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In this paper, we show an example of students 
working on a physics problem—an example 
that demonstrated to us that we had failed to 

understand the work they needed to do in order to 
solve a “simple” problem in electrostatics. Our criti-
cal misunderstanding was failing to realize the level 
of complexity that was built into our own knowledge 
about physics.

As physics teachers, we often stress the importance 
of problem solving. Unfortunately, many of our stu-
dents appear to find it very difficult. Sometimes they 
generate ridiculous answers and seem satisfied. Some-
times they can do the calculations but not interpret 
the results. Sometimes, despite success in solving the 
problem, they seem to have a poor understanding of 
the physics.1 We may give them explicit instructions 
on how to solve problems (“draw a picture,” “find an 
equation,” …) but it doesn’t help.  

We might respond that they need to take more 
math, but in the algebra-based physics class at the 
University of Maryland, almost all of our students 
have taken calculus and earned an A or a B. Many 
have been successful in organic chemistry, cellular 
biology, and genetics. Why do they have so much 
trouble with the math in an intro physics class?

As part of a research project to study learning in al-
gebra-based physics,2 the Physics Education Research 
Group at the University of Maryland videotaped 
students working together on physics problems. Ana-
lyzing these tapes gives us insights into the problems 
students have using math in the context of physics. 
First is that they have inappropriate expectations as to 

how to solve problems in physics.3 The second prob-
lem seems to lie with us:  As instructors, we may have 
misconceptions about how people think and learn, 
and these have implications about how we interpret 
what our students are doing.

“Packing” Knowledge Until You 
Don’t See Its Parts: Compilation

Modern cognitive psychology and neuroscience 
have documented that much of our everyday func-
tional knowledge is more complex than we give it  
credit for. One component of this is automaticity.  
Once we have learned to do something, like tie our 
shoes or ride a bicycle, it becomes easy and we can do 
it without thinking. However, we usually understand 
and remember the learning that goes into such tasks 
and we typically have patience in teaching them to our 
children.  

We have other knowledge, though, that has invis-
ible components. When our knowledge takes that 
form, it is hard to see why someone might not find the 
result obvious. Even an apparently simple thing like 
identifying an object is much more complicated than 
it appears.4  

Some cognitive “illusions” dramatically demon-
strate how much unnoticed processing the brain is 
doing for us. A nice example given by Ed Adelson 
is shown in Fig. 1. The squares of the checkerboard 
marked A and B are, in fact, exactly the same color.  
(If you don’t believe this, make a copy of the page, cut 
out the squares, and place them next to each other, 
or check out Adelson’s website.5) Your brain knows 

THE PHYSICS TEACHER ◆ Vol. 44, May 2006                        DOI: 10.1119/1.2195401 293



294 THE PHYSICS TEACHER ◆ Vol. 44, May 2006

enough to realize that if two objects appear to be 
the same color but one is in shadow, then the one in 
shadow must “really” be lighter—and that’s how you 
see it. This particular example appears to be “wired 
up” very tightly and at a very young age. You can’t see 
it any other way.

A second example is more obviously learned. You 
can no longer see the word “CAT” as only a series 
of lines and shapes. You probably not only get the 
meaning immediately, you have some visual image as-
sociated with the word. You have learned to interpret 
the shapes as letters, to see combinations of letters 
as words, and to associate the words with particular 
meanings. Although you can’t undo this easily (look-
ing at it upside down does it for some folks), you 
know that there was a time when all you could see 
were lines and shapes.  

This same sort of process occurs as we learn 
throughout our lives. When professional physicists 
look at a graph, it is almost impossible not to see the 
y-intercept, the slope at each point, the maxima and 
minima, and so on. For many students in introduc-
tory physics, however, this process is not quick and 
automatic but takes explicit recall and reasoning.  

We refer to this process of binding knowledge 
tightly so that its parts are inaccessible to the user as 
compilation. (This is referred to in the neuroscience 
literature as binding.) The metaphor here is computer 
code. Once a program written in a high-level com-
puter language has been debugged and is stable, it is 
convenient to convert it into machine language so it 
doesn’t need to be translated each time it runs. This 
“executable” is fast, but if you are only given a ma-

chine-language executable, it is immensely difficult 
to back-interpret it to understand what it is actually 
doing. To understand what is going on in such a pro-
gram, a computer programmer who wants to recreate 
it may have to reverse-engineer it. 

