = |P1 R1|2. (58)

This phenomenon of population trapping is due to the
presence of a PBG material and is absent in free space. It is
apparent from equations (54a)–(54g), and (56a)–(56f ) that the
steady-state populations n js depend strongly on the parameters
θ , φ = φp − φc, δ = ω20 − ωc, and �.

Figure 13 shows the variation of the steady-state
population n2s of level |2〉 with respect to the detuning δ.
We see that as δ increases from zero (that is, as level |2〉 is
pushed farther away from the band edge into the continuum)
the steady-state population n2s initially increases and attains
its maximum value of about 0.295 at about δ ≈ 0.5α2

before it begins to decrease very rapidly. In other words,
there is a fractionalized steady-state atomic population on
the excited state |2〉 even when the bare excitation frequency
of this level lies outside of the PBG, but not far from the
band edge. Remarkably, spontaneous emission is partially
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Figure 12. Atomic population n2(t) as a function of the scaled time
α2t for δ = 0 (i.e. when the transition |2〉 → |0〉 coincides with the
anisotropic band edge), for the relative phase φ = −π/2, for
θ = π/4, and for different values of �. Note that as � is increased,
n2(t) oscillates faster and reaches its steady-state value more
quickly. Moreover, the steady-state value n2s increases with �. The
results are obtained in the leading approximation making them
applicable to both the � and V configurations.

inhibited even within the allowed electromagnetic continuum
as a consequence of quantum interference with the driving
field which couples level |2〉 to the photon–atom bound state
associated with level |1〉. When there is no driving field, our
model system can be viewed as a two-level system consisting
of levels |2〉 and |0〉, with the transition frequency ω20 near
the edge of a PBG. As shown in appendix E, for such a two-
level atom and the anisotropic dispersion relation (45), the
steady-state population on the excited level |2〉 vanishes when
the level is at the band edge or outside the gap. However,
population trapping in a V system, on level |2〉 outside the
PBG, in the absence of a control laser field, may be recaptured
by going beyond the leading approximation and including the
spontaneous emission channel |1〉 → |0〉.

Figure 14 depicts the variation of n2s with respect to the
strength � of the driving field for various values of the relative
phase φ. This figure shows that n2s can be an increasing or
decreasing function of � depending on the value of the relative
phase φ.

For a driving laser field so strong that � � α2, δ, the
steady-state populations n js are given approximately by (see
appendix C)

n2s ≈ n1s ≈ 1
4 (1 − sin 2θ sin φ), � � α2, δ. (59)

Thus, when θ = 0 (when the atom is initially on level |2〉)
or when θ = π/2 (when the atom is initially on level |1〉,
we have n2s = n1s = 1/4. In other words, for the case of
a strong laser field, the steady-state atomic populations n2s

and n1s are independent of the initial relative phase φ (if the
system is not initially prepared as a coherent superposition of
the upper states). However, if the atom is initially prepared
in a coherent superposition of the two upper states |2〉 and
|1〉, so that sin (2θ) �= 0 in equation (59), the steady-state
atomic populations will also depend on φ. For instance,
when θ = π/4, spontaneous emission is strongly enhanced
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Figure 13. Steady-state population n2s of level |2〉 as a function of
the detuning δ from the anisotropic 3D band edge for �/α2 = 3,
θ = π/4, and for the relative phase φ = −π/2 (which, as seen in
figure 11, leads to a large steady-state population). Note that n2s is
non-zero even for δ > 0 (that is, even when ω20 lies outside the gap).
In fact n2s attains its maximum value outside the gap at δ ≈ 0.5α2.
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Figure 14. Steady-state population n2s of level |2〉 as a function of
� for δ = 0, θ = π/4, and for different values of φ. n2s can be an
increasing or decreasing function of � depending on the relative
phase φ. Results for the � and V configurations are the same in the
leading approximation.

(n2s + n1s ≈ 0) for φ = π/2, whereas it is totally suppressed
(n2s +n1s ≈ 1) for φ = −π/2. Clearly, the steady-state atomic
population keeps memory of the initial relative phase φ. It can
be controlled by changing the optical paths of the pumping
and controlling lasers. Moreover, due to the effects of photon
localization, the atom keeps memory of the intensity and phase
of the pump (input) laser pulse. This suggests that our model
system can serve as an optical memory device on the atomic
scale.

Next we evaluate the coherences between the upper levels
|2〉 and |1〉 as defined by equations (23) and (24). From
equations (55a) and (55b) we obtain

ncs = lim
t→∞ c2(t)c

∗
1(t) = |P1|2 Q1 R∗

1 , (60)
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Figure 15. The magnitude |nc(t)| = |c2(t)c∗
1(t)| of the coherence

between levels |2〉 and |1〉 as a function of the scaled time α2t for
δ = 0, θ = π/4, φ = −π/2, and for different values of �. Results
apply to both � and V systems.

and for a very strong control laser field (� � α2, δ) this
reduces to (see appendix C))

ncs ≈ ie−iφc

4
(1 − sin 2θ sin φ), � � α2, δ. (61)

Thus, not only do the upper levels |2〉 and |1〉 have non-
zero populations (n2s and n1s) in the steady-state limit, as
required for a classical memory device, but the coherences
are non-zero in the steady-state limit, as required for quantum
memory. In essence, coherence is forced on the atomic system
by means of the external laser field. Like the populations
n1,2(t), the coherence nc(t) = c2(t)c∗

1(t) depends strongly
on the parameters θ , φ = φp − φc, δ = ω20 − ωc and �.
Equation (61) shows that for large � and when the system is
initially prepared in a coherent superposition of the upper states
(that is, when θ �= 0, π/2), the coherence nc(t) between levels
|2〉 and |1〉 can be controlled by the relative phase φ and attains
its maximum value when φ = −π/2. In figure 15 we plot the
magnitude |nc(t)| = |c2(t)c∗

1(t)| of the coherence as a function
of the scaled time α2t for different values of �. We see that,
for the chosen conditions, nc(t) increases with increasing �.
In section 4 we discuss how the coherence nc(t) is influenced
by other spontaneous emission and non-radiative effects that
are not considered within the leading approximation.

The above considerations suggest that quantum informa-
tion can be ‘written’ onto a single three-level atom by choosing
the ‘area’ of the incident laser pulse, the intensity of the cw
laser, and the relative optical path lengths of the cw and pulse
laser beams. In other words, the precise nature of the informa-
tion written onto the quantum bit or ‘qubit’ can be controllably
altered by varying these external parameters. Furthermore, the
phase and intensity of the control laser field can be adjusted
so that spontaneous emission can be totally suppressed in our
model system. That is to say, at steady state, the system can
be in a coherent superposition of the upper states |2〉 and |1〉
as |φ〉 = a2|2〉 + a1|1〉 with |a2|2 + |a1|2 = 1, the amplitudes
a2 and a1 being dependent on the phase and intensity of the
pump laser pulse. Since this superposition state is immune to
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single-photon radiative decay it is a promising candidate for a
two-level quantum bit to encode information in quantum com-
putations. In section 4 we discuss some possible decoherence
mechanisms which may alter the above picture. Decoherence
is the greatest obstacle to quantum computation since it causes
a pure quantum state to evolve into a mixture of states and to
thereby lose two of its key properties: interference and entan-
glement [162].

4. Effects of other spontaneous emission terms

4.1. Model Hamiltonian and equation of motion

In the leading approximation for our model system of figure 9
we have assumed that spontaneous emission on the transitions
|2〉 → |1〉 and |1〉 → |0〉 is inhibited, either by symmetry
consideration or by the presence of the PBG. We next relax this
assumption to see its effects on the system dynamics. To this
end we consider the V configuration of figure 9(b), where the
upper levels |1〉 and |2〉 are of the same symmetry and are both
coupled by dipole transitions to the ground level |0〉. In this
case the unperturbed Hamiltonian H0 is still the same as that of
equation (4), whereas HI has an additional term due to the now
allowed |1〉 → |0〉 transition. It is given by (see appendix A)

HI = ih̄�[ei(ωc t+φc)σ12 − e−i(ωc t+φc)σ21]

+ ih̄
∑
kλ

[g20
kλ(a

†
kλσ02 − σ20akλ) + g10

kλ(a
†
kλσ01 − σ10akλ)],

(62)

where � is the Rabi frequency of the driving field given by
equation (10), ωc = 2ωL and

gi j
kλ = ωi j di j

h̄

(
h̄

2ε0ωkV

)1/2

êkλ · d̂i j (63)

is the coupling constant between the atomic transition |i〉 →
| j 〉 and the mode {kλ} of the radiation field. The various factors
in equation (63) are defined in section 3.2 in connection with
equation (6).

With interaction Hamiltonian (62), equations (25a)–(25c)
are now replaced by

ċkλ(t) = g20
kλc2(t)e

iµ20
k t + g10

kλc1(t)e
iµ10

k t , (64a)

ċ1(t) = �eiφc c2(t) −
∑
kλ

g10
kλckλ(t)e

−iµ10
k t , (64b)

ċ2(t) = −�e−iφc c1(t) −
∑
kλ

g20
kλckλ(t)e−iµ20

kt , (64c)

where

µ
i j
k = ωk − ωi j , (65)

is the detuning of the radiation mode frequency ωk from the
atomic transition frequency ωi j . Formal integration (in time)
of equation (64a), with the initial condition ckλ(0) = 0 of
equation (19), yields

ckλ(t) = g20
kλ

∫ t

0
c2(t

′)eiµ20
k t ′

dt ′+g10
kλ

∫ t

0
c1(t

′)eiµ10
k t ′

dt ′. (66)

Substituting this expression for ckλ(t) in equation (64b)
and (64c) we obtain

ċ1(t) = �eiφc c2(t) −
∫ t

0
G11(t − t ′)c1(t

′) dt ′

− e−iω21t
∫ t

0
G12(t − t ′)c2(t

′) dt ′, (67a)

ċ2(t) = −�e−iφc c1(t) −
∫ t

0
G22(t − t ′)c2(t

′) dt ′

− eiω21t
∫ t

0
G21(t − t ′)c1(t

′) dt ′, (67b)

where
Gi j(t − t ′) =

∑
kλ

gi0
k g j0

kλe−iµ j0
kλ(t−t ′) (68)

are the delay Green functions. Equations (67a) and (67b) are
the generalized versions of equations (28a) and (28b) for a
V system including spontaneous emission on the transition
|1〉 → |0〉. As in section 3, we are interested in solving
these generalized equations for the amplitudes c1,2(t) which
can then be used to evaluate the populations and coherences of
the atomic levels.

