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Granular surfaces tend to develop lateral ripples under the action of surface forces exerted by
rolling wheels, an effect known as washboard or corrugated road. We report the results of both
laboratory experiments and soft-particle direct numerical simulations. Above a critical speed, the
ripple pattern appears as small patches of traveling waves which eventually spread to the entire
circumference. The ripples drift slowly in the driving direction. Interesting secondary dynamics of
the saturated ripples were observed, as well as various ripple creation and destruction events. All
of these effects are captured qualitatively by 2D soft particle simulations in which a disk rolls over
a bed of poly-disperse particles in a periodic box. These simulations show that compaction and
segregation are inessential to the ripple phenomenon. We also discuss a simplified scaling model
which gives some insight into the mechanism of the instability.

PACS numbers: 45.70.Qj,45.70.-n

Ripples which spontaneously appear due to the action
of rolling wheels on unpaved roads bedevil transportation
worldwide, especially in developing countries [1]. This ef-
fect, known as corrugated or washboard road, can severely
limit the usefulness of unsurfaced roads. More generally,
the appearance of ripples on a granular surface under
tangential stress is reminiscent of other sorts of wind-
and water-driven ripples [2], and of dune formation [3].
This resemblance suggests that this problem, which is
well-discussed in the engineering literature [1, 4–8], might
benefit from the simplifications of a physics-oriented ap-
proach.

Engineering models of washboard formation range
from coupled, damped pendulum models [5, 6] to full
continuum simulations of the deformable road surface [8].
Numerous experimental studies have been undertaken,
from laboratory scale rigs [4–6] to full scale road tests [7].
In all cases, however, the engineering goal was to under-
stand all the complexities of the system and to mitigate
or eliminate the effect. In contrast, we aim to under-
stand the simplest system that exhibits washboard road
and to study it as a nonlinear, pattern forming instability.
Only a few theoretical studies of this kind have appeared
in the physics literature [9, 10]. In addition to carry-
ing out well instrumented laboratory-scale experiments,
we present here the first application of soft-particle Dis-
crete Element Method (DEM) simulations to this prob-
lem. We also present a simple theoretical treatment in
order to gain some insight into the fundamental mecha-
nism of the instability and to understand the scaling and
important dimensionless groups.

The experimental setup is shown in Fig. 1. The road
consists of a deep layer of sand arranged on the circum-
ference of a 1 m diameter rotating table. We used natu-
ral, rough sand with a grain diameter of 300 ± 100 µm
and the bed was typically 50mm deep. A 100mm diam-
eter, 20mm thick hard rubber wheel was attached to a
330mm long arm in the form of a lever. The wheel rolled

freely on the sand bed as the table rotated at a constant
speed. No torque was applied to the wheel other than
that produced by its contact with the bed. The table
was typically rotated at about 0.6Hz which corresponds
to a horizontal velocity of the wheel v ≈ 2 m/s.

A potentiometer was attached to the arm to record
its angle, and its output was digitized. Simultaneously,
a commercial laser displacement profiler[11] was used
to record the bed shape. Thus, we could measure the
wheel position and ripple shape with a vertical accuracy
of 1mm. Data acquisition was triggered by an optical
sensor fixed to the table, and several thousand vertical
positions could be measured in one table rotation. Dur-
ing a typical run, the arm inclination remained confined
between 70◦ and 90◦, so that the wheel motion was al-
most vertical. The large angle implies that the natural

FIG. 1: (Color online) Experimental setup. A bed of natural
sand is laid on the circumference of a rotating table (1-m in
diameter and rotation rate between 0.2Hz and 0.8Hz). A hard
rubber wheel attached to an arm is free to bounce and roll on
the granular bed.
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pendulum frequency of the arm plays no role, and the
wheel is merely restored by falling under its own weight.
The finite circumference of the table effectively imposes
periodic boundary conditions on the ripple pattern, so
that its wavelength is quantized since a fully developed
washboard pattern contains an integer number of ripples
around the table.