Once we learn how to do something, it can be dif-
ficult to empathize with someone who does not know 
how to do that thing. This lack of empathy may lead 
physics teachers to forget what it is like to actually 
learn physics—and, therefore, prevent them from 
understanding how their students are unable to solve 
“simple” physics problems. Some physics teachers may 
think, “If it takes a student an hour to solve a problem 
to which I can just write down the answer, then that 
student does not know enough physics—and she is 
wasting her time spending that long on such a ‘simple’ 
problem.” In this paper we want to demonstrate that 
this is not the case. To do this, we reverse-engineer 
what solving a “simple” physics problem really entails. 
We analyze a group of students’ solution to this simple 
problem and show that, while the students take much 
longer than the typical teacher would to solve this 
problem, their solution involves activities that can be 
seen as a process of compiling their physics knowledge 
and that are appropriate for students at their stage of 
learning. 

An Example: The Three-Charge 
Problem

In what follows we observe students working to-
gether on an electrostatics problem that we refer to as 
the “Three-Charge Problem” (Fig. 2).  

Fig. 1. An example of automatic processing that you can-
not unpack. (Photo courtesy of E. Adelson)

d d

q1
q2 q3

In the figure above three charged particles lie
on a straight line and are separated by distances d.
Charges q1 and q2 are held fixed.

Charge q3 is free to move but happens to be
in equilibrium (no net electrostatic force acts on it).

If charge q2 has the value Q, what value
must the charge q1 have?

Fig. 2. The “Three-Charge Problem.” An example of phys-
ics knowledge that instructors need to unpack.
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How instructors solve this problem
We have asked this problem of many physics in-

structors. It rarely takes anyone more than a few sec-
onds to work his/her way through to a correct answer 
and some give it immediately. A typical instructor’s 
solution might be: “Well, charge 3 is twice as far away 
from charge 1 as it is from charge 2. So if the forces 
balance, charge 1 has to be –4Q, opposite sign to bal-
ance Q and four times as big because Coulomb’s law 
says the force falls like the square of the distance.”

What instructors want students to do
Although most instructors can do this kind of a 

calculation in their heads, we, as instructors, intended 
for the students to go through a bit more math. The 
problem states there is “no net electrostatic force” act-
ing on charge q3. This implies that the sum of all the 
forces acting on q3 is equal to zero, which is written 
formally in symbols as 

 
   

(1)

(We see below that this form of the equation is 
deceptively simple and hides a lot of conceptual 
information.) Using Coulomb’s law yields

                     (2)
 

where we have set q2 = Q and written (for simplicity 
as we did in the class) k = 1/4πε0. Finally, we bring 
the second term to the right side of the equation and 
cancel similar terms, resulting in q1 = –4Q.

What the students did
We examine a videotaped episode in which a group 

of students solves the “Three-Charge Problem.” This  
episode occurred in the second week of the second 
semester of the two-semester sequence and has three 
female students (pseudonyms Alisa, Bonnie, and Dar-
lene) working together. All of the students had taken 
the transformed course in the first semester and were 
familiar with the ideas that a single problem might 
take a long time to solve and that qualitative and 
quantitative considerations might both be needed.

A striking feature of the students’ problem solv-
ing is that it takes so long compared to a typical in-
structor’s solution. The students work for nearly 60 

minutes before arriving at a solution—almost two 
orders of magnitude longer than the typical teacher!  
Is this a cause for concern? In our analysis of our stu-
dents’ approach in solving this and in other problems, 
two factors seemed critical in understanding what the 
students were doing.  

First, we note that much of the knowledge that 
students are using is not integrated; results that would 
be considered trivially identical by an instructor are 
treated as distinct and unrelated.  The students have 
not yet compiled these distinct knowledge elements 
the way experts have.