In order to explicitly see the effects of the laser field driving
the transition |2〉 → |1〉 on the system dynamics, we consider
the case without a driving field separately from the case with
a driving field. We refer to the case without a driving field
(� = 0) as the quantum beats case. The case when the driving
field is in the form of continuous wave laser so that � is a
non-zero constant independent of time is referred to as the
coherent control case. The quantum beats case, besides being
an interesting case in its own right, will be a valuable reference
case for interpreting the results of the coherent control cases.

4.2. Model system in vacuum

When the three-level atom in the V configuration is in free
space, we use the dispersion relation (32) in equation (68) to
obtain (see appendix B)

Gi j(t − t ′) = ηi j
√

γi0γ j0δ(t − t ′), (69)

where γm0 is half the spontaneous emission rate for the
transition |m〉 → |0〉 given by equation (34), δ(t − t ′) is the
Dirac delta function, and

ηi j = δi j + η(1 − δi j). (70)

Here δi j is the Kronecker delta function and η is a constant
(defined in appendix B) which satisfies |η| � 1, the equality
sign holding when the dipoles associated with the transitions
|i〉 → |0〉 and | j 〉 → |0〉 are parallel or antiparallel so that
d̂i0 = ±d̂ j0. The factor ηi j measures the ‘strength’ of the
scattering processes in which a quantum is first emitted in
the transition |0〉 → |i〉 and then reabsorbed in the transition
|0〉 → | j 〉, or vice versa. We refer to this factor as the
‘scattering coefficient’.

Using equation (69) in the general equations (67a)
and (67b), we obtain

ċ1(t) = −γ10c1(t) + [�eiφc − ηγ̄ e−iω21t ]c2(t), (71a)

ċ2(t) = −γ20c2(t) − [�e−iφc + ηγ̄ eiω21t ]c1(t), (71b)

R63



PhD Tutorial

where
γ̄ = √

γ10γ20. (72)

If we neglect spontaneous emission on the transition |1〉 → |0〉
so that bothγ10 andη are zero, equations (71a) and (71b) reduce
to equations (28a) and (28b) when we use equation (69). In
other words, the leading approximation of section 3 is a special
case of the general problem considered in this section when
both γ10 and η are set to zero.

4.2.1. Quantum beats in vacuum. In the quantum beats
problem (� = 0), equations (71a) and (71b), have closed
analytical solutions given by (see appendix D.1)

c2(t) = e−γ20t
2∑

j=1

A j eq j t ,

c1(t) = e−(γ20+iω21)t
2∑

j=1

B j eq j t ,

(73)

where

q1,2 = λ

2
±

√(
λ

2

)2

+ (ηγ̄ )2, (74a)

λ = γ20 − γ10 + iω21, (74b)

A j = qk c2(0) + ηγ̄ c1(0)

qk − q j
, (k �= j ), (74c)

B j = −q j A j/ηγ̄ . (74d)

A special case of the quantum beat problem (� = 0) is
when multiple scattering events are ignored so that η = 0,
such as when the dipole moments associated with the two
allowed transitions are perpendicular. In this special case,
equations (71a) and (71b) have simple exponentially decaying
solutions

c j (t) = c j (0)e−γ j0 t , for η = 0, (75)

where c j(0) represents the initial value of c j(t) as given by
equation (19). Comparing these solutions with the general
solutions (73)  we see that

A1 = 0, A2 = c2(0),

B1 = c1(0), B2 = 0, for η = 0.
(76)

The phenomenon of quantum beats in the absence of
multiple scattering events (that is, when both � and η are set
to zero in equations (71a) and (71b)) is now a standard text
book problem [14]. The case when η = 1, that is when the
dipoles associated with the two allowed transitions are parallel
or antiparallel, has been discussed in detail in [163]. The
general model considered here, which is valid for 0 � η � 1,
recaptures these specialized results [164].

Since the roots q1,2 are in general complex, equation (73)
shows that the decay of the amplitudes c1,2(t) (and hence of
the populations n1,2(t)) are not purely exponential and may
display oscillatory behaviour depending on the initial coherent
superposition state defined by c1(0) and c2(0), on the decay
rates γ10 and γ20, and on the frequency separation ω21 between
the two upper levels [163]. If, for instance, the system is
initially prepared in the state |�(0)〉 = |2〉, then, in the course
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Figure 16. Atomic populations n1(t), n2(t), and total excited-state
population ne(t) = n1(t) + n2(t) functions of the scaled time γ20t in
the vacuum quantum beat problem (� = 0) for γ10 = 0.5γ20 and
ω21 = γ20. We have assumed that dipoles associated with the two
allowed transitions are parallel so that η = 1 and have used the
initial condition θ = 0 (that is, the atom is initially on level |2〉).
The dot–dashed curve is the simple exponential curve e−γ20t drawn
for reference.

of time, the population of level |1〉 increases form zero to a
maximum and then decreases to zero, while that of level |2〉
monotonically decreases to zero (see figure 16).

The detected signal resulting from spontaneous emission
from the three-level system is proportional to

J (t) =
∣∣∣∣∑

kλ

ckλ(t) exp{i(k · r − ωkt)}
∣∣∣∣
2

(77)

where r is the position of the detector relative to the emitting
atom [14]. According to equation (66), the amplitude ckλ(t)
contains contributions from c1(t ′) and c2(t ′)(0 � t ′ � t)
which will, in general, interfere with each other. The temporal
interference of the two possible transitions |2〉 → |0〉 and
|1〉 → |0〉 gives rise to a fluorescence signal that has a
component modulated at the difference frequency ω21. This
is the phenomenon of quantum beats and is the basis of a
spectroscopic technique used to determine the difference in
frequency between two atomic levels [14]. When η = 0,
no quantum beats are observed [14] if either c1(0) or c2(0)

vanishes (i.e. if the system is not initially prepared in a coherent
superposition of the upper states). However, quantum beats do
indeed occur when η �= 0, even if either c1(0) or c2(0) is zero.
In other words, when multiple scattering events are taken into
account, quantum beats do indeed occur even if the system is
not initially prepared in a coherent superposition of the upper
states.

Thus, in the free-space quantum beats problem, the
‘scattering coefficient’ η plays a prominent role in the system
dynamics and it is important to include multiple scattering
events. This is especially true when the allowed transitions
|2〉 → |0〉 and |1〉 → |0〉 are very close to each other so that
ω21 � ω20, ω10. The interference between the two possible
transitions accounts for the dark line in the spontaneous
emission spectrum of a three-level atom in the V configuration
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observed in [163]. In the absence of interference between the
two spontaneous emission decay processes, one expects the
spectrum of the three-level atom to consist of two Lorentzian
distributions peaked at the two transition frequencies. Instead,
what is obtained is a single distribution with a dark band, whose
width depends on the decay rates γ10 and γ20.

4.2.2. Coherent control in vacuum. In the coherent control
problem (� �= 0), equations (71a) and (71b) must, in general,
be solved numerically. However, in the special case when
η = 0, the equations can be solved using the method shown in
appendix D to solve equations (71a) and (71b) in the quantum
beats case. We obtain

c j (t) = e−γ j0t f j (t), ( j = 1, 2), (78)

where

f2(t) =
2∑

j=1

D j e
r j t , f1(t) = e−λt

2∑
j=1

E j e
r j t , (79)

with
λ = γ20 − γ10, (80a)

r1,2 = λ

2
± i

√
�2 −

(
λ

2

)2

, (80b)

D j = rkc2(0) + eiφc �c1(0)

rk − r j
(k �= j ), (80c)

E j = −e−iφcr j D j/�. (80d)

In both the coherent control case and the quantum beat
case, the population dynamics depends on the initial coherent
superposition state (as defined by θ and φp) as well as on the
parameters γ10,γ20, ω21, and η. In the coherent control case,
the atomic population has an additional dependence on the
intensity � and phase φc of the control laser field. The driving
field causes transfer of populations from |2〉 to |1〉, as shown
in figure 17 by the oscillations in n1(t) for various values of
�. The stronger the driving field, the higher the frequency
of oscillation of the populations n1,2(t). For free space, the
steady-state atomic populations on the upper levels are zero,
irrespective of the strength � of the control laser field. In other
words there is no population trapping in free space.

4.3. Model system in a PBG material

For the anisotropic effective mass dispersion relation (45), the
Green functions (68) take the form (see appendix B)

Gi j(t−t ′) = −ηi jα
ei[δ j1(t−t ′)+π/4]√

π(t − t ′)3
, ωc(t−t ′) � 1 (81)

where ηi j and α2 are given, respectively, by equations (70)
and (48), and

δi j = ωi j − ωc (82)

is the detuning of the atomic transition frequency ωi j from the
upper band-edge frequency ωc. Substituting equation (81) into
equations (67a) and (67b) we can find the coupled equations
for the amplitudes c1,2(t) appropriate for a PBG analogous to
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Figure 17. Atomic population n1(t) as a function of the scaled time
γ20t in the vacuum quantum beats (� = 0) and coherent control
(� �= 0) problems, for various values of �. In all cases we have
assumed that θ = 0, φ = −π/2, γ10 = 0.5γ20, ω21 = γ20, and
η = 1. Note that the stronger the driving field, the faster the
oscillations, but the steady-state population is always zero,
irrespective of the value of �.

equations (71a) and (71b) for vacuum. However, in the PBG
case, it is convenient to introduce the new amplitudes h1,2(t):

c j (t) = h j (t)e
iδ j0 t , ( j = 1, 2). (83)

In terms of these new amplitudes and the Green functions (81),
equations (64a) and (64b) can be rewritten as

ḣ1(t) = −iδ10h1(t) + �ei(ω21t+φc)h2(t)

−
∫ t

0
G(t − t ′)[h1(t

′) + ηh2(t
′)] dt ′, (84a)

ḣ2(t) = −iδ20h2(t) − �e−i(ω21t+φc)h1(t)

−
∫ t

0
G(t − t ′)[h2(t

′) + ηh1(t
′)] dt ′, (84b)

where

G(t − t ′) = −αeiπ/4
/√

4π(t − t ′)3. (85)

4.3.1. Quantum beats near the edge of a PBG. The
quantum beats problem corresponds to the case when
� = 0 in equations (84a) and (84b). This case has also
been investigated in [160], using the ‘effective mass’ isotropic
dispersion model (44). In this section we discuss the problem
using the more realistic anisotropic dispersion model (45).