We also investigated the washboard formation in 2D
DEM simulations. The simulation considers individual
deformable disks, rotating and colliding with one an-
other, subject to contact friction and gravity [12]. We
used the following physical parameters in the simula-
tion: particle diameter 8mm, mass 0.16 g, spring con-
stant 40 kNm−1, coefficients of restitution 0.5 and fric-
tion 0.3. In the simulation, the wheel was treated like
any other disk but its density was 1/5th that of the other
disks and its diameter was 12.5 times larger. A constant
horizontal velocity v was imposed on the wheel, but it
was free to rotate and move vertically. The disks were
made slightly poly-disperse (±20% in diameter) in order
to avoid crystallisation. In order to mimic the experi-
mental setup, the simulation was made periodic in the
horizontal direction. 25 000 small disks were initialized
at random positions in the box, and then allowed to fall
under gravity to settle into the bed, resulting in a layer
20 diameters thick and 1500 diameters long. The simu-
lations were typically run for 500 passages of the wheel.

Such 2D simulations cannot be expected to reproduce
the experimental data quantitatively. The simulated
grains are softer than natural sand and idealized as spher-
ical, while the ratio of the diameter of the wheel to that
of the grains is necessarily much larger in the experi-
ment than in the simulation. In spite of these simplifi-
cations, the qualitative results of the DEM simulations
offer unique new insights into the underlying mechanisms
of the instability.

FIG. 2: (Color online) Bed profile and wheel trajectory for
typical washboard patterns obtained experimentally (a) and
numerically (b).

The wheel initially rolls smoothly on the flat granular
surface. After a few tens of passes, if the velocity is high
enough, a small localized ripple starts forming at some

position. New ripples rapidly grow from that location,
downstream from the initial position. Ripples then grow
in height and eventually spread over the whole circumfer-
ence of the table (in the experiments) or the whole length
of the periodic box (in the simulation). A typical pattern
is shown in Fig. 2 which displays both experimental and
simulation data. There is an excellent qualitative agree-
ment between the experiment and simulation.

The ripples are strongly asymmetrical with the steeper
face close to the angle of repose. Individual ripples tend
to be separated by flat regions. The height of ripples
ranges from a few mm up to 50mm as the wavelength
(or pitch) ranges from 50mm to 500mm. Fig. 2 also
shows the trajectory of the wheel. For large v, the wheel
becomes airborne near the crest of each ripple. At lower
v, however, a clear washboard pattern can form while the
wheel remains constantly in contact with the bed.

As is observed on actual roads [1], we found a critical
value of the driving velocity vc below which the bed re-
mains flat. We find experimentally that vc ≃ 1.5 ms−1, a
value quite similar to that found for real roads. The ex-
act nature of the bifurcation to the rippled state remains
unclear, however. The bed becomes extremely sensitive
to small, but finite, perturbations for v near vc, but it
is difficult to establish whether vc represents the onset
of a linear instability to infinitesimal perturbations, or
whether there is any velocity hysteresis near vc. Most
previous studies [1, 4–8] have only examined the case of
large, artificial initial perturbations and v ≫ vc.

Washboard patterns exist over a wide range of param-
eters. We varied the bed thickness, the grain size and
shape, the wheel size, shape and mass. As long as the
bed thickness was sufficient to supply enough material for
the ripples, in all cases the results were qualitatively iden-
tical. All our observations are broadly consistent with
previous engineering studies [1, 4–8], but have the ad-
vantage of a simpler suspension system and more mod-
ern instrumentation for data acquisition. Perhaps sur-
prisingly, the size and shape of the grains has no effect
whatsoever on either the wavelength or the amplitude of
the ripples. In experiments, we tried two different nat-
ural sands with d = 300 ± 100 µm and 3.0 ± 0.8 mm,
and also replaced the sand with long grain rice. In sim-
ulations, we halved the grain size and doubled the bed
thickness for the same size wheel. The ripple patterns
were identical up to small statistical fluctuations. The
mass of the wheel and its suspension strongly affects the
pattern. Heavier wheels produce larger amplitude rip-
ples with shorter wavelengths. Wheel diameter, however,
seems to be unimportant, and this was tested by also us-
ing a non-rotating square “wheel”. Varying the diameter
of the wheel, keeping its mass constant in the simula-
tion, leaves the pattern unchanged. The insensitivity of
the pattern to the wheel diameter and grain size raises
interesting questions about the scaling of the washboard
and are incorporated into the model discussed below.