Second, we observe that students tend to solve 
problems by working in locally coherent activities in 
which they use only a limited set of the knowledge 
that they could in principle bring to bear on the prob-
lem. We refer to each of these activities as an epistemic 
or knowledge-building game. Each game has allowed 
moves, a starting point, a goal or ending point, and a 
form or visible result. Most important, while students 
are playing one game, they ignore moves that they 
consider as not pertinent, thereby excluding much rel-
evant knowledge. We see an example of this in our epi-
sode. (These games are discussed in detail in Ref. 3.)  

An example of a knowledge-building game many of 
us have seen when interacting with students is “Recur-
sive Plug-and-Chug.” The student’s goal is to calculate 
a numerical answer. The opening move is to identify 
the target variable to be calculated. The next move is to 
find an equation containing that variable. Then, check 
if the rest of the variables in the equation are known. If 
so, calculate the resulting quantity. If not, find another 
target variable in the equation and repeat the process.  
The game does not include developing a story about 
the problem, evaluating the relevance of the equa-
tion, or making sense of the answer. Without these 
sense-making moves, inappropriate and even bizarre 
results go unnoticed. The output form of this game is 
a string of equations—one that might look identical to 
that produced by a student playing a more productive 
game, such as “Making Meaning with Mathematics.”

Knowledge-building games the students use
In our example, we can identify five different 

knowledge-building games that this group of students 
played to solve the “Three-Charge Problem.” We 
describe each in turn and give an example from the 
transcript.
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“Physical Mechanism”: Understanding the 
physical situation. The students start by attempt-
ing to understand the physical situation articulated 
in the problem statement. Their reasoning is based 
on intuitive knowledge about and experience with 
physical phenomena rather than on formal physics 
principles.

Darlene:    I’m thinking that the charge q1 must have its... 
    negative Q.

Alisa:        We thought [q1] would be twice as much, because  
            it can’t repel q2, because they’re fixed. But, it’s  
           repelling in such a way that it’s keeping q3 there.

Bonnie:    Yeah. It has to— 
Darlene:   Wait, say that.
Alisa:        Like—q2 is— q2 is pushing this way, or  

           attracting—. There’s a certain force between two  
           Q,  or q2 that’s attracting. 

Darlene:   q3.
Alisa:        But at the same time you have q1 repelling. 

Darlene initiates this exchange with a possible solu-
tion to this problem: the charge on q1 is “negative Q.” 
Although this is wrong, it has a good piece of phys-
ics: q1 must have the opposite sign to q2 if the forces 
they exert on q3 are to balance. Rather than simply 
accept or reject this suggestion, the students discuss 
the physical mechanism that acts to keep q3 from 
moving: q2 is attracting and q1 is repelling q3, or vice 
versa. If the students were only attempting to find a 
solution to this problem, then a discussion about the 
physical mechanism seems unnecessary—they would 
only need to assess the correctness of Darlene’s as-
sertion. That the students discuss a possible physical 
mechanism involved in the physical situation is an 
indication that the students are attempting to develop 
a conceptual understanding of this problem. Research 
on quantitative problem solving in physics discusses 
the importance of conceptual understanding.6  The 
instructor’s solution outlined above does not explic-
itly contain a description of the physical mechanism 
underlying the physical situation, but it is nonetheless 
there—compiled into the way instructors think about 
and approach the problem. They not only “know the 
right formula,” they know what the formula means 
and how to use it.

The next exchange indicates, however, that the stu-
dents’ intuitions about the physical situation are not 

always consistent with expert physics principles. The 
students are still struggling with reconciling the prin-
ciple of superposition with their everyday ideas.

Darlene:   How is [q1] repelling when it’s got this charge in   
            the middle?

Alisa:        Because it’s still acting. Like if it’s bigger than q2  
            it can still, because they’re fixed. This isn’t going  
            to move to its equilibrium point. So, it could be  
            being pushed this way. 

Darlene:   Oh, I see what you’re saying. 
Alisa:        Or, pulled. You know, it could be being pulled  

           more, but it’s not moving.
Darlene:  Uh-huh.