For � = 0, equations (84a) and (84b) can be solved to give
closed analytic expressions for the amplitudes h1,2(t). These
expressions take particularly simple forms when the band-edge
ωc is midway between the two upper of levels of the V system
so that δ20 = −δ10 = δ (thus δ � 0), and when the atomic
dipoles associated with the transitions |2〉 → |0〉 and |1〉 → |0〉
are parallel (or antiparallel) so that η = 1. In this special case
the solutions to equations (84a) and (84b) are given by (see
appendix D.2)

c2(t) =
2∑

j=1

S j Tj e
i(v2

j +δ)t +
eiπ/4

π

∫ ∞

0

f2(x)e−(x−iδ)t dx

W (x)
,

(86a)
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c1(t) =
2∑

j=1

S jU j e
i(v2

j +δ)t +
eiπ/4

π

∫ ∞

0

f1(x)e−(x−iδ)t dx

W (x)
,

(86b)
where

S j = 2v j

(v j − vl)(v j − vm)(v j − vn)
,

(l, m, n = 1, . . . , 4, j �= l �= m �= n), (87a)

ρ = α[c2(0) − c1(0)], (87b)

Tj = (v2
j − δ)c2(0) + v jρ

= (v2
j + αv j − δ)c2(0) − αv j c1(0), (87c)

U j = (v2
j + δ)c1(0) − v jρ

= (v2
j + αv j + δ)c1(0) − αv j c2(0), (87d)

f2(x) = [−ρ(x2 + δ2) + 2αc2(0)(x + iδ)x]
√

x , (87e)

f1(x) = [ρ(x2 + δ2) + 2αc1(0)(x − iδ)x]
√

x , (87f)

W (x) = (x2 + δ2)
2

+ i4α2x3. (87g)

Here v j ( j = 1, . . . , 4) are the roots of the quartic x4 + 2αx3 −
δ2 = 0 given by [159]

v1,3 = −σ1/2 ±
√

(σ1/2)2 − ξ2, (88a)

v2 = v∗
4 = −σ2/2 − i

√
ξ1 − (σ2/2)2, (88b)

σ1,2 = α ±
√

α2 + u, (88c)

ξ1,2 = u/2 ±
√

(u/2)2 + δ2, (88d)

u = −(2α2δ2)
1/3

[(A + 1)1/3 − (A − 1)1/3], (88e)

A = [1 + (4/27)(2δ/α2)2]1/2. (88f)

Roots v1 and v3 are both real, whereas roots v2 and v4 are
complex conjugates of each other. We have dropped the global
phase factor eiδt from the right-hand sides of equations (86a)
and (86b), since such a phase factor does not play a role in
physical predictions.

The solutions (86a) and (86b) for the amplitudes
c1,2(t) show that (a) the spontaneous emission is oscillatory
and (b) each of the upper levels splits into two dressed
states analogous to vacuum-field Rabi splitting in a high-Q
cavity [43]. The splitting is solely due to the interaction of
the atom with the photon reservoir, since there is no driving
field. Furthermore, (c) there is a fractionalized steady-state
population on each of the upper levels as a result of the
localization of light in the vicinity of the emitting atom,
and (d) quantum interference leads to non-zero steady-state
population on level |2〉 even when it lies outside the PBG
(but not far from the band edge). This reveals an important
distinction between the realistic anisotropic PBG model and
the isotropic dispersion model [160]. In the anisotropic model,
spontaneous emission from level |2〉 (outside of the PBG) can
be inhibited by quantum interference with level |1〉 (inside
the PBG). This inhibition does not occur in the absence of
the coupling to level |1〉. In the isotropic model, inhibition of
spontaneous emission from level |2〉 occurs even in the absence
of coupling to level |1〉.

In figure 18 we plot, using the expressions (86a) and (86b),
the atomic populations n1,2(t) as functions of the scaled time
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Figure 18. V -system atomic populations n2(t), n1(t), and total
excited-state population ne(t) = n2(t) + n1(t) as functions of the
scaled time α2t in the PBG quantum beats problem (� = 0) for the
initial condition θ = 0 (i.e atom initially on level |2〉) and for
φ = −π/2 and η = 1. The anisotropic band edge is midway
between the two upper levels with detuning δ20 = −δ10 = 0.5α2.
Note that, as a result of quantum interference between the two
allowed transitions, the population of level |1〉 (which was initially
zero) increases form zero to a maximum before it settles down to a
steady-state value of about 0.05.

α2t assuming that, initially, the atom was on level |2〉. As
a result of quantum interference between the two allowed
transitions, the population of level |1〉 (which was initially
zero) increases from zero to a maximum before it settles down
to a steady-state value. Similar oscillations occur in free-space
quantum beats (equations (73)). The major difference is the
non-zero steady-state populations in the PBG case. These
steady-state populations are given by

n2s = |S1T1|2, n1s = |S1U1|2, (89)

and depend on the parameters θ , φ and δ. Figure 19 shows
n2s as a function of the detuning δ, for different values of θ .
We notice that, even in the absence of a driving field which
couples level |2〉 to the photon atom bound state associated
with level |2〉, there is a steady-state population on level |2〉,
provided that it is not far from the upper band edge ωc. In other
words, quantum interference allows the partial inhibition of
spontaneous emission even in the normally allowed continuum.

In order to see the detailed differences between
the isotropic and anisotropic model dispersion relations
(equations (44) and (45), respectively), we plot in figure 20
the populations n1,2(t) in the PBG quantum beats problem
for the isotropic dispersion model, assuming that the atom
was initially on level |2〉. Apart from the difference in
timescales, the main distinction between the two models is
that interference of spontaneous emission between the two
allowed transitions and the localization effects of the PBG
are considerably enhanced for the isotropic model relative to
the anisotropic model. This enhancement is an artifact of the
singular photon density of states at the isotropic band edge.
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Figure 19. Steady-state population n2s of level |2〉 as a function of
the detuning δ from the anisotropic 3D band edge in the quantum
beats problem (� = 0), for φ = 0, η = 1 and for different values of
θ . That n2s �= 0 for δ > 0 (that is, when level |2〉 lies outside the
gap) shows that quantum interference with the transition |1〉 → |0〉
(which lies inside the gap) leads to partial inhibition of spontaneous
emission even in the normally allowed continuum.
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Figure 20. V -system atomic populations n2(t), n1(t), and total
excited-state population ne(t) = n2(t) + n1(t) as functions of the
scaled time βt in the PBG quantum beats problem (� = 0) for the
isotropic dispersion model (44). The quantities θ , φ, δ20, δ10, and φ
are the same as those in figure 18, which is the corresponding figure
for the anisotropic dispersion model (45). Clearly visible are the
vacuum Rabi oscillations and the fractional localization near the
photonic band edge. These oscillations and localization are
considerably enhanced for the isotropic model relative to the
anisotropic model.

In the isotropic model, the populations oscillate for hundreds
of cycles before decaying to their final larger steady-state
values. The amplitudes of these oscillations depend on the
initial values c2(0) and c1(0).

4.3.2. Coherent control near the edge of a PBG. The
coherent control problem corresponds to the case when � �= 0
in equations (84a) and (84b). In this case the equations do
not have simple analytic solutions. They must be solved
numerically. For illustration purpose it is simpler to use
the isotropic rather than the anisotropic model. The Green
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Figure 21. V -system atomic population n2(t) as a function of the
scaled time βt in the PBG (including spontaneous emission
channels which go beyond the leading approximation) for θ = π/4,
φ = −π/2, and for various values of �. The isotropic band edge is
midway between the two upper levels with detuning
δ20 = −δ10 = 0.5β, and η = 1. For � �= 0, n2(t) displays rapid
oscillations within a slowly varying envelope. The frequency of the
oscillations within the envelope increases with �.

function Glm(t − t ′) of the isotropic model (equation (B.19))
exhibits an integrable square root singularity [165] at t = t ′,
whereas the complete Green function in the anisotropic model,
which also has an integrable square root singularity at t = t ′,
is rather cumbersome [158].

Figure 21 depicts the PBG coherent control problem
for the isotropic dispersion model (44), with the additional
spontaneous emission effects included. Note that, for � �= 0,
n2(t) displays rapid oscillations within a relatively slowly
varying envelope. When � �= 0, there are two causes for
the oscillations of n2(t). The first one (slow oscillations) is
the quantum interference between the two allowed transitions
(|2〉 → |0〉 and |1〉 → |0〉), as in the quantum beats problem.
Superimposed on this is the exchange of populations between
levels |2〉 and |1〉 caused by the driving field (rapid oscillations).
As � increases the amplitude of the envelope oscillations
decreases but the frequency of the oscillations within the
envelope increases. Moreover, the steady-state value n2s

increases with �. In fact for large �, n2(t) changes little from
its initial value n2(0) even though ω20 lies slightly outside the
gap (δ20 = 0.5β). This is because, when � is large, level |2〉
will be strongly coupled to level |1〉 which lies inside the gap
(δ10 = −0.5β).

In figure 22 we plot the magnitude |nc(t)| of the coherence
nc(t) as a function of the scaled time βt for different values
of �. The scale factor β , given by equation (B.22), is of the
order β ∼ 1010 s−1 at optical frequencies, and, therefore, is
larger than the normal vacuum Lamb shift of (∼109 Hz) of the
2p1/2 level of hydrogen relative to the 2s1/2 level. Comparing
figure 22 with figure 15, we see that, just as in the case
of the populations n1,2(t), the spontaneous emission channel
|1〉 → |0〉 introduces further oscillations to the coherence
nc(t) over and above those induced by the driving field.
Nevertheless, we obtain non-zero steady-state coherences (and
populations) as long as level |2〉 is not detuned far outside the
gap.
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Figure 22. V -system coherence |nc(t)| = |c2(t)c∗
1(t)| between

levels |2〉 and |1〉 as functions of the scaled time βt for θ = π/4,
φ = −π/2, and for various values of �. The isotropic band edge is
midway between the two upper levels with detuning
δ20 = −δ10 = 0.5β, and η = 1.

The results in this section are qualitatively similar to
those in section 3.4.2 where spontaneous emission on the
transition |1〉 → |0〉 is neglected. The incorporation of
the decay channel |1〉 → |0〉, together with the use of the
isotropic dispersion relation, leads to additional oscillations in
the transient dynamics. However, it does not alter the presence
of non-zero steady-state populations and coherences on the
upper levels nor does it alter the ability to control these steady-
state populations and coherences by the intensity and phase of
the driving field.