We find that both the amplitude and wavelength of
the ripples grow initially. They remain roughly propor-
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FIG. 3: (Color online) An experimental space-time plot of the
vertical position of the wheel for v = 2 m s−1.

tional to one another as they evolve toward a saturated
value which scales with the kinematic length-scale v2/g.
Thus, as they spread around the table, their amplitude
and wavelength increases and merging events take place.
Fig. 3 is a typical space-time plot obtained experimen-
tally with v = 2 ms−1. Our ripples always travel for-
wards, whereas ripples on real roads, with driven wheels,
have sometimes been observed to travel in both direc-
tions [1]. Fig. 4(a) shows the ripple evolution for the run
shown in Fig. 3. As the ripple amplitude saturates, the
number of ripples drops from 14 to 7. The amplitude
increases abruptly each time a ripple disappears. As the
velocity is decreased, the ripples can split and the am-
plitude and wavelength then decreases, but this is not
always observed. Fig. 4(b) shows that the ripple drift
velocity slows significantly as the wavelength increases,
as one would expect since the volume of individual rip-
ples increases while the flux remains roughly constant.
The DEM simulation qualitatively reproduces all of the
behavior shown in Figs. 3 and 4.

Using DEM simulations, we can examine aspects of
the internal structure of the ripples which are difficult to
access experimentally. Fig. 5(a) shows that the slightly
poly-disperse grains remain well mixed inside the ripple.
This demonstrates that size segregation is not crucial to
the formation of the ripples, although it is almost cer-
tainly present on real roads [1]. Segregation nearly al-
ways occurs in granular systems with different particles
and would probably occur in the DEM simulation if they
were run for much longer, but it is peripheral to the for-
mation of ripples.

The local packing fraction of a pile can be computed
from its Voronöı tessellation. This algorithm partitions
space into cells corresponding to individual particles.
The area of each disk divided by the area of its cell can
be interpreted as a local packing fraction. This is shown

in Fig. 5(b). The grains located at the edge of the pile
(in green) have an infinitely large, open Voronöı cell for
which no packing fraction can be defined. The internal
grains show no ripple-related structure in their packing,
although the overall packing is denser than the initial
state of the simulation. Thus, we conclude that varying
compaction of the grains is also not essential to the for-
mation of ripples. This contradicts a recent model [10],

FIG. 4: (Color online) Experimental ripple dynamics from
Fig. 3. (a) Time evolution of the number of ripples (dia-
monds) and of the amplitude of the ripples (solid line). (b)
Drift velocity in mm/rotation, as a function of the number of
ripples.

in which compaction played a central role.
Fig. 5(c) shows the displacement of the grains caused

by one pass of the wheel. The configuration is the state
before the pass, and the color shows the horizontal dis-
tance those grains are about to travel. The displacement
is localized to the crest of the ripples, which move on a
static bed. Although individual particle displacements
can be relatively large (up to 12 diameters), it typically
takes 200 to 300 passes of the wheel for a ripple to travel
a distance of one wavelength.

While the dynamics of the wheel and its suspension are
simple, the behavior of granular materials is very poorly
understood. There is no continuum theory that can be re-
liably applied to this problem, though phenomenological
models exist which can be implemented with large-scale
finite-element codes [8]. On the other hand, existing sim-
plified models are either based on compaction [10], which
we have shown to be unimportant, or are on rather ad

hoc automata [9].
We now consider a model aimed at elucidating the

physical scales of the ripple problem. Stresses in a non-
cohesive material are related to inertial forces or gravi-
tational forces, so the only dimensional parameters are
the 2D bed density ρ (i.e. the 3D density multiplied
by the width of the wheel) and the acceleration due to
gravity g. The experiments and simulations show that
the particle size is not important, if it is small enough
compared to the wheel and ripples. The primary di-
mensionless parameter needed to describe the material
is its approximate angle of repose θc. If the wheel is
supported by static forces, the penetration of the wheel
into the bed is determined by its mass m, which gives
rise to a penetration length scale L1 =