The arrangement of the charges cues Darlene to 
think that the presence of q2 somehow hinders or 
blocks the effect of q1 on q3, which does not agree 
with the superposition principle. Exploring the possi-
bility that q2 blocks the effect of q1 on q3 is not a step 
in the instructor’s solution outlined above—it’s some-
thing the instructor knows and takes for granted. The 
exploration is not a dead end for the students; it is a 
step in helping them to develop an intuitive sense of 
superposition.  

Alisa’s argument is particularly interesting. She uses 
an incorrect qualitative argument (overcoming—“if 
it’s bigger…it could be being pulled more”) rather 
than the correct quantitative one (Coulomb’s law), 
even though she later shows she knows the quantita-
tive approach. Formal arguments are not part of the 
“Physical Mechanism” game. Here, as in many other 
episodes we’ve seen, students who are in the middle of 
one game tend not to use other knowledge that they 
have.

“Pictorial Analysis”: Drawing a picture. The 
students make progress on this problem by attempt-
ing to develop a conceptual understanding of the 
physical situation in terms of their intuitive ideas; 
however, this game does not lead to a stable solu-
tion within the group. After their apparent initial 
agreement in developing a conceptual understanding 
of the physical situation, and in particular on deter-
mining that charges q1 and q2 had to have opposite 
signs, Darlene decides she is not convinced.

Darlene:   I think they all have the same charge.
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Bonnie:   You think they all have the same charge? Then they  
           don’t repel each other. 

Darlene:  Huh?
Bonnie:   Then they would all repel each other.
Darlene:  That’s what I think is happening.
Bonnie:   Yeah, but q3 is fixed. If it was being repelled—
Alisa:       No, it’s not. q3 is free to move.
Bonnie:    I mean, q3 is not fixed. That’s what I meant….
Darlene:   So, the force of q2 is pushing away with is only  

            equal to d.
Bonnie:    Yeah, but then...
Darlene:   These two aren’t moving.
Bonnie:   Wouldn’t this push it somewhat?
Alisa:        Just because they’re not moving doesn’t mean they’re  

           not exerting forces.
Darlene:   I know.

The TA (Tuminaro) notices the students’ failing 
to communicate clearly and lock down their appar-
ent gains, and suggests that they draw a picture. The 
students do not use an algorithmic pictorial analysis 
technique (e.g., free-body diagrams) but rely on their 
intuitive ideas to generate a picture. The picture helps 
the students organize their thoughts and agree on the 
relative sign on each of the charges.

Alisa:        So, maybe this is pushing...
Darlene:   That’s [q2] repelling and q1’s attracting?
Bonnie:    Yeah, it’s just that whatever q2 is, q1 has to be the  

           opposite. Right?
Alisa:        Not necessarily.
Darlene:  Yeah.
Bonnie:    OK, like what if they were both positive?
Alisa:        Well, I guess you’re right, they do have to be differ- 

            ent, because if they were both positive...
Bonnie:    Then, they’d both push the same way.
Alisa:        And, if this were positive it would go zooming that  

           way.
Darlene:   They would both push.
Alisa:        And, if this were negative it would go there.
Bonnie:    It would go zooming that way.
Alisa:        And, if they were negative...
Darlene:   It would still—they’d all go that way.
Alisa:        It would be the same thing. 

The picture enhances the students’ ability to rea-
son about this problem, enabling them to agree on a 
clear intuitive understanding of the physical situation: 
“Whatever [the sign of ] q2, q1 has to be the opposite.”

“Mapping Mathematics to Meaning”: 
Identifying the relevant physics. At this 
point, the students have not made use of Coulomb’s 
law—they have relied solely on their intuitive ideas. 
Yet, their intuitive reasoning helps them understand 
the physical situation, and, ultimately, to realize that 
Coulomb’s law is essential for this problem. 

Bonnie:   Yeah. Negative two Q, since it’s twice as far away.
Alisa:       And, this is negative Q.
Bonnie:   Negative two Q.
Darlene:  Negative two Q.
Alisa:       Are we going to go with that?
Bonnie:   I think it makes sense.
Darlene:  That makes...
Alisa:       Well, I don’t know, because when you’re covering a  

           distance you’re using it in the denominator as the  
           square. 