4.4. Higher-order radiative and non-radiative interactions

As discussed in section 3.4.2, an excited atom in a PBG
interacts strongly with its own radiation field, leading to the
formation of the photon–atom bound state, in which the photon
emitted by the excited atom can tunnel through the dielectric
host on a length scale given by the localization length ξloc

before being Bragg-reflected back to the emitting atom. The
result is a stationary-state superposition of a localized photon
and a partially excited atom as manifested by the non-zero
fractionalized steady-state population given by equations (58)
and (89).

Inside a PBG, single-photon spontaneous emission is
inhibited. Thus the photon–atom bound state can decay only by
other relaxation mechanisms [166, 167]. One such mechanism
is spontaneous two-photon emission. This may be relevant for
the case of a cold atom which has been optically trapped in
the void regions of the PBG material and, therefore, is not in
mechanical contact with the vibrational degrees of freedom of
the dielectric host. For a dipole-allowed transition such as the
|1〉 → |0〉 transition in a V system (figure 9(a)), two-photon
decay yields a lifetime for the photon–atom bound state on the
scale of days [6], if the transition lies in the visible spectrum.
On the other hand, for a dipole-forbidden transition such as
the |1〉 → |0〉 in the � configuration (figure 9(b)), two-photon
emission may occur by means of a pair of dipole transitions

which occurs considerably faster. For instance, the 2s → 1s
transition in hydrogen occurs in 1/7 s.

For an impurity atom embedded in a solid dielectric host,
the vibrational modes of the host can provide an alternative
relaxation mechanism for the photon–atom bound state by
altering the electronic spectrum of the impurity [6]. Next
we give a simple semi-quantitative discussion of phonon
relaxation for the V system depicted in figure 9(a). In a
semiclassical picture, phonon interactions cause the energy
levels of an atom to experience small, random, time-varying,
Stark shifts. In our simplified picture, we assume that this
phenomenon can be modelled by adding random shifts δω j0(t)
to the transition frequencies ω j0. The random functions
δω j0(t) are as often positive as negative and hence the
ensemble averages 〈δω j0(t)〉 are zero. Thus we can simulate
phonon interaction by Gaussian random variables δω j0 of
zero mean and variance γ , whose value depends on the
strength of these interactions. We assume that the phonon
reservoir is Markovian [14] so that the averages of the products
〈δω j0(t)δω j0(t ′)〉 are zero unless t ≈ t ′. We also assume that
variations in δω j0(t) are very rapid compared to other changes
in the system which occur on the timescale 1/γ j0 (where γ j0

is the free-space spontaneous emission rate for the transition
| j 〉 → |0〉), and take

〈δω j0(t)δω j0(t
′)〉 = γ j0dδ(t − t ′), ( j = 1, 2) (90)

where γ j0d are the dephasing rates. These dephasing rates
are of the order of the Debye frequency ωD of the crystal
which is a measure of the maximum photon frequency in
the crystal [17]. For silicon ωD ≈ 1.25 × 1013 Hz whereas
for germanium ωD ≈ 7.2 × 1012 Hz. Thus, when phonon
interactions are taken into account, equations (84a) and (84b)
have to be rewritten with δ j0 and ω21 replaced by, respectively,
δ j0 + δω j0(t) and ω21 + δω20(t) − δω10(t), where δ j0, and
ω21 are the corresponding quantities in the absence of random
Stark shifts. For example, if δ20 is set to zero, it means that,
in the absence of Stark shifts, the transition frequency ω20

coincides with the photonic band edge ωc and, therefore, the
shifts δω20(t) slightly detune level |2〉 in and out of the band
gap in a random fashion.

Figure 23 depicts the excited-state population n2(t) on
level |2〉 as a function of the scaled time βt for δ20 = −δ10 =
0.5β , and for different values of �, when δω20(t) and δω10(t)
are taken as Gaussian random variables of zero mean and 0.5β

variance. These and other numerical simulations show that,
even when the dephasing rate γ20d is comparable to β , the
phase-sensitive memory effects which we obtained without
including dephasing effects can be recaptured provided that the
external Rabi frequency � is large compared to the dephasing
rate. In other words, dephasing effects simply determine
the minimum required intensity of the external laser field for
achieving coherent control of radiative dynamics. The effect
of the random shifts of the atomic levels |1〉 and |2〉 on the
coherence nc(t) between the levels is shown in figure 24. We
see that, just in the case of the populations, these effects can
be offset by intense driving fields.

4.5. Physical realization of the model system

Our model system consist of a three-level atom located
inside a PBG material. There are several ways of placing
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Figure 23. V -system excited-state population n2(t) on level |2〉 near
the isotropic photonic band edge as a function of the scaled time βt
for θ = π/4, φ = −π/2, and for different values of �, in the
presence of dipolar dephasing Gaussian random Stark shifts δω20(t)
and δω10(t) (each of zero mean and 0.5β variance) of the transition
frequencies ω20 and ω10. In the absence of the random Stark shifts,
the band edge is assumed to be midway between the two upper
levels with detuning δ20 = −δ10 = 0.5β. Compare this figure with
the corresponding figure (figure 21) in the absence of
phonon-mediated dephasing.
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Figure 24. V -system coherence nc(t) = |c2(t)c∗
1(t)| between levels

|2〉 and |1〉 near the isotropic photonic band edge as a function of the
scaled time βt for θ = π/4, φ = −π/2, and for different values of
�, in the presence of dipolar dephasing Gaussian random Stark
shifts δω20(t) and δω10(t) (each of zero mean and 0.5β variance) of
the transition frequencies ω20 and ω10. In the absence of the random
Stark shifts, the band edge is assumed to be midway between the
two upper levels with detuning δ20 = −δ10 = 0.5β. Compare this
figure with the corresponding figure (figure 22) in the absence of
phonon-mediated dephasing.

such an atom inside a PC. From a material standpoint, it is
possible to dope an existing PBG material using ion beam
implantation methods. For instance, it has recently been
shown that Er3+ ions implanted into bulk silicon exhibit sharp
free-atom-like spectra [173–176]. Intense PL at 1.54 µm
is observed in the system at low temperatures (when the
host material is crystalline, Er-related PL is quenched at
temperatures above 80 K so that it cannot be detected at room

temperatures). This wavelength is particularly significant
because it corresponds to the minimum absorption of silica
fibre-based optical communication system. Because the PL
at 1.54 µm is due to the spin–orbit split 4I13/2 → 4I15/2 of 4f
electrons in the Er3+ ions which are shielded by outer 5s25p6

shells, the influence of the host lattice on the luminescence
wavelength is weak. (The key to the success of erbium is that
the upper level of the amplifying transition 4I13/2 is separated
by a large energy gap from the next-lowest level 4I15/2 so that
its lifetime is very long and mostly radiative. The value of the
lifetime is around 10 ms and varies depending on the host and
erbium concentration.) It would be of considerable interest to
study the radiative properties of Er3+ ions implanted into a 3D
silicon PBG material in which a PBG is engineered to occur at
1.54 µm. In spite of the screening of the atomic transition by
the outer shells, it is likely that thermal phonons in the silicon
host would cause significant dephasing of the quantum degrees
of freedom within the erbium 4f shell. Consequently, such a
system must be cooled to liquid helium temperatures.

Alternatively, our model system may be realized by
trapping cold atoms in the void regions of a PC. The
trapping may be achieved by using the properties of the
electromagnetic eigenmodes of a 3D PBG material. If the
PBG material is illuminated by an intense laser field with
frequency near the bottom of the ‘air’ band, a nearly standing
wave electromagnetic field will arise with strong electric field
gradients and peak intensities that lie in the void fraction of
the material. This field distribution will act as an optical
trapping potential for a dilute atomic vapour pumped into the
void region of the crystal [107]. This will trap atoms in the
void regions of the PC where the field is most intense and
prevent the atoms from colliding with the dielectric backbone
of the PBG material. In a typical 3D PBG material, the
void fraction forms a connected network that accounts for
nearly 75% of the volume of the material. Atoms which
are optically trapped in this extensive void network will be
immune to collisional dephasing and decoherence phenomena
arising from direct interaction with atoms in the solid dielectric
backbone. Doppler broadening due to the random motion of
the gas molecules may be partially alleviated by laser cooling
techniques [177].

A third approach to realize our model system is by
means of an ‘artificial atom’ or QD structure embedded
in the solid fraction of the PBG material. Semiconductor
QDs are nanoscale quantum structures that allow electronic
properties to be tailored through quantum confinement. They
exhibit distinctive features similar to atoms such as atomic-like
excitation spectra with discrete and extremely sharp spectral
lines [178]. With their well-defined localized states, QDs offer
the possibility of coherent manipulation of a single localized
quantum system in a way similar to that achieved in atoms but
with the technological advantages of a solid-state system.

5. Conclusions

In this paper the quantum electrodynamic properties of a three-
level atom embedded in a PBG material were investigated.
Specifically, the combined effects of coherent control by an
external driving field and photon localization facilitated by
a PBG on spontaneous emission from a three-level atom
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embedded in a PBG material were investigated. It was
demonstrated that quantum information is stored in the model
system considered, and that the nature of this information is
strongly dependent on the detuning of the atomic levels from
the upper band edge, on the initial coherent superposition
state, on the intensity of the control laser driving the transition
|2〉 ↔ |1〉, and the relative phase between the control laser field
and the pumping laser pulse used to prepare the initial state.
In particular, the steady-state populations and coherences keep
memory of the relative phase as well as the intensity and phase
of the pumping laser pulse suggesting a possible application
as an atomic-scale optical memory device. Moreover, since
both populations and coherences can be maintained between
the two upper atomic levels |1〉 and |2〉, these levels can be used
as a qubit (two-state quantum system) to encode information
for quantum computation. Two or more such systems can be
used to construct quantum logic gates [171, 172].

The influences of other spontaneous emission terms and
non-radiative effects on the results found in section 3 were
investigated in section 4, using the V configuration as an
example. The inclusion of the spontaneous emission channel
|1〉 → |0〉 leads to quantum interference between the two
allowed transitions |2〉 → |0〉 and |1〉 → |0〉 which induces
further oscillations to the populations and coherences over and
above those induced by the driving field. Moreover, in the
absence of a driving field coupling levels |2〉 and |1〉, quantum
interference between the two allowed transitions |2〉 → |0〉
and |1〉 → |0〉 leads to the partial inhibition of spontaneous
emission even in the normally allowed continuum. However,
the inclusion of the spontaneous emission channel |1〉 → |0〉
does not alter the presence of non-zero steady-state populations
and coherences on the upper levels, nor does it alter the ability
to control these steady-state populations and coherences by the
intensity and phase of the driving field.

Phonon dephasing is a relevant decay mechanism for
the photon atom bound state in the case of impurity atoms
embedded in the solid fraction of the PBG material. Such
dephasing effects can be offset by making the Rabi frequency
of the control laser field large compared to the dephasing rates.