√

m/ρ. There
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is a secondary dependence on the radius of the wheel
R through the ratio R/L1. The simulations show that
this dependence is very weak. The experiments with the
non-rotating square wheel, where no such length scale
is present, show that this is a secondary effect. The fi-
nal significant dimensional parameter is v, the horizontal
speed of the wheel. This gives rise to a second pene-

FIG. 5: (Color online) The internal structure of the ripples,
using DEM simulation. (a) grain size, (b) local packing frac-
tion, (c) displacement between two consecutive passes of the
wheel.

tration length scale L2 = mg/ρv2, if the wheel becomes
supported by dynamic pressure. The ratio L1/L2 be-

haves like a Froude number Fr = (v2/g)
√

ρ/m. This is
the only dimensionless group that can be formed from v,
m, g and ρ, thus it should determine the stability of the
wheel/bed interaction.

We hypothesize that the instability results from
a switch from highly dissipative, plastic behavior at
low speeds to weakly dissipative, dynamic supporting
forces at high speeds. In the absence of any special
spring/dashpot suspension, the saturated ripples involve
ballistic trajectories, so the natural length scale for the
ripple wavelength λ is the length-scale L = v2/g. Then
λ/L = fλ(Fr), where fλ is a relatively weak function of
Fr. We expect the saturated amplitude of the ripples A
to be determined by λ and the angle of repose θc, so that
A/L = fA(Fr), with fA(Fr) ∝ tan θc.

The key element of a continuum theory to describe this
system is the function for the volume flux of sand q which
will be roughly proportional to zv, where z is depth the
wheel penetrates into the sand. The flux will also depend
on the slope angle and should diverge as the surface angle
approaches the angle of repose. In addition there will be
dependence on the local dimensionless groups zg/v2 and
Ng/ρv4, where N is the normal force. The penetration

depth z will be determined by the forces acting on the
wheel. Thus, the key to an accurate theory is to correctly
model N . We propose

N =







0 z < 0
−zδρv2 z > 0, ż < 0
−zδρv2 + z2µρg z > 0, ż > 0 ,

(1)

where δ and µ are geometric factors that may depend on
z/R. This term is effective whether the wheel is moving
up or down and is conservative. The second term is com-
pletely dissipative and represents the plastic response of
the bed. Because of this strong piecewise nonlinearity,
the system cannot be treated by linear stability analy-
sis. The mean normal force balances gravity and thus
the displacement z on a flat bed will be of the order of
L1/Fr2. Thus, as Fr increases, the interaction with the
bed becomes less dissipative and the wheel can bounce
upward from the bed. It is this bounce that drives the
instability, because it allows a phase lag to develop be-
tween the volume flux q and the driving force N , leading
to a mutually reinforcing oscillation.

Washboard road will no doubt continue to annoy
drivers for as long as there are unpaved roads and wheels
to roll over them. We have re-examined this engineering
problem from the perspective of basic nonlinear physics.
We have argued that the appearance of the ripples at
a critical speed should be regarded as an instability of
the flat road. Using simplified experiments and DEM
simulations, we have shown that neither compaction nor
segregation processes are responsible for the instability,
contrary to some existing theories. Using very general di-
mensional analysis arguments, we have identified a can-
didate for the dimensionless parameter which controls
the instability. The piecewise form of the important
nonlinearity in the normal force is such that the on-
set of the instability will not be amenable to standard
linear or weakly nonlinear stability analysis techniques.
Well above onset, we experimentally observed interesting
ripple-merging and coarsening events, which are also re-
produced by the DEM simulations. We hope to use these
insights to obtain a better understanding of this fascinat-
ing example of nonlinear pattern formation in granular
media.
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