Bonnie:   Oh!  Is that how it works?
Alisa:        And [...inaudible...] makes a difference.
Bonnie:   Yeah, you’re right.
Tuminaro: So, how do you know that?
All:            From the Coulomb’s law.
Bonnie:    So, it should actually be negative four q? Or  

            what? Since it has…
Alisa:        Cause we were getting into problems in the  

   beginning of the problem with [a three-charge  
           problem in which shifting a middle charge  
    destroys a balance of forces because of Coulomb’s  
   law] because I thought that, like, if you move this  
   a little bit to the right, the decrease for this would  
   make up for the increase for this. But, then we  
   decided it didn’t. So, that’s how I know that I  
   don’t think it would just increase it by a factor of  
   two.

The students relied on their intuitive ideas to 
generate a conceptual understanding of the situa-
tion—two mutually exclusive influences acting on q3 
that exactly cancel each other. Yet Alisa, recalling her 
experience of working on an earlier problem, realizes 
that their intuitive ideas are not enough; they need 
Coulomb’s law.

“Mapping Meaning to Mathematics”: 
Translating conceptual understanding into 
mathematical formalism. After some false starts 
and nearly 60 minutes, the students finally solve this 
problem, integrating their conceptual understand-
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ing, developed in terms of their common sense ideas, 
with formal application of Coulomb’s law.

Tuminaro: What did you do there?
Alisa:          What did I do there?
Tuminaro: Yeah, can I ask?
Alisa:          All right, so because this isn’t moving, the two  

              forces that are acting on it are equal: the push  
             and the pull. 

Alisa reiterates the group’s conceptual understand-
ing of the physical situation: two mutually exclu-
sive influences exactly canceling yielding no result. 
Next, she writes down the two forces in terms of 
Coulomb’s law:

Alisa:          So, the F—I don’t know if this is the right F  
     symbol—but, the F q2 on q3 is equal to this  
             [see Eq.(3)]. And, then the F q1 on q3 is equal  
             to this [see Eq. (4)], because the distance is  
             twice as much, so it would be four d squared  
             instead of d squared. 

 
         

(3)

 
         (4)
Alisa:          And then I used x Q like or you can even do—  

      yeah—x Q for the charge on q1, because  we  
              know in some way it’s going to be related to Q  
              like the big Q we just got to find the factor that  
              relates to that…Then, I set them equal to each  
              other…

Alisa uses Coulomb’s law to write the form of the 
two forces, but she does not formally invoke the other 
physics principle outlined in the ideal solution: New-
ton’s second law. Rather, Alisa relies on her conceptual 
understanding of the physical situation to write that 
the forces must be equal—not on a formal application 
of Newton’s second law. This feature of her solution 
lends additional evidence that Alisa is making sense of 
this problem rather than following a problem-solving 
algorithm.

After setting up the equation, Alisa is left with an 
algebra problem, which she has little trouble solving:

Alisa:       … and I crossed out, like, the q2 and the k and the 
   d squared, and that gave me Q equals x Q over  
           four. And then x Q equals four Q, so x would have  
          to be equal to four. That’s how you know it’s four Q.

The other students then evaluate the plausibility of 
Alisa’s recited solution, another indication that these 
students are making sense of this problem:

Bonnie:    Well, shouldn’t it be—well, equal and  
            opposite, but...

Alisa:         Yeah, you could stick the negative.
Bonnie:     Yeah.
Darlene:    I didn’t use Coulomb’s equation, I just—but it  

            was similar to that.
Bonnie:     That’s a good way of proving it.
Darlene:   Uh-huh.
Bonnie:    Good explanation.
Alisa:         Can I have my A now?

Alisa’s final question is meant in jest, but shows that 
she realizes that she has understood and solved this 
problem successfully.

What Takes So Long?
The fact that students can take so long to solve 

problems like this one is a matter of concern to many 
instructors. Some instructors—and many students—
assume that if students can’t do the problem in a short 
amount of time, they can’t do it at all. Our example 
shows this not to be the case. Given the time, students 
can recall and construct the background knowledge 
needed to make sense of the problem a step at a time.  
This is a long but likely necessary part of the process 
of creating their own knowledge compilations.  

