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The Standard Model of Particle Physics

SU(3)c xSU(2), xU@)y

e ‘u T Consistent with all existing experimental data
BUT

Ve L V‘u L Ve L > No Higgs yet

u C t > 19 free parameters (masses, couplings etc)
> three (?) generations of fundamental fermions

d L S L b L > Hierarchy problem (need Supersymmetry)
» Charge ratios of quarks and leptons (GUTS)

y » No gravity (need string theory ?)

A Number candidates for physics beyond the SM

Expected mass scale for new physics ~1 TeV
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Beyond the Standard Model

Hierarchy problem: there are two fundamental energy scales that we know
of: the electroweak scale and the Planck scale: Mgy, / M, = 107

Naturalness problem: radiative corrections to the mass of a fundamental
scalar (e.g. the Higgs) scale like A2 where A is the energy scale to which
the theory remains valid. This yields a fine-tuning problem for the Higgs

mass unless:

a) There is new physics at the ~ TeV energy scale

b) There is some symmetry protecting the Higgs mass
against large radiative corrections (Supersymmetry)

If the Higgs is not discovered with a mass < 800 GeV, expect the dynamics
of WW, ZZ scattering to reveal new physics at this energy scale

We MUST see something at LHC energies
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Vector Boson Scattering
(a) (b) (©)
W' W'
W W N

Cross-section grows with s = EéM . Eventually violates unitarity (probability)
unless there are additional processes. Need to add

(d) e)
W AN W W%::jq W’
AW w

with M, <1TeV
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Constraints on the Higgs Mass
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Supersymmetry

Each SM boson (fermion) has a fermionic (bosonic) supersymmetric
partner with IDENTICAL MASS and Standard Model COUPLINGS

leptons
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Obviously we do not see such particles. So we say SUSY is a broken
symmetry. However, most motivations for SUSY require a mass scale
of less than about 1 TeV
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Force Unification with and without SUSY

Weak-scale SUSY seems to allow for force unifications at high energy
(running of coupling constants with energy):
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mass spectrum
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R-parity
R-Parity is a quantum number which distinguishes SM and supersymmetric particles
R = (_1)3(B—L)+28
Most supersymmetric models assume R-Parity Conservation

This has two important conseguences:

Supersymmetric particles must be produced in pairs

There must be some Lightest Supersymmetric Particle or LSP

This LSP is usually the lightest neutralino jzlo which can be a good Cold Dark
Matter candidate.

This leads to an experimental signature of large transverse missing energy. In

the case of pair production of squarks and gluinos at the LHC, the standard
signature is jets + missing energy
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Cosmological Issues

7 39 DARK ENERGY

\2%% DARK MATTER

2

3.6% INTERGALACTIC GAS
0.4% STARS, ETC.

Evidence is that dark matter is predominantly “cold”, e.g. non-relativistic.
Popular candidate is the WIMP (Weakly Interacting Massive Particle). The
LSP can be a very good candidate for this.
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Some Basic Collider Physics

How does one calculate the rate for some physics process at a collider ?
7% = sum of all contributing processes, here for ete- — W*W-

e W e W e W~
i
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>Xv< + >Wzv< & iV, T
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Define cross-section ¢ « |7#]?> units of (length)?

bunch crossing frequency
Define luminosity [ = N S

~ r of
pel?:tjit;nlgebu?\ ches (\/ \/\) ~ cross-sectional size of the beams

times numbers of

particles in each Instantaneous production rate N = L ¢
bunch
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Hadron Colliders vs Electron Positron Colliders

Bending a charged particle in a magnetic field costs energy emitted in the
form of synchrotron radiation:

2112
AE=477:.6'B7/4<><:14 or E*
3 P m

For fixed radius machine (i.e. in the LEP tunnel at CERN with p = 6.28km)

synchrotron radiation loss for protons is less that that for electrons by the
amount

Cannot (feasibly) build electron synchrotrons
of arbitrarily high energy. Need either:

m v' hadron collider

v linear electron positron collider
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The Large Hadron Collider at CERN

