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Abstract

The goal of this project was to study two dimensional entropically driven separation of two

long beaded chains. This was accomplished by placing two brass chains initially mixed in

a long 2D slot and observing their behavior as the slot is shaken. The motivation for this

was to create an experimental analog for the separation of chromosomes during bacterial

cell division. The two main factors that were tested to see how they affect chain separation

were the confinement of the chains and the asymmetry of the container they were held in.

It was predicted from theory and past simulations that increasing chain confinement and

container asymmetry would increase the strength of the chain separation. Three methods of

analysis were performed on the experimental data. A method that measured the length of

the region that the two chains were overlapping each other, as well as dividing the container

into 2D and 1D grids and counting the density of beads in each bin. An surprising result

was the formation of tight spiral conformations, which were not expected to be formed in

the frequency/acceleration regime we were testing in. These spirals occurred in ∼ 40% of

all chain configurations observed and polluted the data as their ratcheting motion was not

the entropically driven forces we wished to study. No discernible trends were observed with

regards to the effect of confinement or container geometry on chain separation.
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Chapter 1

Introduction

The experiment discussed in this report primarily concerns the two dimensional separation

of two long beaded chains initially mixed in a confining container as they are driven on a

shaking table. The primary focus was to treat these chains as an analog for chromosome

separation in bacterial cells, though the scope widened to include investigation into less

biologically motivated measures of granular chain separation.

1.1 Motivation

The original motivation for this report was to provide experimental confirmation for simu-

lations regarding the separation of long polymer chains under confined conditions. These

simulations were themselves motivated by the idea of explaining the separation of bacterial

chromosomes during cell division, with entropy proposed as the primary driver of separation.

Cell replication is the fundamental process from which all life continues to grow and

expand. One of the most important processes that occur during cell division is the replica-

tion and segregation of chromosomes; the organized structure that houses the cells genetic

instructions of the cell. Understanding how chromosomes are copied and organized during

the cell cycle is of critical importance, as many harmful genetic mutations may occur if

this process contains errors, whether they be caused by random chance or harmful outside

forces. This process is well understood in eukaryotic cells, but the method by which this is

accomplished is still under investigation for prokaryotes (such as bacteria like E. Coli).
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1.2 Literature Review

In Eukaryotic cells (complex cells with a nucleus and other membrane bound organelles)

the process of chromosome separation is well understood. In these cells the chromosomes

are packed into nucleosomes around positively charged histone proteins, and after their

replication they are pulled to the poles of the cell by a dedicated cytoskeletal apparatus [1].

However these tools of eukaryotic cell division do not appear in simpler prokaryotic cells. In

fact, the mechanism behind the segregation of the replicated chromosomes in prokaryotes

is still a mysterious and highly debated topic.

Several theories have been put forward in the past to explain how bacterial chromosome

separation is accomplished. Some of these ideas include chromosomes being pulled apart

by the expanding cell wall [2], or the chromosomes being exuded to the sides during their

creation by a replisome held stationary in the cells center [3], while a similar idea claimed

the chromosomes were repelled by RNA polymerase in the cell center [4]. However, all these

ideas were eventually disproved for various reasons (see [5], [6], and [7] respectively).

In 2006 Jun and Mulder presented a model that used entropic forces as a means to drive

spontaneous segregation [8]. In this model the chromosomes are considered to be polymer

chains that drift apart towards the less crowded space near the cell walls to maximize their

conformational entropy and minimize the free energy contained in the system.

1.3 Entropy of Mixing

An excellent review of entropic effects in systems of mixing particles compared to mixing

chains is presented by Jun and Write [9]. The classic example of maximizing the entropy

of a system is that of a box containing two different species of particles initially separated

by a barrier. As the barrier is removed the particles readily mix, as this is the result with

the highest entropy due to there being many more mixed configurations than unmixed

configurations. In contrast, we can investigate the case of a box with two long linear chains

initially mixed together. Unlike the particle case, entropic forces instead cause these two

chains to become unmixed. To understand this result imagine placing a string on a flat

surface in a tightly confined box and then attempt to place another string in the same box
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without the chains crossing. It is much more difficult to find overlapping (but not crossing)

configurations, than it is if both chains simply occupy one corner of the box instead of

being mixed. In other words overlapping chains have less degrees of freedom, and thus less

conformational entropy than separated chains. Similar to the particle example, the chains

are more likely to end up in the state that offers the most possible configurations (that

being the unmixed state).

1.3.1 Free Energy of Mixing

We can get an idea of the kinds of factors that affect separation by investigating the free

energy of a mixed system. Flory and Krigbaum [10] originally presented the idea that

the free energy of overlapping two chains scales as F ∼ N1/5kBT >> kBT , where N is

the number of monomers in each chain and kB is Boltzmanns constant. This expression

indicates that long chains (N � 1) should behave as mutually impenetrable hard spheres

that strongly resist mixing. However, Grosberg et al. [11] eventually reevaluated this

result and instead came up with the expression for the free energy cost as F ∼ kBT ,

where we can see the cost is both independent of chain length and rather weak, suggesting

that chromosomes should have no strong preference to unmix. Both of these expressions,

however, are for the case of long polymer chains in a dilute solution with no confinement,

which is not applicable to a model of bacterial geometry (which is highly confined), or this

experiment.