The details of the transcript7 reveal some of the 
physics knowledge the students call on explicitly in 
working through this problem (Table I). Many of 
these items are new to them (only learned last semes-
ter) and are still being reconciled with their intuitive 
knowledge.

Time Well Spent
The students’ problem-solving approach, while it 

takes much longer than an average teacher’s approach, 
has expert-like features. Two of these are (1) the stu-
dents rely heavily on their conceptual understanding, 
and (2) they themselves choose their solution path.

The students solve the problem by thinking of 
two mutually exclusive influences exactly canceling 
each other (and then applying Coulomb’s law). At no 
point during the entire problem-solving episode do 
they use or make explicit reference to Newton’s second 
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law, even though it is the relevant physics principle 
for why q3 remains in equilibrium. This is not a nega-
tive. It shows that the students are using their own 
understanding of the physical situation to generate 
a solution (an expert-like characteristic) rather than 
doggedly applying a formal physical principle (a nov-
ice-like characteristic).

Further, the students generate their own problem-
solving path. They do not defer to the TA or let him 
direct what they should do next. Even as they follow 
the TA’s suggestion to draw a picture, they use phrases 
like “we thought” or “I decided” (not “the TA said” or 
“the book says”)—evidence that they feel they are in 
control of their approach.

Recognition Versus Formal 
Manipulation

In physics, especially at the college level, we tend to 
focus our attention on formal manipulation. We often 
don’t realize how much of an expert’s success is based 
on a more fundamental cognitive ability: recognition. 
The ability to handle language and formal reasoning 
is analogous to serial processing in computer tech-
nology—sequential and reasonably slow. The ability 
to recognize faces and places is analogous to parallel 
processing—all happening at once and very quickly.8  
When we identify a coffee cup or recognize a friend, 
we don’t go through a formal check-list of properties; 
we just recognize them. Many physicists have had the 
experience of going through a tedious calculation, 
making mathematical manipulation after manipula-
tion and then reaching a particular point and saying: 
“Oh! Now I get it.” Either the rest of the calculation 
now becomes trivial or the previous steps now are ob-
vious rather than formal.

In this paper, we reverse-engineered a simple phys-
ics problem, comparing the way instructors who al-
ready have lots of compiled knowledge solve it to the 
way a group of novice students who are still working 
on compiling their knowledge solve it. An immedi-
ately obvious difference between the two is that the 
students’ solution took much more time—nearly two 
orders of magnitude more. Our analysis shows two 
things. First, even simple physics problems include 
conceptual and technical subtleties that experts tend 
to forget about. Experts are so familiar with these 
subtleties that they don’t notice them, but they pres-

ent significant difficulties for novices. Second, what 
we may at first judge to be poor student problem-solv-
ing behavior may actually be very desirable behavior. 
Careful analysis of the students’ solution in the three-
charge problem shows that their solution shares many 
features with an expert’s solution. In addition, the 

E-Game Physics Knowledge Needed

Physical 
Mechanism

• Like charges repel, unlike attract.
• Attractions and repulsions are 

forces. 
• Forces can add and cancel. 

(one does not “win”; one is not 
“blocked”)

• “Equilibrium” corresponds to 
balanced, opposing forces (not a 
single strong “holding” force). 

• Electric force both increases with 
charge and decreases with distance 
from charge. 

• Objects respond to the forces they 
feel (not those they exert).

• “Fixed” objects don’t give visible 
indication of forces acting on 
them; “free” ones do.

Pictorial 
Analysis

• Only forces on the test charge re-
quire analysis.

• Each other charge exerts one force 
on test charge.

• Each force may be represented by 
a vector.

• “Equilibrium” corresponds to op-
posing vectors.

• Vertical and horizontal dimensions 
are separable. 

• 1D is sufficient for analysis. 
Mapping 
Mathematics 
to Meaning

• Electric force both increases with 
charge and decreases with distance 
from charge. 