Proton-proton collider installed into the 27km circumference LEP ring at
CERN in Geneva Switzerland:
» pp centre-of-mass energy of 14 TeV
» constituent centre-of-mass energies ~ 1-2 TeV
> luminosity of 1033 cms (low luminosity)
1034 cm2s1 (high luminosity)

» proton bunch spacing of 25 ns (40MHz collision frequency)

Physics goals: whatever TeV-scale physics is there to be discovered

* Higgs boson » Extended gauge theories
e Supersymmetry e Compositeness
e Extra dimensions e Low-scale gravity
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CERN Aerial View
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LHC Accelerator Chain
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The CERN Large Hadron Collider
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Quadrupole Magnets from Canada
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The proton-proton total cross-section
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U 2 Inelastic Cross Section for p-Air Collisions from Air Shower Experiments
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Min-Bias Events at High Luminosity (1034 cm-s1)

High event rate results
in large detector
occupancies

High charged particle

multiplicity visible in
tracking detector

ATLAS H—yy

P.Krieger, University of Toronto WNPPC'08, Banff, February 2008

19



Production cross-sections at the LHC
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Higgs Branching Fractions vs M,

Spira et al. hep-ph/9803257
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In terms of
discovery
potential, MH
matters a lot.

Low mass is
tricky due to
huge QCD
backgrounds.
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Higgs Discovery Significance at ATLAS
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LHC luminosity profile and physics reach
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Events reconstructed based on particles stable enough to be detected

f

T,p ——»
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Collider Detectors

Tracking EM Hadronic  Muon
Detector . Detector
—— Calorimeters——

L
K
Charged et, y muons
particle
momentum,  ______ Hadrons, jets----------
particle ID
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Calorimeters vs Magnetic Spectrometers

A calorimeter measures particle / jet energies via total energy deposition in
the device e.g. absorption of entire particle / jet energy through a showering
process (EM or hadronic).

Magnetic spectrometers measure particle momenta via curvature in a known
magnetic field (usually solenoidal, but also toroidal in the case of the ATLAS
muon spectrometer).

For a given design, the depth of a calorimeter capable of providing full
containment of high energy particles scales like In(E).

For a magnetic spectrometer, the resolution Ap/p, for a given detector size,

scales like sqgrt(E). Magnetic spectrometers must get larger at higher energies,
to achieve the same momentum resolution.

In ATLAS, most of the detector volume is occupied by the muon spectrometer.
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The ATLAS Detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

\

Toroid Magnets

\ N N
Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

P.Krieger, University of Toronto
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ATLAS Event Slice

Muon
Spectrometer

Hadronic
Calorimeter

The dashed tracks
are invisible to
the detector

Electromagnetic
Calorimeter

Solenoid magnet
Transition
Radiation
Tracking Tracker
Pixel/SCT
detector
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The ATLAS Canada Collaboration

Alberta
Carleton
Montreal
McGill Simon
Fraser Regina
Toronto
TRIUMF

UBC

Victoria

York

Focus has been on LAr Calorimetry
Four NSERC funded projects:

Hadronic Endcap Calorimeter
Hadronic Forward Calorimeter

Endcap Signal Cryogenic Feedthroughs

Front-End Board Electronics

42 University/Lab Physicists
150 People, including engineers,
technicians and students

20 Undergraduate students
60 Graduate Students
20 Postdocs

Other Important Activities
High Level Trigger

ATLAS Computing

TRT Electronics

ATLAS Upgrades (SLHC)
Beam Conditions Monitors
Beam Testing / Analysis
Calorimeter Calibration
Physics Studies / Analysis
Radiation Hardness Studies
Pixel Testing and Assembly
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ATLAS
Collaboration

(Status October 2007)

37 Countries

167 Institutions
2000 Scientific Authors total
(1600 with a PhD)

CANADA: ~ 4% of collaboration

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku,
IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, Bogota, Bologna, Bonn, Boston,
Brandeis, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, Casablanca/Rabat, CERN,
Chinese Cluster, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow,
DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, Goéttingen, LPSC
Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima, Hiroshima IT, Indiana, Innsbruck, lowa SU, Irvine UC,
Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London,
RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, Mannheim, CPPM Marseille, Massachusetts, MIT,
Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, FIAN Moscow, ITEP
Moscow, MEPhI Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York,
Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI
and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Regina, Ritsumeikan, UFRJ
Rio de Janeiro, Rome |, Rome Il, Rome lll, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu,
Siegen, Simon Fraser Burnaby, SLAC, Southern Methodist Dallas, NPI Petersburg, Stockholm, KTH Stockholm, Stony Brook,
Sydney, AS Taipei, Thilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Toronto, TRIUMF, Tsukuba, Tufts, Udine/ICTP,
Uppsala, Urbana Ul, Valencia, UBC Vancouver, Victoria, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin,
Wauppertal, Yale, Yerevan