The more relevant scenario to bacterial cells is chains confined in a long cylinder (3D)

or slot (2D) with a high level of confinement. Confinement is measured by the ratio of the

radius of gyration of the polymer over the diameter of the container (Rg/D). Rg is the

radius of the area the polymer would naturally occupy if it was not confined. In this case

the free energy cost of mixing is F ∼ D−1/vNkBT where v ∼= 3/5 [8]. As we can see, this

result has a strong dependence on both the length of the chains and on how confined they

are. Therefore long chains in very strong confinement have the highest free energy cost

for overlapping and thus most readily segregate from each other. It should also be noted

that cyclical chromosomes, like those present in bacteria, segregate more readily than linear

polymers [12]. It is, however, much easier to perform experiments with linear rather than
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looped chains, and if linear chains are found to separate it should follow that loops will as

well, as the separation effect is greater.

1.4 Effect of Container Symmetry on Segregation

Once we know that confinement should have a strong effect on how the polymers separate,

we can investigate how the container shape could also effect it. In particular Jacobsen

[13] purports that container asymmetry plays an important role in long chain separation.

He studied computer simulations of two self-avoiding chains in three-dimensionally lattices

with the shape L×L×rL, where r is the scaling factor (high r gives high asymmetry, r = 1

is perfectly symmetric). The simulation consisted of two long chains whose monomers

occupied nearly every lattice site at all times, and a Monte Carlo simulation was performed

to determine the statistical likelihood of different configurations occurring. It was found

that separation of the chains did occur with all lattice shapes, though very weakly in the

symmetric case. The more asymmetric the container became the stronger the separation

became (though perfect separation did not occur, even at the limit of r = 10). This led us

to experimentally study how changing the shaking tables slot diameter, but not its length

(thus changing the slots symmetry) affects the chain separation.
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Chapter 2

Experiment

The experiment involves shaking initially mixed beaded chains in a two dimensional slot

as a scaled up, physical analog for the separation of chromosomes in bacteria during cell

division. As discussed in the introduction the current theory on how chromosomes separate

is based on entropy, so this experiment focuses on how entropy may drive separation of two

chains in a two dimensional slot with a shaking table taking the place of random thermal

motion in bacterial cells. We shake two initially mixed chains for long times over a range of

parameters, and observing how these perimeters affect the separation of these chains. The

chains used are common brass beaded chain (commonly used for things like light bulb pull

switches) purchased from McMaster-Carr. Originally multiple bead sizes were planned to

be tested, but due to time constraints only chain with 0.237cm bead diameter were tested.

2.1 Apparatus

The primary piece of the apparatus is a 25.4cm x 25.4cm aluminum plate that has been

anodized black to provide contrast for the beaded chain. This plate has four 3.2cm high walls

that have been machined with long horizontal slots to allow the placement of adjustable

internal walls. These internal walls can be moved around to obtain any slot size we desire

(for example 7.6cm x 25.4cm). The plate and walls can be viewed in Figure 2.1.

The plate is driven by a Model ET-140 Electrodynamic Shaker powered by a Model

PA-141 Power Amplifier purchased from Labworks Inc. The shaker has a 1” peak-to-peak
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Figure 2.1: Anodized aluminum plate with adjustable internal walls.

maximum displacement, a maximum sine force output of 100 lbf, and a frequency range of

DC to 6.5 kHz providing more than enough power and versatility for our needs. To control

the amplitude and frequency of the shaker it is connected to a Agilent 33120A Waveform

Generator. Measurements of the acceleration experienced by the plate and load were gath-

ered using a PCB Piezotronics Model 356B08 Accelerometer connected to a computer with

a National Instruments NI SCXI-1303 control module.

To analyze the chains as they are shaken a Canon Rebel T2i was attached to a metal

frame ∼0.7m above the plate. Canon’s commercial EOS camera control program is used

to set the camera to take a picture every 5 seconds. Uniform illumination is provided by

an array of white LEDs circled around the camera lens projecting downwards towards the

plate. The camera and LED array is shown in Figure 2.2.

The chain used consisted of many hollow brass spheres attached with thin rods. The

spherical beads were 0.237 ± 0.001cm in diameter, while the rod diameter was 0.061 ±

0.002cm. The beads were permitted by the rods to move anywhere from 1 to 1.37 bead

diameters apart (measured center to center). The smallest circle the beads are able to form

consisted of 8 beads (giving a persistence length of 2.5cm), with the rods forming a 40◦

angle to each other.