In both sections 3 and 4 we employed the effective
mass dispersion relation (45) or (44). While the effective
mass approximation gives qualitatively correct physics [6],
an investigation of our model system using a full anisotropic
dispersion relation of a realistic band structure is a worthy
undertaking [12, 170]. This would involve a realistic
evaluation of the Green function [67] using the full dispersion
relation ωk appropriate to a real PC (see for instance
equation (B.5)). The resulting equations of motion for radiative
dynamics would then need to be solved numerically.

An experimental realization of a quantum computer
requires both

(a) isolated quantum systems that act as qubits, and
(b) the presence of controlled interaction between the qubits

that allows for construction of quantum logic gates.

Thus, it is useful to investigate the coherent control of
spontaneous emission, not from a single three-level atom,
but from two neighbouring three-level atoms coupled via
resonant dipole–dipole interaction. Quantitative results on the
energy transfer between the two atoms found from such an

investigation may give us a qualitative picture on the effects of
the presence of many atoms within a cubic wavelength of the
atom of interest.
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Appendix A. Hamiltonian of a three-level atom
interacting with a quantized radiation field

In this appendix we derive the Hamiltonian of a three-level
atom interacting with a quantized electromagnetic field in the
electric dipole and in the RWAs.

A.1. Operator description of isolated atoms

Consider an isolated atom with no radiation present. Such
an atom is described by a Hamiltonian operator Ha which
is a function of both the position r, and the momentum p

of the constituent particles of the atom, and has no explicit
time dependence. This Hamiltonian satisfies the eigenvalue
equation

Ha|i〉 = h̄ωi |i〉, (A.1)

where h̄ωi are the energy eigenvalues and |i〉 are the
eigenvectors. The states |i〉 span the Hilbert space of the atomic
system. Since Ha is an observable, its basis vectors {|i〉} form
a complete orthonormal set [156] as expressed by the closure
(completeness) and orthonormality relations∑

i

|i〉〈i | = 1, 〈i | j 〉 = δi j , (A.2)

where 1 represents the identity operator, and δi j is the
Kronecker delta function (δi j = 1 for i = j , and δi j = 0
for i �= j ). We define the atomic operator σi j by

σi j ≡ |i〉〈 j |. (A.3)

These operators provide the multilevel generalization of
Dicke’s spin operators for two-level atoms [168, 169]. From
the orthonormality relation (A.2) we obtain

σi j |k〉 = δ jk|i〉, (A.4)

which, in turn, leads to the commutation relation

[σi j , σlk ] = σikδ j l − σl j δki . (A.5)
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The operator σi j acting on level | j 〉 transforms it to level |i〉,
and, therefore, is a raising (lowering) operator for i > j (i <

j ). On the other hand, the operator σi i = |i〉〈i | gives the
population of level |i〉, that is, the probability to find the atom
on level |i〉.

Using equation (A.1) and the closure relation (A.2), we
can expand the atomic Hamiltonian Ha in terms of the atomic
operators σi j as

Ha = Ha

∑
i

|i〉〈i | =
∑

i

Ha |i〉〈i | = h̄
∑

l

ωiσi i . (A.6)

Similarly, by using the closure relation twice, any operator
Q(p, r) which is a function of p and r can be expanded in
terms of the atomic operators σi j as

Q =
(∑

i

|i〉〈i |
)

Q

(∑
j

| j 〉〈 j |
)

=
∑
i, j

Qi jσi j , (A.7)

where the expansion coefficients Qi j = 〈i |Q| j 〉 are just the
matrix elements of Q in the energy representation. If Q is
Hermitian (as any observable should be), we have Qi j = Q∗

j i .

A.2. Minimal coupling Hamiltonian

Consider an atom interacting with a radiation field represented
by a vector potential A. For simplicity, the source of the
radiation field (charges and currents) is not considered. We
also assume the atom to have a single electron of charge e and
mass m in a potential V (r), where r is the position vector of
the electron. The momentum conjugate to r is [32]

p = m
dr

dt
+ eA. (A.8)

We choose to work in the Coulomb gauge which is defined by
the condition

∇ · A = 0, (A.9)

and has particular advantages for slowly moving particles in
bound states [32].

The non-relativistic minimal coupling Hamiltonian for
a one-electron atom interacting with the electromagnetic
radiation field may be written in mks units as [32, 35]

H = 1

2m
(p − eA)2 + eV (r) + Hr . (A.10)

In the Coulomb gauge (A.9), we may write (A.10) as

H = p2

m
+ eV (r) + Hr − e

m
A · p +

e2

2m
A2. (A.11)

The first two terms in the right-hand side of equation (A.11)
give the Hamiltonian Ha of the free atom

Ha = p2

2m
+ eV (r), (A.12)

which is also given by equation (A.6) in terms of its stationary
states {|i〉}. The third term Hr in equation (A.11) represents
the energy of the quantized (source-free) radiation field in the
absence of the atom. It is given by

Hr =
∑
k,λ

h̄ωk(a
†
kλakλ + 1/2), (A.13)

where k and λ(= 1, 2) represent, respectively, the wavevector
and the polarization index for the mode {kλ} of the radiation
field. The operators akλ and a†

kλ are, respectively, the
Schrödinger-picture annihilation and creation operators for
mode {kλ} of the field obeying the commutation rules

[akλ, ak′λ′ ] = 0, [a†
kλ, a†

k′λ′ ] = 0,

[akλ, a†
k′λ′ ] = δkk′δλλ′ .

(A.14)

In equation (A.13), the term 1/2
∑

k,λ h̄ωk accounts for
the ground state or zero-point energy of the quantized radiation
field. This energy is a constant, albeit infinite, and therefore
has no effect whatsoever on the system dynamics. Thus it can
be dropped out of the Hamiltonian Hr , which is tantamount to
shifting the energy origin. Accordingly we write

H0 ≡ Ha + Hr =
∑

i

h̄ωiσi i +
∑
k,λ

h̄ωka†
kλakλ (A.15)

as the Hamiltonian of the unperturbed system.
The fourth term in equation (A.11), which is of first order

in the coupling constant e, we denote by

H1 = − e

m
A · p. (A.16)

This term represents the interaction between the electron
momentum p and the radiation field A. It is small compared
with Ha and Hr , but is large compared with the last term which
is of order e2. This last term is denoted by

H2 = e2

2m
A2. (A.17)

It represents the energy of mutual interaction between different
modes of the radiation field through the coupling of the electron
to the field. In this paper we neglect the small term H2, and
take the total Hamiltonian of the atom–field system to be

H = H0 + H1 =
∑

i

h̄ωiσi i +
∑
k,λ

h̄ωka†
kλakλ + H1. (A.18)

The Hamiltonian (A.11) is given in the Schrödinger
picture, where observables are represented by stationary (time-
independent) operators. In this picture, the vector potential
A(r) may be expanded in plane waves of mode {kλ} as [32]

A(r) =
∑
k,λ

(
h̄

2ε0ωkV

)1/2

êkλ(akλeik·r + a†
kλe−ik·r). (A.19)

Here V represents the quantization volume, ε0 the Coulomb
constant, and êkλ are the two transverse (polarization) unit
vectors satisfying

k̂ · êkλ = 0, êkλ · êkλ′ = δλλ′, (λ = 1, 2), (A.20)

where k̂ is the unit vector in the direction of k. The
transversality condition k̂ · êkλ = 0 expresses the fact that
the mode amplitudes are perpendicular to the propagation
direction and is a direct consequence of the Coulomb
gauge (A.9). On the other hand, condition êkλ · êkλ′ = δλλ′

shows that unit vectors {êk1, êk2, k̂} form a right-handed triad.
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According to equation (A.7), the electron momentum
operator p can be expanded as

p =
∑
i, j

pi jσi j , (A.21)

where pi j = 〈i |p| j 〉. From the commutation relation

[Ha, r] = − ih̄

m
p, (A.22)

we obtain

pi j ≡ 〈i |p| j 〉 = −m

ih̄
〈i|[Ha, r]| j 〉 = im

e
ωi jdi j , (A.23)

where

ωi j = ωi − ω j (A.24)

is the atomic transition frequency between levels |i〉 and | j 〉,
and

di j = 〈i |er| j 〉 (A.25)

is the electric dipole moment transition matrix element
between states |i〉 and | j 〉. We have di j �= 0, only if levels |i〉
and | j 〉 are of opposite symmetry so that the transition |i〉 ↔
| j 〉 is dipole allowed. In particular, di i = 0. Using (A.23)
in (A.21), we obtain

p = im

e

∑
i, j

ωi jdi jσi j . (A.26)

Using (A.26) and (A.19) in (A.16) we obtain

H1 = − e

m
A(r)·p = −ih̄

∑
k,λ

∑
i, j

gi j
kλσi j (akλeik·r +a†

kλe−ik·r).

(A.27)
Here

gi j
kλ = ωi j di j

h̄

(
h̄

2ε0ωkV

)1/2

êkλ · d̂i j (A.28)

represents the frequency-dependent coupling constant be-
tween the atomic transition |i〉 → | j 〉 and the mode {kλ} of the
radiation field. Also di j and d̂i j represent the magnitude and
unit vector of the atomic dipole moment di j for the transition
|i〉 → | j 〉.

In the optical regime of the spectrum where photon
wavelengths are long compared to atomic dimensions
(λphoton ∼ 103 Å, whereas ratom ∼ 1 Å), it is useful to make the
electric dipole approximation (k · r ≈ 0) in equation (A.27).
Using this approximation in equation (A.18) we obtain

H =
∑

i

h̄ωiσi i +
∑
k,λ

h̄ωka†
kλakλ−ih̄

∑
k,λ

∑
i, j

gi j
kλσi j (akλ+a†

kλ).

(A.29)
This equation applies to a general n-level atom interacting
with a quantized electromagnetic field in the electric dipole
approximation. The special case of a three-level atom is
considered in the next section.

A.3. The �,�, and V configurations

A three-level atom (consisting of the ground level |0〉 and
excited levels |1〉 and |2〉) can be in one of three distinct
configurations. These are the � (xi) or cascade configuration,
the � (lambda) configuration, and the V configuration (see
figure A.1). Direct dipole transitions are forbidden between
levels |2〉 and |0〉 for the � system, between levels |1〉 and
|0〉 for the � system, and between levels |2〉 and |1〉 for the V
system. Thus, each of the three configurations of figure A.1 has
two dipole-allowed transitions, and two associated coupling
constants. These coupling constants are g21

kλ and g10
kλ for the �

system, g20
kλ and g21

kλ for the � system, and g20
kλ and g10

kλ for the
V system.