Canadian Contributions to ATLAS LAr Calorimeter

Hadronic Endcap

|nLePa

Calorimeter Wheels | Cryogenic
o Fr g feedthroughs
Electromagnetic Endcap
Calorimeter Wheels N
N \“\\ .."p._ Llugs
N \\‘\\ Q(L\;l%
Presempler o r{ Hadronic Forward
S S Calorimeter Modules

~.
~.
~.
.
.
.
~

Electromagnetic Forward
Calorimeter Module

warm VBSSBL

COLd VBSSBL

coohnq pipes

S|qnaL Feedthrouqh

Liquid Argon
Front-End Electronics
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Insertion of the Forward Calorimeter
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_The ATLAS Forward Calorimeter
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The ATLAS Cavern, June 2003

UX15 ulxie SatJunt14 00:30:01 2
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The ATLAS Cavern June 2004

X158 Jura Mon Jun 7 19:00:02 2004
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P.Krieger, University of Toronto
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ATLAS Detector (Endcap Calorimeter Out)
vr“ "’\\ 1\\‘ 7 ' — ﬂ \‘#
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Muon Big Wheel Installation
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Muon System Installation
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P.Krieger, University of Toronto

I\/Iu’on Chambers
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The ATLAS Inner Detector

) . Barrel SCT
Forward SCT / (R =1070mm

TRT

sor+ R = 443mm [
R =371mm [

LR =299mm

SCT

Pixel Detectors

{R =122.5mm Pixels
Pixels { R = 88.5mm
R=50.5mm‘
R =0mm

* Detector components installed in 4 steps

 Barrel SCT + TRT

e 2 ENnd-Caps SCT + TRT

* Full pixel detector + Be beam pipe
P.Krieger, University of Toronto WNPPC'08, Banff, February 2008
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Inner Detector Barrel Installed in ATLAS

P.Krieger, University of Toronto WNPPC'08, Banff, February 2008
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Inner Detector Endcap Installation May 2007
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ATLAS Commissioning: Timeline

1: Combined

Beam Tests 2: petector Installation,

Cosmic Ray Commissioning
7 2.5: Spring '08: Global cosmic run
~ 3: Single beam

4: First LHC collisions

5: First Physics

2004 2005 2006 2007
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Running ATLAS: Main Control Roo
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TETRARR
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Commissioning with Cosmic Ray Events

ATLAS Atlantis eventM4 run:i20720 ev:16824305 geometry: <default
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Real pulse shape PMT . Real pulse shape PMT _,

TileCal

J \

aa

SRR S

Ilo

O] OO
L1 SO
[macesy

No Missing Er

Lad
Height of tallest tower

Celis: 1 CeV
Trigger Decision NJA

Constam (1-2)

Real pulse shape

OC count

Real pulse shape PMT... Real pulse shape PMI..

TileCal

bunch crossing




LHC Cooldown Status February 2008

Presented during the
most recent ATLAS

T week, which took place

J00K-B0K B0K-20K 20K-4.5K  4.5K-1.9K
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A m 8 CMS Jl
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POINT 2 .
X = SECTOR 78

ALICE

POINT 8
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Current LHC Schedule

Power limitation

o]
o
S
] Flushing [] warm up LHC cold May 15t
I Cool-down B Powering Tests
[ ] Inner triplets interconnections \CV maintenance
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Summary

The LHC Experimental programme represents the largest
International scientific collaboration even undertaken.

The work of thousands of people over the past two decades is
about to come to fruition.

This promised to be an exciting and rewarding period, and one
that will likely set the direction taken in both the experimental
and theoretical sides of the fields for the next few decades.
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