A major obstacle that was encountered with the shaker system was small but noticeable

horizontal movements of the shaking plate when driven in the vertical direction. This was
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Figure 2.2: Canon Rebel T2i and LED array used to capture images of shaking chains.

caused by the weight of the load not being perfectly distributed across the plate which

would caused the shaker to buck slightly to the side with more weight during its throw

cycle. This forced even more material to move towards the uneven side of the plate creating

a positive feedback loop that increases this undesired horizontal motion until all of the load

has shifted to the uneven side. To prevent this from occurring we installed a linear air

bearing purchased from New Way Air Bearings. The plate was attached to a peg which

was machined to only fit through a vertical square slot when compressed air is supplied

as a lubricant. The air bearing slot was attached to a heavy aluminum table to prevent

movement, so the plate was unable to deviate from the vertical motion. To further increase

the stabilizing effects of the air bearing, the plate/peg was connected to the driving shaker

with a thin (∼ 0.11cm diameter) piece of steel piano wire rather than a rigid piece of metal.

This was done to prevent any horizontal motions of the shaker translating to the plate, as

the piano wire could bend instead of translating this motion. A schematic of the complete

apparatus is displayed in Figure 2.3

2.2 Run Preparation

As mentioned above, the chains we used are beaded brass chain with a bead diameter of

0.237cm (as seen in Figure 2.4). Originally we planned to use two different kinds of chain

in the same experiment (brass and nickel) to make it easier to visually distinguish between

the two chains used in a particular run. However, it was found that the properties of the
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Figure 2.3: Schematic of the complete apparatus.

different chains were too dissimilar to be a good analog for the bacterial case where the

separating chromosomes are identical. After experimenting with various alternatives we

settled on using brass for both chains, but coloured one chain blue and the other red.

Figure 2.4: Simple brass beaded chain used.

When a particular length of chain is required for a run, two lengths of this chain (one to

become red, the other blue for a single run) are cut to length. Each chain is then coloured

using felt tip permanent markers twice to ensure an even coating. If shaken at this point the

colouring very quickly rubs off due to the vigorous motion, so two layers of clear varathane

are applied over the colouring. This allows the chains to last between one to two hours

of shaking before enough colour is lost that they are no longer distinguishable. Using this

method we ensure that the chains have the same statistical properties, namely radius of

gyration (Rg) as seen in Figure 2.5. To determine Rg we cut several lengths of chain ranging

from 5 to 23 cm and individually placed them on the open plate (no slot). We proceeded
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to record them being shaken at the chosen frequency. We then analyzed these images to

determine each chain lengths Rg according to the following formula :

R2
g =

1
2N2

N∑
n=1

〈(Rn −R)2〉

Where N is the number of beads that comprise the chain, Rn is the location of the nth

bead and R is the location of the chain’s center of mass [14]. Rg of a chain of arbitrary

length can be extrapolated from this data using either of the following formulas:

Rg/d = 8.5 ∗N0.29 − 14.2

or

Rg = 2.6 ∗ L0.3 − 3.1

where L is the length of the chain in cm and d is the diameter of the beads.

Figure 2.5: Determining the radius of gyration.

Once the chains is prepared they are placed into the slot size of our choosing in an
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initially mixed state like the example shown in Figure 2.6. The appropriate shaking fre-

quency and amplitude are selected and the shaking of the chains is recorded by the camera

until the colour has worn off the chains. Initially our experiment operated at 60Hz, but for

reasons discussed in a later section this was changed to 20Hz. When selecting the operating

acceleration the plate and load would experience it was desirable to give as much energy as

possible into the system so the chains could explore all possible configurations. However,

since this was intended to be a two dimensional experiment, we did not want any chains

crossing to occur during the shaking. Therefore this provided an upper limit to how much

acceleration they could experience. It was found that an acceleration of 2.35 g’s was the

highest acceleration that did not have a significant amount of crossings occurring (random

crossing did happen infrequently, but they also would often uncross themselves eventually).

Figure 2.6: Typical starting conditions for an experimental run.
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Chapter 3

Analysis

This chapter is primarily concerned with explaining how specific types of analysis were

approached and accomplished, the results of which will be covered in the following chapter

3.1 Image Analysis

A typical run lasts between 1.5 to 2 hours, with around 1000 to 1500 pictures taken 5 seconds

apart. These pictures are loaded into MATLAB for analysis, with the first step being finding

the location of all the beads of each chain. This can be quite computationally expensive,

especially as chains grow longer and contain more beads to locate. With long chains (ex. N

= 2000) it can take up to 3 minutes to analyze a single picture. In the interest of time every

5th picture is analyzed in most runs, leading to 25 seconds of shaking time between each

data point. Initially it is very easy to distinguish between the red and blue chains based on

their colours, but as a run goes on these colours wear down significantly. Since the analysis

is automated for large batches of pictures it is important to set conditions that will correctly

identify which chain a particular bead comes from for the entire run. This is accomplished

by noticing that though the colours of the beads fade, the ratios of the intensities of these

colours does not change quite as rapidly. To find the location of the beads in the red chain

we therefore subtract some of the blue channel from the red channel of the image data, then

set an appropriate threshold that lets the red beads pass but background elements (or the

blue beads) do not. It is then trivial to find the center of all the elements that survived the
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thresholding. The same is done for the blue chain by subtracting some red channel from

the blue channel of the image. This process is laid out in Figure 3.1.