The dipole operator is an odd vector operator with
vanishing matrix elements between states of the same parity.
Thus, di j = 0 for i = j . It follows from equation (A.28)
that gii

kλ = 0. Thus, for the � configuration, the interaction
Hamiltonian (A.27) assumes the form

H1 = −ih̄
∑
k,λ

(g21
kλσ21 + g12

kλσ12 + g10
kλσ10 + g01

kλσ01)(akλ + a†
kλ).

(A.30)
Since the dipole operator d = er is Hermitian we have, di j =
d∗

j i . We also assume that the dipole transition matrix elements
di j are real, as it is always possible to make them so by choosing
the relative phases of the state vectors properly [70]. Then, the
coupling constants gi j

kλ will also be real, and equation (A.28)
shows that gi j

kλ = −g ji
kλ since, according to equation (A.24),

ωi j = −ω j i . Thus

H1 = −ih̄
∑
k,λ

[g21
kλ(σ21 − σ12) + g10

kλ(σ10 − σ01)](akλ + a†
kλ).

(A.31)
Next we invoke the RWA. This approximation admits

only processes corresponding to the emission of a photon and
the simultaneous lowering of an atomic state, or vice versa.
Thus, in the RWA, terms (such as σ01akλ and σ10a†

kλ) which
describe virtual processes of excitation (de-excitation) of the
atom with simultaneous creation (annihilation) of a photon are
neglected [70]. Under the RWA, equation (A.31) reduces to

H1 = ih̄
∑
kλ

[g21
kλ(a

†
kλσ12 − σ21akλ)

+ g10
kλ(a

†
kλσ01 − σ10akλ)] (� system). (A.32)

This interaction Hamiltonian is written in a normal order,
that is to say, in each operator product, the field annihilation
and creation operators are placed, respectively, to the extreme
right- and left-hand sides. This is possible because of our
assumption that the atomic operators always commute with
the field operators. The interaction Hamiltonians for the �

and V configurations are obtained in a similar way:

H1 = ih̄
∑
kλ

[g20
kλ(a

†
kλσ02 − σ20akλ)

+ g21
kλ(a

†
kλσ12 − σ21akλ)] (� system), (A.33a)

H1 = ih̄
∑
kλ

[g20
kλ(a

†
kλσ02 − σ20akλ)

+ g10
kλ(a

†
kλσ01 − σ10akλ)] (V system). (A.33b)

A two-level atom can be treated as a special limiting case
of each of the three-level systems, by eliminating one of the
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Figure A.1. Schematic representations of a three-level atom (a) in the � or cascade, (b) in the �, and (c) in the V configurations. Dashed
lines with arrows denote dipole-allowed transitions.

three atomic levels. This can be done, in the �-system for
instance, simply by letting the coupling constant g21

kλ vanish
(g21

kλ → 0) resulting in a two-level system consisting of |1〉
and |0〉. The corresponding interaction Hamiltonian is then

H1 = ih̄
∑
kλ

g10
kλ(a

†
kλσ01 − σ10akλ). (A.34)

Appendix B. Non-Markovian memory kernels

In this appendix the various expressions for the Green functions
used in sections 3 and 4 are derived. We start from
equation (68)

Glm(t − t ′) =
∑
kλ

gl0
kλgm0

kλ e−iµm0
k (t−t ′), (l, m = 1, 2),

(B.1)
where µm0

k is given by equation (65). When l = m,
equation (B.1) reduces to (29). Substituting for gl0

kλ and gm0
kλ

from equation (63) we obtain

Glm(t − t ′) = ζ

V

∑
kλ

(êkλ · d̂l0)(êkλ · d̂m0)
1

ωk

e−iµm0
k (t−t ′),

(B.2)
where

ζ =
√(

ω2
l0d2

l0

2h̄ε0

)(
ω2

m0d2
m0

2h̄ε0

)
. (B.3)

Assuming that the modes of the field are closely spaced in
frequency, we make the continuum approximation for the field
modes and replace the summation over k by an integral:

∑
k

→ V

(2π)3

∫
d3k, (B.4)

where d3k ≡ k2 dk d�, d� being the space angle element.
Thus

Glm(t − t ′) = ζ

(2π)3

8π

3

∫ [
3

8π

∑
λ

(êkλ · d̂l0)(êkλ · d̂m0)

]

× 1

ωk

e−i(ωk−ωm0)(t−t ′) d3k. (B.5)

This is a general result valid for any dispersion relation ωk.
When the dispersion relation is isotropic (i.e. when ωk depends
only on the magnitude k of k), equation (B.5) reduces to

Glm(t − t ′) = ζ

(2π)3

8π

3
ηlm

∫ �

0

1

ωk
e−i(ωk −ωm0)(t−t ′)k2 dk,

(B.6)
where

ηlm = 3

8π

∫ ∑
λ

(êkλ · d̂l0)(êkλ · d̂m0) d�, (B.7)

and � = mc/h̄ is the Compton wavenumber of the
electron. We have introduced the cutoff � in the photon
wavevector [180] as the contributions of extremely high
energy photons cannot be important. The non-relativistic
approximation for the electron is not valid for photons of
energy h̄ω ∼ mc2.

We consider a coordinate system defined by the unit
vectors {êk1, êk2, k̂}. Defining {α j0, β j0, θ j0} as the direction
angles of the dipole moment unit vector d̂ j0, we obtain

ηlm = 3

8π

∫
(cos αl0 cos αm0 + cos βl0 cos βm0) d�. (B.8)

If the dipoles d̂l0 and d̂m0 are parallel or antiparallel (so that
αl0 = ±αm0 = α, βl0 = ±βm0 = β , and θl0 = ±θm0 = θ ),
the law of direction cosines gives

cos αl0 cos αm0 + cos βl0 cos βm0

= cos2 α + cos2 β = 1 − cos2 θ. (B.9)

Using this in equation (B.8) we obtain ηlm = 1. It follows that

ηlm = δlm + η(1 − δlm), (B.10)

where δlm is the Kronecker delta function, and

η = 3

8π

∫
(cos α20 cos α10 + cos β20cosβ10) d�. (B.11)

Thus η = 1 for d̂l0 = ±d̂m0 (that is, when the dipoles
associated with the transitions |l〉 → |0〉 and |m〉 → |0〉 are
parallel or antiparallel).
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For vacuum we use the isotropic dispersion relation
ωk = ck. The emitted radiation is centred about the atomic
transition frequency ωk = ωm0, and the quantity ωk varies
very little around ωk = ωm0. We can, therefore, replace k2/ωk

in equation (B.6) by ωm0/c2 and extend the upper limit of
integration to ∞ to obtain

Glm(t − t ′) = ζωm0

(2πc)3

8π

3
ηlm

∫ ∞

0
e−i(ωk−ωm0)(t−t ′) dωk .

(B.12)
On the other hand, we have

δ(t) = 1

2π

∫ ∞

−∞
dω eiωt (B.13)

as the integral expression for the Dirac delta function. Thus

Glm(t − t ′) = ηlm

√
γl0γm0(ωm0/ωl0)δ(t − t ′), (B.14)

where

γ j0 = 1

4πε0

4ω3
j0d2

j0

6h̄c3
, ( j = 1, 2) (B.15)

is half the vacuum spontaneous emission rate � j0 = 2γ j0 for
the transition | j 〉 → |0〉. Assuming that the upper levels |2〉
and |1〉 are close together so that ωm0/ωl0 ≈ 1, we finally
obtain

Glm(t − t ′) = ηlm
√

γl0γm0δ(t − t ′). (B.16)

The dipole moment of a hydrogenic (one-electron) atom can
be approximated by d20 ∼ ea0, where e is the magnitude of
the electronic charge, and a0 ∼ 0.5 Å is the Bohr radius.
Moreover, for optical transition frequencies ω20 ∼ 5×1015 Hz.
Using these in equation (B.15) we obtain γ j0 ∼ 108 s−1.

For a PBG material described by the isotropic ‘effective
mass’ dispersion relation (44), equation (B.5) takes the form

Glm(t−t ′) = ζ

(2π)3

8π

3
ηlm eiδm0(t−t ′)

∫ �

k0

k2e−iA(k−k0 )2(t−t ′)

ωc + A(k − k0)2
dk,

(B.17)
where δm0 = ωm0 − ωc is the detuning of the atomic transition
frequency ωm0 from the band edge frequency ωc. The integral
in equation (B.17) can be approximated by replacing k by
k0 outside of the exponential and extending the wavevector
integration to infinity, which then reduces to a complex Fresnel
integral given by [181]∫ ∞

0
e−iAu2(t−t ′) du = e−iπ/4

2
√

A

√
π

t − t ′ . (B.18)

Using equations (B.3) and (B.18) in equation (B.17) we obtain

Glm(t − t ′) = ηlm

√
β

3/2
l0 β

3/2
m0

ei[δm0(t−t ′)−π/4]

√
π(t − t ′)

, (B.19)

where

β
3/2
j0 = 1

4

(
γ j0

ω j0

)(
c ωc

A1/2

)
. (B.20)

This expression may be further simplified by assuming that the
upper levels |2〉 and |1〉 are close together so that ω20 ≈ ω10.
We then have√

β
3/2
10 β

3/2
20 ≈ β3/2 ≡ 1

4

(
γ20

ω20

)(
c ωc

A1/2

)
. (B.21)

Finally, using the approximation A ≈ c2/ωc, we obtain

β3/2 ≈ 1

4

(
γ20

ω20

)
ω3/2

c . (B.22)

At optical frequencies γ20 ∼ 108 Hz and ω20 ∼ 2π × 1015 Hz
so that β ∼ 10−6ωc. Thus, if the band edge ωc is also in the
optical regime, we have β ∼ 1010 Hz.

As shown in appendix E, for a two-level atom placed
inside a PC of band edge frequency nearly resonant with the
atomic transition frequency, the upper level splits into a doublet
because of the strong interaction between the atom and its own
localized radiation. β gives the magnitude of this frequency
splitting for the isotropic dispersion relation (44). Thus for a
band gap in the optical regime, β ∼ 1010 Hz is larger than the
ordinary vacuum Lamb shift (∼109 Hz) of the 2p1/2 level of
hydrogen relative to the 2s1/2 level.