• Electric force decreases with the 
square of the distance.

Mapping 
Meaning to 
Mathematics

• Charges of indeterminate sign are 
appropriately represented by sym-
bols of indeterminate sign.

• Coefficients may relate similar 
quantities.

• Balanced forces correspond to 
algebraically equal Coulomb’s-law 
expressions.

Table I. Some of the knowledge required by the student 
in each game.
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students work toward the consolidation and reconcili-
ation of new knowledge, which is just what they need 
to do at their stage of learning. To better assist our stu-
dents, we need to better understand both what they 
know and the hidden components of our own knowl-
edge. Only then can we effectively “reverse-engineer” 
what we know to help our students build expert prob-
lem-solving skills. 

References
1.   E. Mazur, Peer Instruction (Prentice Hall, 1996).

2.   Learning How to Learn Science: Physics for Bio-science 
Majors, NSF grant REC-008 7519.

3.   J. Tuminaro and E. Redish, “Students’ understanding 
and use of mathematics in physics: A cognitive model,” 
submitted for publication; J. Tuminaro, “A cognitive 
framework for analyzing and describing introductory 
students’ use and understanding of mathematics in 
physics,” Ph.D. dissertation, University of Maryland 
(2004).

4.   O. Sacks, The Man Who Mistook His Wife for a Hat 
(Touchstone, 1998).

5.   http://web.mit.edu/persci/people/adelson/ 
checkershadow_proof.html.

6.   J. Larkin, “Understanding and teaching problem 
solving in physics,” Eur. J. Sci. Educ. 1 (2), 191–203 
(1979); J. Larkin, J. McDermott, D. Simon, and H. 
Simon, “Expert and novice performance in solving 
physics problems,” Science 208, 1335–1342 (1980); M. 
Nathan, W. Kintsch, and E. Young, “A theory of alge-
bra-word-problem comprehension and its impli-cations 
for the design of learning environments,” Cog. Instr. 9 
(4), 329–389 (1992).

7.   The full transcript is available online at http://www. 
physics.umd.edu/perg/dissertations/Tuminaro/
3Qtranscript.pdf.

8.   G. Fauconnier and M. Turner, The Way We Think: Con-
ceptual Blending and the Mind’s Hidden Complexities 
(Basic Books, 2003), Chap. 1.

PACS codes: 01.40.Fk, 01.40.Ha, 01.40.Di

E.F. (Joe) Redish is a professor of physics at the 
University of Maryland. He is an AAPT Millikan Award 
winner and an NSF Distinguished Teacher Scholar. His 
current research is in physics education and focuses on 
building cognitive models of student thinking in physics 
and on the use of math in physics problem solving.  

Physics Department, University of Maryland, College 
Park, MD 20742-4111; redish@umd.edu 

Jonathan Tuminaro earned his Ph.D. at the University of 
Maryland and the work reported here was carried out as 
a part of his dissertation. He is currently working in patent 
law.
 
Rachel Scherr is a research assistant professor with 
the Physics Education Research Group at the University 
of Maryland. She earned her Ph.D. with the Physics 
Education Group at the University of Washington. Her 
interests include helping graduate teaching assistants  
recognize how their students think and learn.
 

Best
Seller!

Members: $21.95 • Nonmembers: $27.50
order online: www.aapt.org/store or call: 301-209-3333 

Concerned about
the safety of your students?

Promote safety awareness and encourage safe habits 
with this essential manual. Appropriate for elementary 
to advanced undergraduate laboratories.


	“Packing” Knowledge Until You Don’t See Its Parts: Compilation
	An Example: The Three-Charge Problem
	How instructors solve this problem
	What instructors want students to do
	What the students did
	Knowledge-building games the students use
	“Physical Mechanism”: Understanding the physical situation
	“Pictorial Analysis”: Drawing a picture
	“Mapping Mathematics to Meaning”: Identifying the relevant physics
	“Mapping Meaning to Mathematics”: Translating conceptual understanding into mathematical formalism
	What Takes So Long?
	Time Well Spent
	Recognition Versus Formal Manipulation
	References