Figure 3.1: The process of locating the coloured beads on each chain. (i) Original Picture,
(ii) Image thresholded to allow above a certain blue-red value (finding the blue beads), (iii)
Predicted location of each colour bead overlaid on greyscale original image.

As is visible in Figure 3.1, not every bead is successfully located in all pictures. In order

to ensure no beads of the wrong colour are counted as their opposite, the threshold value

must be rather strict. This leads to some beads not being counted at all if there colour wears

off too fast or in the wrong way. It is much better for some beads to not be counted than

counting a bead as the wrong colour so this was considered acceptable. For an unknown

reason the blue colour seemed to wear off faster, so the number of uncounted blue beads

was generally higher than the uncounted red beads. As expected the number of uncounted
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beads increases the longer the chains are shaken as they are worn down. On average, the

percentage of beads that are correctly counted is as follows:

CountedRed = 88± 10%

CountedBlue = 79± 11%

3.2 Data Analysis

Once a picture is analyzed the location of each bead is stored for later analysis by one of

the following methods to determine the extent of chain separation.

3.2.1 Overlap Method

This method is the closest analog to the biological case we originally set out to experimen-

tally replicate, and was inspired by a recent 2012 paper by Jung et al. [15]. The main idea

is to determine the fractional overlap distance of the two chains; meaning what percentage

of their length is in an overlapping region with the other chain. As illustrated in Figure

3.2, the overlap region λ is measured along the length of the slot (hereby referred to as the

z direction) where the two chains occupy the same z coordinates. More specifically λ is

measured from the farthest blue bead in the region occupied by the red beads to the farthest

red bead in the region occupied by the blue beads. Recall that this method is attempting

to emulate the biological scenario of chromosome separation in cell division. Biologically

it is important for the chromosomes to be separate at opposite ends of the cell, so even

one monomer overlapping with the other chromosome would result in replication failure

when the cell is cleaved in half at the end of the separation cycle. Thus this method is

only concerned with how separated the chains are in the z-direction. The degree of mixing,

which is the primary means we will use to discuss how the chains have separated, is the

overlap region λ divided by the length L of z directional space occupied by the “shorter

chain” (meaning the chain that occupies less space in the z-direction), λ/L.

The reason for defining L as the z-directional space occupied by the shorter of the two

chains is show by an example in Figure 3.3. A natural thought would be to set L as the

length of the region occupied by the chains in general (eg the farthest beads, regardless
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Figure 3.2: Illustrating how the overlap region λ and chain length scale L are determined.

of colour, at each end as the borders of L), but this would cause problems with how we

interpret what is mixed or separated. In the example the overlap region is the entirety of

the space occupied by the red chain as it is entirely overlapping in the z direction with

the blue chain. If we choose L to be the entire region occupied by both chains we can see

that λ/L ∼= 0.5, when in reality it should be measured at completely mixed (λ/L = 1).

Measuring L to be the area occupied by the chain taking up less space in z does in fact fix

this problem and gives the correct degree of mixing of 1. This method is computationally

rather simple as it only requires a program to locate the farthest beads of each type that

occupy overlapping z coordinates.

Figure 3.3: Example chain overlap.

3.2.2 2-Dimensional Binning

We may not wish to only analyze the data taken with the biological case in mind, but

instead study it purely as the separation of two linear granular chains. One possible method

of determining the degree to which the chains have separated is to divide the slot into a 2
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dimensional grid and count how many of each colour bead are in each box (or bin). This

method has the property of measuring separation on the bases of how bunched together

each chain becomes with itself at the exclusion of the other chain. Once we know how many

of each bead are in each bin we multiply the number of red beads in the bin by the number

of blue beads in the bin. The idea is that if the box is only filled with one bead type it

would correspond to a completely separated bin; and multiplying the number of each type

of bead in that bin would be some number multiplied by zero, which would in turn give

that bin a mixing factor of 0. However, if there is at least one of each bead in a specific bin

that bin is considered at least partially mixed, and the more of each bead type in the bin

the more mixed it would be. Multiplying the number of beads together in this case would

give a non-zero value that increases along with increases in the number of beads of each

type in the bin, which matches our interpretation of the bin becoming more mixed. This

value also favours equal numbers of each type of beads over a large number of one bead type

with a small number of the other. For example, if there is 9 blue beads with 1 red bead the

count would read a value of 9, but if there are 5 beads of each type the count would give a

value of 25. This is desired as 5 of each type is much more mixed than 9 and 1, so it fits

that it gives a higher value. An example of this method is given for a mixed and relatively

unmixed configuration of beads in Figure 3.4 and 3.5 respectively. You can see that when

the chains seem more mixed there are many more non-zero bins and the bins have higher

values in general.

The actual measure of separation is found by taking the sum of each of these bins and

normalizing them so completely unmixed is found to be 0 while uniformly mixed is found

to be 1. This normalization is simply the number of bins measured over (refereed to as B)

divided by the products of the total number of red and blue beads in the entire picture.