For a PBG material described by the anisotropic ‘effective
mass ’dispersion relation (45), the general expression (B.5)
takes the form

Glm(t − t ′) = ζ

(2π)3

8π

3
eiδm0(t−t ′)

∫ [
3

8π

∑
λ

(êkλ · d̂l0)

× (êkλ · d̂m0)

]
e−iA(k−k0)

2(t−t ′)

ωc + A(k − k0)2
d3k. (B.23)

Making the substitution q = k − k0 (so that d3q =
q2 dq d�), performing the angular integration, and extending
the wavevector integration to infinity we obtain

Glm(t − t ′) = ζ

(2π)3

8π

3
ηlm eiδm0(t−t ′) 1

A

∫ ∞

0

e−iAq2 (t−t ′)

ωc/A + q2
q2 dq,

(B.24)
where ηlm is given by equation (B.8). For large t − t ′, the
integral in equation (B.24) is dominated by the stationary phase
point q = 0. Thus, the integral can be approximated by putting
q = 0 in the denominator, and using∫ ∞

0
x2e−ax2

dx = √
πa−3/2/4, (B.25)

to obtain

Glm(t − t ′) = −ηlm
√

αl0αm0
ei[δm0(t−t ′)+π/4]√

4π(t − t ′)3
,

ωc(t − t ′) � 1,

(B.26)

where

α j0 = 1

4

(
γ j0

ω j0

)(
c3

ωc A3/2

)
, (B.27)

and we have used equation (B.15). Equation (B.26) may be
further simplified by assuming that the upper levels |2〉 and |1〉
are close together so that ω20 ≈ ω10. We then have

√
α10α20 ≈ α ≡ 1

4

(
γ20

ω20

)(
c3

ωc A3/2

)
. (B.28)

The full expression of Glm(t − t ′), including its short-time
behaviour, is given in [158].

Equation (B.28) shows that the value of α j0 strongly
depends on the curvature A = (1/2)(∂2ω/∂k2)k=k0 of
the dispersion curve ω(k) at the band edge, k = k0.
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Figure C.1. The contour used in the complex inversion
formula (C.1).

For the anisotropic dispersion relation we cannot use the
approximation A ≈ c2/ωc because the dispersion curve, in
general, exhibits different curvatures in different directions.
Instead we can use A ≈ f c2/ωc where f is a dimensionless
number, whose value depends on the nature of the dispersion
relation near the band edge ωc. This reduces equation (B.28)
to

α2 = 1

16 f 3

(
γ20

ω20

)2

ωc. (B.29)

Appendix C. Time dependence of the atomic
amplitudes and the strong-field limit

In this appendix we solve the coupled integro-differential
equations (28a) and (28b) for the amplitudes c1,2(t) in the case
of a PBG described by the anisotropic dispersion relation (45).
These solutions are then used to evaluate the steady-state
populations on the upper levels |1〉 and |2〉 in the presence
of a strong driving field coupling these levels.

In the case of a PBG, the amplitudes c1,2(t) are obtained
from the inverse Laplace transforms of c̃1,2(s + iδ) given by
equations (50a) and (50b). These inverse Laplace transforms
are evaluated via the complex inversion formula

e−iδt c j(t) = 1

2π i

∫ ε+i∞

ε−i∞
est c̃ j (s + iδ) ds, (C.1)

where the real number ε is chosen so that s = ε lies to the right
of all the singularities (poles and branch points) of the functions
c̃1,2(s + iδ). It is apparent from equation (51) that s = 0 is a
branch point of both c̃1,2(s + iδ). In order to evaluate (C.1), we
consider the contour C shown in figure C.1 where the branch
cut of the integrand is chosen to lie along the negative real axis.

According to the residue theorem

1

2π i

∮
C

est c̃ j (s + iδ) ds = Rsum, (C.2)

where Rsum is the sum of the residues of the integrand at the
poles enclosed by the contour C. Omitting the integrand, we
obtain

Rsum = 1

2π i

∮
C

= 1

2π i

(∫
AB

+
∫

B DE
+

∫
E H

+
∫

H J K
+

∫
K L

+
∫

L N A

)
. (C.3)

In the limit r → 0 and R → ∞ (so that T → ∞), the
second, the fourth and the sixth integrals on the RHS of
equation (C.3) approach zero and, according to equation (C.1),
the first integral gives e−iδt c j (t). Thus

e−iδt c j (t) = Rsum − lim
R→∞,r→0

1

2π i

(∫
E H

+
∫

K L

)
. (C.4)

First we calculate c2(t). Along EH, s = xeiπ = −x ; and
using this in equation (50a) we obtain

lim
R→∞,r→0

∫
E H

est c̃2(s + iδ) ds

=
∫ ∞

0

[(−x + iδ) cos θ − �eiφ sin θ ]e−xt

(−x + iδ)2 − αe−iπ/4(−x + iδ)
√

x + �2
dx . (C.5)

Similarly, along KL, s = xe−iπ = −x ; and using this in
equation (50a) we obtain

lim
R→∞,r→0

∫
K L

est c̃2(s + iδ) d

= −
∫ ∞

0

[(−x + iδ) cos θ − �eiφ sin θ ]e−xt

(−x + iδ)2 + αe−iπ/4(−x + iδ)
√

x + �2
dx .

Using equations (C.5) and (C.6) in equation (C.4) we obtain

e−iδt c2(t) = Rsum +
αeiπ/4

π

∫ ∞

0

g2(x)e−(x−iδ)t

Z(x)
dx (C.6)

where

g2(x) = [(−x + iδ) cos θ − �eiφ sin θ ](−x + iδ)
√

x, (C.7a)

Z(x) = [(−x + iδ)2 + �2]
2

+ iα2(−x + iδ)2x . (C.7b)

Next we evaluate the total residue Rsum. From
equations (50a) and (51) we have

est c̃2(s + iδ) = [(s + iδ) cos θ − �eiφ sin θ ]

× est
4∏

j=1

√
s + eiπ/4u j

s − iu2
j

. (C.8)

Clearly, the function est c̃2(s + iδ) has simple poles at s =
iu2

j , ( j = 1, . . . , 4). The residue Rk at s = iu2
k is then

Rk ≡ lim
s→iu2

k

(s − iu2
k)e

st b̃3(s + iδ)

= [(u2
k + δ) cos θ + i�eiφ sin θ ]eiu2

k t

×
(√

u2
k + u1

)
· · ·

(√
u2

k + u4

)
(u2

k − u2
l )(u

2
k − u2

m)(u2
k − u2

n)

(k �= l �= m �= n). (C.9)

Numerical examinations show that the roots u1,3 are real (u1

is positive but u3 is negative). The roots u2,4 are complex
conjugates of each other with a negative real part (u2 and u4

lie in the third and second quadrants, respectively). Thus, the
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negative root u3 lies outside the contour C so that the residue
at u3 is R3 = 0. For the complex root u4 (which has a positive
imaginary part), the factor eiu2

4t increases exponentially in
time and therefore is unphysical. Thus, for this root we
choose the negative branch of the square root function and

set
√

u2
4 + u4 = 0 so that the residue at u4 is R4 = 0. On the

other hand, for the positive root u1 and the complex root u2 we
choose the positive branch of the square root function and set√

u2
j = u j , ( j = 1, 2). The residues at u1 and u2 are

R j = Pj Q j e
iu2

j t ( j = 1, 2), (C.10)

where

Pj = 2u j

(u j − ul)(u j − um)(u j − un)
,

(l, m, n = 1, . . . , 4, j �= l �= m �= n),

(C.11a)

Q j = (u2
j + δ) cos θ + i�eiφ sin θ. (C.11b)

The sum of the residues of the function est c̃2(s + iδ) is then

Rsum =
4∑

k=1

Rk =
2∑

j=1

Pj Q j e
iu2

j t . (C.12)

Using this in equation (C.6) we finally arrive at the desired
result (55a):

c2(t) =
2∑

j=1

Pj Q j e
i(u2

j +δ)t +
αeiπ/4

π

∫ ∞

0

g2(x)e−(x−iδ)t

Z(x)
dx .

(C.13)
Following exactly the same procedure we also find that

c1(t) =
2∑

j=1

Pj R j e
i(u2

j +δ)t

+
α�ei(φc−π/4)

π

∫ ∞

0

g1(x)e−(x−iδ)t

Z(x)
dx (C.14)

where Pj and Z(x) are the same as those for c2(t) and

R j = (u2
j + αu j + δ)eiφp sin θ − i�eiφc cos θ, (C.15a)

g1(x) = [(−x + iδ) cos θ − �eiφ sin θ ]
√

x . (C.15b)

For a control laser field so strong that � � α2, δ, the roots
given by equations (53a) and (53b) are approximately given
by

u1 ∼ √
�, u2 ∼ −√

�,

u2 = u∗
4 ∼ −σ2 − i

√
�, for � � α2.

(C.16)

Using these in equations (C.11a), (C.11b), and (C.15a) we
obtain

P1 ∼ 1/2� (C.17a)

Q1 ∼ �[cos θ + ieiφ sin θ ], (C.17b)

R1 ∼ −i�eiφc [cos θ + ieiφ sin θ ], (C.17c)

which can then be used in equations (58) and (60) to obtain

n2s ≈ n1s ≈ 1
4 (1 − sin 2θ sin φ),

ncs ≈ ie−iφc

4
(1 − sin 2θ sin φ)

(C.18)

for the steady-state values of populations and coherences in
the limit of a strong driving field.