The degree of mixing is therefore calculated as :

Degree of Mixing =
B

NredNblue

∑
i=1

nredi
nbluei

Where N is the total number of a particular colour of bead in the entire picture, and

ni is the amount of a particular colour of bead in the ith bin. It should be noted that a
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Figure 3.4: Example of 2D binning on a mixed state.

Figure 3.5: Example of 2D binning on a relatively unmixed state.

mixing value of 1 is given when the chains are perfectly mixed across the entire slot, but

if they become entangled in each other very tightly and occupy only a small portion of

the slot the mixing value from this formula can reach values greater than 1. While this

is completely incompatible with the biological case, as a chain completely surrounded by
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the other chain may be considered separated in this method, it still gives insight into the

physics of separating chains in two dimensions.

3.2.3 1-Dimensional Binning

Similarly, we can divide the slot into a one dimensional grid in the z direction. This method

is somewhere in-between the overlap and two-dimensional binning method. It is concerned

with the separation of the chains along the length of the slot (like the overlap method and

real biological case), but has the advantage that it also takes into account how much material

is overlapping instead of just the size of the overlap region. While in the biological case

even a small amount of overlap during cell division may cause serious genetic consequences,

if we are just concerned with the separation of polymers or chains as a whole than a small

amount of material overlapping should not be cause to claim the chains are completely

mixed.

Figure 3.6: Example of 1D binning on a mixed state.

Just like the two-dimensional case, we divide the slot into bins and count the number

of each colour bead in each bin. We multiply the number of beads in the bin together, sum

over all the bins and normalize by the total number of beads in the box and the number

of bins used. An example of a mixed and unmixed picture being analyzed in this way can
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Figure 3.7: Example of 1D binning on a relatively unmixed state.

be seen in Figures 3.6 and 3.7 respectively. The degree of mixing is the same as for the

2-dimensional case, but summed along only one dimension :

Degree of Mixing =
B

NredNblue

∑
i=1

nredi
nbluei

3.3 Spirals

A major unexpected obstacle we encountered was the formation of tight spirals formed by

the chains, as shown in Figure 3.8.

The forming of these spirals has been documented before by Ecke et al [16], though it

was a surprise they appeared in this experiment. In the experiment performed by Ecke

et al. spirals were found to only form in a very tight range of parameters, these being

dimensionless accelerations (Γ = a/g where a is the acceleration of the plate and g is

gravitational acceleration) of 1.7 ≤ Γ ≤ 1.85, and a shaking frequency f of 10 ≤ f ≤ 25 Hz.

As mentioned in chapter 2 our experiment was originally performed with a shaking

frequency of 60 Hz, but the formation of spirals were still found to be fairly common even

though this was well outside of the expected region where this should occur. This caused

us to look for a frequency region where these spirals did not occur, but this was not found.
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Figure 3.8: Example of a tight spiral forming from the blue chain.

It should be noted we did not perform a comprehensive study concerning which frequency

spirals will form at, as our shaker set up had only a few frequencies that did not cause some

very loud resonance with the apparatus. We eventually settled on a shaking frequency of 20

Hz, with a dimensionless acceleration of Γ = 2.35, as a good operating range even though

spirals still formed. These spirals presented a problem because while spiral formation often

resulted in chain separation, we felt that these separations were not the entropic type of

separations we were interested in, but rather like the spirals acting as a ratchet pulling

the chain into itself (possibly away from the other chain). It was therefore important to

find a method to separate pictures that included spirals from those that did not. This also

allowed us to briefly look at others factors, such as chain confinement, that may affect spiral

formation by looking at which conditions resulted in the highest fraction of pictures with

spirals vs ones without.

Like all the other forms of analysis, determining if there was a spiral in a particular

picture needed to be automated due to the large number of pictures to be analyzed. The

overall idea was that spirals would have a much higher bead density than other arrange-

ments of the chain, so determining some threshold chain density should allow us to sort the

pictures. This was complicated by the fact that a small part of a long chain may form a

small spiral while the rest of the chain remained unspiraled, which we would not want to

include in the ’spiral’ category. We were therefore looking for a specific fraction of the total
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Figure 3.9: Classifying spiral pictures. (i) Though a spiral has formed in the highlighted
region the vast majority of the chain is in a non-spiraled state, thus the picture is classified
as containing no spirals. (ii) A large fraction of the red chain is part of a spiral in the
highlighted region, so the picture is thus considered to contain a spiral.

bead count of the chain packed into some specific density. An example of problem this is

shown in Figure 3.9.

Each picture was formed into a two dimensional grid and the amount of beads in each

bin were counted (like the 2-D binning method). If greater than a specific fraction of the

chains beads (for example 30%) are located in any one bin the chain is counted as being in

a spiral. If either chain is in a spiral formation the picture is counted in the spiral category.

Another difficulty was choosing a grid size that would be useful for all the conditions we

were studying. Too small of a bin and we would not be able to reach the desired fraction

of beads for long chains in the bin. Too large and small chains could be entirely packed in

a single bin even if they are not spiraled. It was decided that instead of keeping the size of

the bins constant across all the different slot sizes and changing the number of bins present,

we would keep the number of bins constant and let the size of the bins grow as the slot did.

This was acceptable as slot size was proportional to the length of the chain used, so wide

slots would have large bins that worked for long chains, and likewise for small slots.
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Chapter 4

Results and Discussion

In this chapter, we will discuss results gained from analyzing each experimental run using

the methods described in chapter 3. The two main factors we were interested in measuring

were how confinement and symmetry affect chain separation. To study how confinement

affects separation we kept the slot size constant at 7.6cm X 25.4cm while changing the

length of the chain. Table 4.1 displays pertinent information about the lengths of chain

used.

Chain Length (cm) N Rg (cm) Rg/D

76 232 6.43 0.846
96 292 7.12 0.937

140 428 8.35 1.099
176 538 9.16 1.205
209 638 9.81 1.291
256 782 10.62 1.397

Table 4.1: Information on the chains used to measure the effects of confinement in a fixed
slot size 7.6cm X 25.4cm (ie D = 7.6cm)

To measure how symmetry affects separation we intended to keep the level of confine-

ment constant as we changed the size of the slot. For example if we had a measurement

for a chain with Rg = 7.46cm and slot width of D = 5.8cm (giving Rg/D = 1.29), we

could increase the chain length to achieve a Rg = 9.81cm while increasing the slot size to

D = 7.6cm (Rg/D = 1.29). This keeps confinement constant while changing the symmetry

factor α = D/SL (where SL is the length of the slot, 25.4 cm).
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The experimental runs performed to gather the data for this analysis were done using

incorrect assumptions of the Rg values for the chains used. Due to the incorrect Rg assump-

tions we used chains that we thought would give us constant Rg/D, but in fact the Rg of

the chains we used for the more symmetric slot geometries (longer chains) were significantly

less than we thought. This lead to a decrease in Rg/D as we increased α = D/SL. We

attempted to measure the effect of symmetry under under two cases, one where Rg/D was

relatively low and the other when it was relatively high. Information for these two cases

can be viewed in Table 4.2 and 4.3 respectively.

Chain Length (cm) N Rg (cm) D (cm) Rg/D α

107 327 7.46 5.8 1.29 0.228
140 428 8.35 7.6 1.10 0.299
209 638 9.81 11 0.89 0.433
287 876 11.1 15.6 0.71 0.614
467 1426 13.34 25.4 0.53 1

Table 4.2: Information on the chains used to measure the effects of symmetry with relatively
low confinement. Note Rg/D was intended to be held constant as α was increased.

Chain Length (cm) N Rg (cm) D (cm) Rg/D α

160 489 8.82 5.8 1.52 0.228
209 638 9.81 7.6 1.29 0.299
306 934 11.38 11 1.03 0.433
434 1325 12.98 15.6 0.83 0.614
709 2164 15.53 25.4 0.61 1

Table 4.3: Information on the chains used to measure the effects of symmetry with relatively
high confinement.

4.1 Spirals

As mentioned in chapter 3, the formation of tight spirals was an unexpected occurrence, and

it was unclear how these spirals would effect our results. To check under what conditions

spirals occurred most frequently we used the method described in section 3.3 to sort the

pictures in spiraled/non-spiraled categories. We then measured what fraction of all the

pictures taken for a specific configuration contained spirals, the results of which are displayed

in Figures 4.1 and 4.2.
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Figure 4.1: The fraction of time each configuration spent with at least one chain in a spiral
conformation measured as a function of confinement (slot width fixed at 7.6cm).

Figure 4.2: The fraction of time each configuration spent with at least one chain in a spiral
conformation measured as a function of container symmetry.

As can be seen, there does not appear to be any discernible trend regarding spiral

formation either as a function of chain confinement or container symmetry. We observe
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that the fraction of data taken that contains spirals can range from nearly all to virtually

none. It should be noted that once a spiral forms it generally stays in that conformation for

a long period of time, if not the entire length of the run as shown in Figure 4.3. This may be

the reason for the high (∼ 75%) percentage of spirals occupying in the least confined state

in Figure 4.1, as opposed to the near zero fraction of spirals occurring at Rg = 1.29. It may

be that the runs at low confinement just happened to enter the spiral state earlier in their

runs and stayed that way, while the high confinement case just happened to not enter the

state until late in the runs performed. The main issue here, which shall be discussed more

in depth in the discussion section of this chapter, is the relative lack of data. While each

data point on these plots is formed from the measurement of between 800 to 1200 pictures

taken 25 seconds apart (that is to say measuring between 6 and 8 hours of shaking per slot

and chain configuration), these points were all gathered from only 4 to 6 long runs. This

means that if a run enters the spirals state early it causes close to a quarter of all the data

measured for that configuration to be in the spiral state, which may not be an accurate

representation of the net behavior that would be observed if hundreds or thousands of runs

were performed.

Figure 4.3: Time series showing chain entering and remaining in the spiral state.
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4.2 Effects of Confinement

4.2.1 Overlap Method

Figures 4.4 and 4.5 show the effect chain confinement has on chain separation measured

using the overlap method. Figure 4.4 shows the average values of the entirety of the data

taken while 4.5 shows the averages derived only from the data where no spirals occurred.