Appendix D. Quantum beat solutions

D.1. The vacuum case

This appendix gives the derivation of equation (73) which is
the solution of the coupled equations (71a) and (71b) in the
quantum beats case (� = 0). When � = 0, equations (71a)
and (71b) reduce to

ċ1(t) = −γ10c1(t) − ηγ̄ e−iω21t c2(t), (D.1a)

ċ2(t) = −γ20c2(t) − ηγ̄ eiω21t c1(t). (D.1b)

The solution of these homogeneous linear differential
equations with time-dependent coefficients is facilitated if we
introduce new functions f j (t) by

c j (t) = e−γ j0t f j (t), ( j = 1, 2) (D.2)

in terms of which the equations can be rewritten as

ḟ1(t) = −ηγ̄ e−iλt f2(t), (D.3a)

ḟ2(t) = −ηγ̄ eiλt f1(t), (D.3b)

where λ is a complex constant given by

λ = γ20 − γ10 + iω21. (D.4)

Taking the derivative with respect to time of equation (D.3a)
and using equation (D.3b) we obtain

f̈2(t) − λ ḟ2(t) − (ηγ̄ )2 f2(t) = 0. (D.5)

This is a second-order ordinary linear differential equation with
constant coefficients. Its characteristic equation is

q2 − λq − (ηγ̄ )2 = 0 (D.6)

with solutions

q1,2 = λ

2
±

√(
λ

2

)2

+ (ηγ̄ )2. (D.7)

The general solution of equation (D.5) is thus

f2(t) = A1eq1t + A2eq2t , (D.8)

where A1,2 are arbitrary constants. Going back to
equation (D.3b) we obtain

f1(t) = − 1

ηγ̄
ḟ2(t). (D.9)

Substituting the derivative of equation (D.8) into (D.9), we
obtain

f1(t) = − 1

ηγ̄
(A1q1eq1t + A2q2eq2t )e−λt . (D.10)

We now use the given initial values for the amplitudes c j (t) to
determine the constants A1,2. From equation (D.2) we see that
f j (0) = c j (0). Using this in equations (D.8) and (D.10), and
solving the resulting coupled equations for A1,2 we obtain

A j = qkc2(0) + ηγ̄ c1(0)

qk − q j
, (k �= j ). (D.11)
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Now that we have the solutions for f j (t), we use equation (D.2)
to obtain

c2(t) = e−γ20t
2∑

j=1

A j eq j t ,

c1(t) = e−(γ20+iω21)t
2∑

j=1

B j eq j t ,

(D.12)

where
B j = −q j A j/ηγ̄ . (D.13)

This completes the solution of equations (D.1a) and (D.1b).
When η = 0, equations (D.1a) and (D.1b) have the

exponentially decaying solutions given by

c j (t) = c j (0)e−γ j0 t , ( j = 1, 2). (D.14)

Comparing these solutions with the general solutions (D.12),
we see that

A1 = 0, A2 = c2(0), B1 = c1(0),

B2 = 0; for η = 0.
(D.15)

Next we show that the amplitudes c j(t) given by
equation (D.12) decay to zero in the long-time limit:

lim
t→∞ c j(t) = 0. (D.16)

From equation (D.12), we see that equation (D.16) will be
satisfied only if

Re{q1,2} < γ20, (D.17)

where Re{} denotes the real part of the quantity in braces.
Condition (D.17) can easily be proved if we assume that
γ10 ≈ γ20 so that γ̄ ≈ γ20. This a reasonable assumption,
especially if the upper levels |2〉 and |1〉 are close to each other
but far from the ground level |0〉 so that ω21 � ω20, ω10, as is
usually the case in the V configuration. In this approximation,
equation (D.4) shows that λ = iω32 so that equation (D.7)
gives

q1,2 =
{

iω21/2 ± x if ηγ20 � ω21/2,

iω21/2 ± ix if ηγ20 < ω21/2,
(D.18)

where

x =
√∣∣∣∣(ηγ20)2 −

(
ω21

2

)2∣∣∣∣. (D.19)

Since η � 1, it follows that x < γ20. From equation (D.18)
we see that Re{q1,2} = ±x if ηγ20 � ω21/2 or Re{q1,2} = 0
if ηγ20 < ω21/2. Thus in both cases condition (D.17) is easily
satisfied.

D.2. The PBG case

This appendix gives the derivation of equations (86a) and (86b)
which are solutions to the coupled equations (84a) and (84b)
in the quantum beats case (� = 0) with η = 1, and δ20 =
−δ10 = δ � 0. In this special case, equations (84a) and (84b)
reduce to

ḣ1(t) = iδh1(t) −
∫ t

0
G(t − t ′)[h1(t

′) + h2(t
′)] dt ′, (D.20a)

ḣ2(t) = −iδh2(t)−
∫ t

0
G(t −t ′)[h1(t

′)+h2(t
′)] dt ′. (D.20b)

Upon taking the Laplace transforms of these equations, we
obtain

h̃1(s) = (s + iδ)c1(0) − ρeiπ/4√s

D(s)
, (D.21a)

h̃2(s) = (s − iδ)c2(0) + ρeiπ/4√s

D(s)
, (D.21b)

where
ρ = α[c2(0) − c1(0)], (D.22a)

D(s) = s2 + 2αeiπ/4s
√

s − δ2
4∏

j=1

(
√

s − eiπ/4v j ), (D.22b)

and α is defined in equation (48). Here v j ( j = 1, . . . , 4) are
the roots of the quartic equation

x4 + 2αx3 − δ2 = 0, (D.23)

given by [159]

v1,3 = −σ1/2 ±
√

(σ1/2)2 − ξ2, (D.24a)

v2 = v∗
4 = −σ2/2 − i

√
ξ1 − (σ2/2)2, (D.24b)

σ1,2 = α ±
√

α2 + u, (D.24c)

ξ1,2 = u/2 ±
√

(u/2)2 + δ2, (D.24d)

u = −(2α2δ2)
1/3

[(A + 1)1/3 − (A − 1)1/3], (D.24e)

A = [1 + (4/27)(2δ/a2)6]1/2. (D.24f)

Equation (D.24e) shows that the quantity u is always
negative. Thus ξ1 and σ1,2 are positive whereas ξ2 is negative.
Thus, the roots

v1,3 = −|σ1|/2 ±
√

(σ1/2)2 + |ξ2| (D.25)

are both real. Moreover, numerical analysis shows that
ξ1 − (σ1/2)2 � 0 for all δ, the equality sign holding for δ = 0,
that is, when the upper levels |2〉 and |1〉 are degenerate (the
effective mass approximation means that δ cannot be too large).
Thus, equation (D.24b) can be rewritten as

v2 = v∗
4 = −σ2/2 − i

√
|ξ1 − (σ2/2)2|. (D.26)

This shows that the roots v2 and v4 are complex conjugates of
each other. equations (D.21a) and (D.21b) can now be inverted
(following the procedure described in appendix C) to give

c2(t) =
2∑

j=1

S j Tj e
i(v2

j +δ)t +
eiπ/4

π

∫ ∞

0

f2(x)e−(x−iδ)t dx

W (x)
,

(D.27a)

c1(t) =
2∑

j=1

S jU j e
i(v2

j −δ)t +
eiπ/4

π

∫ ∞

0

f1(x)e−(x+iδ)t dx

W (x)
,

(D.27b)
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where

S j = 2v j

(v j − vl)(v j − vm)(v j − vn)
,

(l, m, n = 1, . . . , 4, j �= l �= m �= n),

(D.28a)

Tj = (v2
j − δ)c2(0) + v jρ = (v2

j + αv j − δ)c2(0) − αv j c1(0),

(D.28b)
U j = (v2

j + δ)c2(0) − v jρ = (v2
j + αv j + δ)c1(0) − αv j c2(0),

(D.28c)
f2(x) = [−ρ(x2 + δ2) + 2αc2(0)(x + iδ)x]

√
x, (D.28d)

f1(x) = [ρ(x2 + δ2) + 2αc1(0)(x − iδ)x]
√

x, (D.28e)

W (x) = (x2 + δ2)2 + i4α2x3. (D.28f)

Appendix E. Two-level atom in the anisotropic model

In this appendix we consider a special case of our model three-
level system when single-photon spontaneous emission for the
transition |1〉 → |0〉 is assumed forbidden. This means that
the population of level |1〉 cannot decay directly to level |0〉.
Its only decay mechanism is indirectly through level |2〉 via
the coupling �. Now, if the upper levels |2〉 and |1〉 are
not driven by a control laser field so that � = 0, level |1〉
will be completely decoupled from the rest of the system and
our model system of figure 9 is effectively a two-level system
consisting of levels |2〉 and |0〉.

In this case equations (30a) and (30b) reduce (assuming
that the atom is initially on the upper level |2〉 so that θ = 0)
to c̃1(s) = 0 and

c̃2(s) = 1

s + G̃(s)
. (E.1)

Using equation (49) for G̃(s) we obtain

c̃2(s + iδ) = 1/D(s), (E.2)

where

D(s) = s + αeiπ/4√s + iδ =
2∏

j=1

(
√

s − eiπ/4 v j ). (E.3)

Here v j ( j = 1, 2) are the roots of the quadratic equation

x2 + αx + δ = 0 (E.4)

given by

v1,2 = −α

2
±

√(
α

2

)2

− δ. (E.5)

The amplitude c2(t) is found from the inverse Laplace
transform of c̃2(s + iδ) through the inversion integral of
equation (C.1). Following the method of appendix C and using
the contour of figure C.1 yields the following results:

(a) If δ < 0 (upper level |2〉 is inside the gap), the roots (E.5)
are given by

r1,2 = −α

2
±

√(
α

2

)2

+ |δ|. (E.6)

Thus r1 is positive, whereas r2 is negative and lies outside
the contour of integration. In this case we obtain

c2(t) = c1ei(r2
1 +δ)t + I (δ, t), δ < 0, (E.7)

where
c1 = 2r1/(r1 − r2), (E.8a)

I (δ, t) = αeiπ/4

π

∫ ∞

0

√
xe(−x+iδ)t

(−x + iδ)2 + iα2x
dx . (E.8b)

(b) If 0 � δ � (α/2)2, both roots v1,2 are negative and lie
outside the contour of integration. In this case we obtain

c2(t) = I (δ, t), 0 � δ � (α/2)2, (E.9)

where I (δ, t) is given by equation (E.8b).
(c) If δ > (α/2)2, the roots (E.5) are complex conjugates of

each other given by

q1 = q∗
2 = −α

2
− i

√
|δ| −

(
α

2

)2

. (E.10)

In this case the residue corresponding to q2 is zero, and we
obtain

c2(t) = d1ei(q2
1 +δ)t + I (δ, t), δ > (α/2)2, (E.11)

where

d1 = 2q1 cos θ

q1 − q2
. (E.12)

Since the root r1 is positive while the root q1 is complex
with a negative real part, the first term on the RHS of
equation (E.7) is a non-decaying oscillatory term while that
of equation (E.11) decays in time and tends to zero as t → ∞.
The term I (δ, t) also decays in time and tends to zero as
t → ∞. The steady-state population on the upper level |2〉
is then given by

n2s ≡ lim
t→∞ |c2(t)|2 =

{
4r 2

1 /(r1 − r2)
2 if δ < 0

0 if δ � 0.
(E.13)

Thus, for the two-level system (consisting of the ground level
|0〉 and the excited-level |2〉) placed inside a PBG structure
described by the ‘effective mass’ anisotropic dispersion
relation equation (45), fractionalized steady-state inversion
occurs only for δ < 0, that is for ω20 < ωc. On the
other hand, for such a two-level system in the isotropic model
equation (44), fractionalized inversion was shown [65] to occur
even when ω20 is slightly greater than ωc (that is, even when
the excited state lies outside (but not far from) the band gap).
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