Two important things can be gathered from these plots. The first is that there does not seem

to be any discernible trend of chain separation as a function of confinement. We observe

that, using this method, a large amount of the data points are measured as completely

mixed with a small amount of completely unmixed that lowers the average from unity

(with a very small number of transient states between these two extremes), an example

of which is provided in Figure 4.6. The primary reason for this result is that it is very

common for one chain to completely run along the slot boundaries and thus encircle the

other chain which is measured as completely mixed even if it is only a relatively small

amount of the overall chain that is doing the encircling, as shown in Figure 4.7. It should

also be noted that the most highly confined case (Rg = 1.4) is close to always being mixed

(degree of mixing = 99.5%). This is due to the chain being extremely confined and not

having sufficient room to maneuver around the container to properly explore all possible

configurations, so it would get ‘stuck’ in mixed configurations for the entirety of the run.

The second thing to note is the rather weak effect removing the pictures that contained

spirals from the pool of data for a particular configuration. In fact, on average the complete

data sets and their spiral-removed counterparts only differ from each other by ∼ 5%. This

will be a common result for the rest of the results presented in this chapter. The average

degree of mixing is 0.90± 0.06.
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Figure 4.4: Degree of separation as a function of confinement, determined by measuring the
size of the overlapping region of the two chains as a fraction of the total region occupied by
the more compact chain.

Figure 4.5: Degree of separation as a function of confinement measured with the overlap
method. Any picture with a spiral has been filtered out of this data pool.
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Figure 4.6: Typical time series of separation using overlap method.

Figure 4.7: An example of how one chain can completely encircle the other.

4.2.2 2-Dimensional Binning

As seen in figures 4.8 and 4.9 the least confined case (L = 76cm, Rg = 0.846) is very strongly

mixed, especially compared to the rest of the data. This is due to the fact that, in this case,

the two chains became and stayed tightly wrapped around one another in a relatively small

portion of the container as seen in Figure 4.10. A typical time series of the two dimensional

binning method is also shown in Figure 4.11. To better view which trend, if any, the bulk

of the data followed an inset was created in these plots that is a zoomed in view of data

excluding the least confined outlier. It is apparent that no significant trend is observed using

two dimensional binning to measure separation as a measure of confinement, with or without

the data that contains spirals is included. The difference between the measurements with
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and without the spirals included is significantly more pronounced when using this method,

at ∼ 16%, with an average degree of mixing (excluding the least confined case) is relatively

low at 0.366± 0.071.

Figure 4.8: Degree of separation as a function of confinement, measured by dividing the slot
into 2 dimensional bins. Inset: zoomed view of data excluding the least confined outlier.

Figure 4.9: Degree of separation as a function of confinement, measured by dividing the slot
into 2 dimensional bins with the spirals filtered out. Inset: zoomed view of data excluding
the least confined outlier.
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Figure 4.10: An example of the type of conformation that caused the strong outlier in
Figures 4.7 and 4.8.

Figure 4.11: Typical time series of mixing using 2D binning.

4.2.3 1-Dimensional Binning

Very similarly to the two dimensional analysis, determining the level of separation using a

one dimensional binning method is complicated by the least confined case. Once again, no

clear trend with regards to separation as a function of confinement is found when observing

the bulk of the data. The average difference between the spiraled and non-spiraled data

is relatively small at around 9%, while the average measure of the degree of mixing is

0.686 ± 0.078. A typical time series of the two dimensional binning method is also shown

in Figure 4.14.

Observing the lack of clear trends in either of the above three methods, it would appear

that there is no clear correlation between chain confinement and the degree to which these

chains will separate, at least within the scope of our data. It should be noted that we have
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Figure 4.12: Degree of separation as a function of confinement, measured by dividing the
slot into 1 dimensional bins. Inset: zoomed view of data excluding the least confined outlier.

Figure 4.13: Degree of separation as a function of confinement, measured by dividing the slot
into 1 dimensional bins with the spirals filtered out. Inset: zoomed view of data excluding
the least confined outlier.
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Figure 4.14: Typical time series of mixing using 1D binning.

covered a rather narrow range of confinements in this experiment, but it would be difficult

to achieve levels of confinement greater than Rg/D = 1.4 with a similar 2-D apparatus.

4.3 Effects of Container Symmetry

As mentioned above, the original intention of measuring the effect of container symmetry on

chain separation was to keep the level of confinement (Rg/D) constant as we varied the level

of container symmetry (α = D/SL). Unfortunately this was not accomplished as our Rg

calculations were incorrect at the time for the chain lengths being used. Instead of staying

constant while α was increased Rg instead dropped by ∼ 40% from the most asymmetric

(α = 0.228) to the most symmetric (α = 1) case. Figure 4.15 displayed the phase space

that was investigated during this phase of the experiment. Recall that both increasing α

and decreasing Rg should decrease the unmixing that occurs according to theory and past

simulations. Thus, if we were to see any trends that follow this expectation they should in

fact be reinforced by the change in Rg.
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Figure 4.15: Phase space of symmetry and confinement explored.

4.3.1 Overlap Method

Figures 4.16 and 4.17 display the results of using the overlap method to determine the

degree of separation as a function of container symmetry with all the data and with the

spiral data filtered out respectively. These plots show both the ‘low’ and ‘high’ confinement

cases for each container geometry (keeping in mind that the level of confinement is not

consistent as geometry changes). There appears to be no discoverable pattern in this data,

which has an average level of mixing of 0.884 ± 0.097. The difference between the entire

data pool and the spiral-removed pool is again low at ∼ 4%.

4.3.2 2-Dimensional Binning

Similarly Figures 4.20 and 4.21 display this same data using the two dimensional binning

method of measuring the separation. Again no visible trend is observed. The mean degree of

separation is 0.284±0.125, with a relatively high difference between the spiral and non-spiral

cases of ∼ 12% (with some configurations reaching as high as ∼ 30%).
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Figure 4.16: Degree of separation as a function of container symmetry, determined by
measuring the size of the overlapping region of the two chains as a fraction of the total
region occupied by the more compact chain.

Figure 4.17: Degree of separation as a function of container symmetry measured with the
overlap method. Any picture with a spiral has been filtered out of this data pool.
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Figure 4.18: Degree of separation as a function of container symmetry, measured by dividing
the slot into 2 dimensional bins.

Figure 4.19: Degree of separation as a function of container symmetry, measured by dividing
the slot into 2 dimensional bins with the spirals filtered out.
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4.3.3 1-Dimensional Binning

The last case we will look at is using one dimensional binning to measure the degree of

separation as a function of container symmetry. As with all other cases, no clear trend

is observed for either the high or low confinement cases. The average degree of mixing is

0.727± 0.116, with a low difference between the spiral and non spiral data of ∼ 6%.

4.4 Discussion

As we have seen, we have not observed any clear relationship between separation and

confinement or container geometry, but there are a few problems with our experimental

approach that I believe may have caused this. The first and foremost is the relative lack

of data. As mentioned before, each data point is made from an average of the analysis

of 800 to 1200 pictures (or 6 to 8 hours of shaking). At first glance this may seem like

a large amount of data from which to derive a statistical average, but there are so many

possible configurations the chains could take that 1000 samples is not nearly sufficient.

Previous computer simulations performed to investigate this phenomena have taken many

more samples to calculate their statistics, for example Jacobsen [13] took at least 30,000

samples for each configuration investigated. It is unclear if we would still observe the same

lack of trends if we were able take a similar number of samples per configuration, but this

would be difficult and time consuming to do experimentally.

Another barrier that may have prevented us from observing the chain separation that

was expected was the geometry and design of the shaking system. As mentioned above,

the formation of spirals in the chains was a significant source of frustration. We did not

expect them to be formed and we felt that even if the spirals occurred during separation, it

was possible it was the spirals ratcheting behavior that drove the separation instead of the

entropic effects we wished to study. We were very surprised that sampling only the pictures

that did not include spirals did not drastically change the measurements of separation. It

seems there are a roughly equal number of spirals that form at all degrees of mixing, which

is to say there are as many spirals that result in complete separation and complete mixing

(as well as all states in between).
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Figure 4.20: Degree of separation as a function of container symmetry, measured by dividing
the slot into 1 dimensional bins.

Figure 4.21: Degree of separation as a function of container symmetry, measured by dividing
the slot into 1 dimensional bins with the spirals filtered out.
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4.4.1 Future Work

The main barrier to taking a more appropriate number of samples is that each run of 200 or

so samples requires around a day of preparation to colour and varnish each chain. If instead

of differentiating the chains through colour it was possible to track the chains by following

their links then it would be simple to cut two lengths of chain and use them immediately

(and indefinitely as there is no colour to wear off). This would save a great deal of time and

effort, and though it was unsuccessfully attempted during this project it may be worthwhile

to investigate in the future.

Preventing spirals from forming should be a priority for any similar future projects. If

they intend to use a similar 2D slot apparatus it may be beneficial to attach smaller beads

to the surface of the plate and walls, which was successful in preventing spiral formation in

[14] by Safford. It may also be possible to find a shaking frequency that does not produce

spirals, though none were found in this project.

In an ideal world, this experiment would be performed in a long cylindrical tube (ie in

three dimensions) rather than the 2D analog of the slot. This would obviously be much

more complicated to accomplish experimentally but would be a closer analog to bacterial

cells, as well as completely eliminating the spiral problem.

4.5 Conclusion

While no appreciable insights into the validity of the theories of entropically driven polymer

separation were gained, valuable developments on the shaking system were implemented

that may be used in future shaking experiments. Though we did not observe any trends

that would support past theories and simulations on this matter, we can also not use any

of these results to weaken these theories either, primarily due to the insufficient amount

of data collected and analyzed. It is my hope that the work done on the shaker system,

and possibly the data regarding chain separation we obtained, be of use in future graduate

research.
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