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Abstract

A theoretical electrohydrodynamic model is developed to explain the instability of a freely
suspended fluid film to electroconvection; an instability that occurs when a sufficiently large
potential is applied across it. The instability, which leads to a steady spatially periodic flow
pattern comprised of counter-rotating vortices, is found to result from the interaction of the
electric field with the surface charge density that develops on the free surfaces. A linear
stability analysis of the relevant equations is presented. We define a dimensionless control
parameter R, which is proportional to the square of the applied voltage, and find a neutral
stability boundary for this parameter as a function of the dimensionless wavenumber . The
critical values R, and k. are found from the minimum of the stability curve. From the
curvature of the neutral stability boundary at (., R.), we calculate the correlation length
& for the amplitude of the pattern. The linear growth rate 7o', which depends on another
dimensionless parameter P, is also calculated. & and 7y are coefficients in the Ginzburg-
Landau amplitude equation which describes the weakly nonlinear flow pattern near onset
in this system. Results of the analysis are compared with recent experiments on smectic A

liquid crystal films.
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I. INTRODUCTION

Nonlinear, nonequilibrium systems under constant external forcing conditions often have
macroscopic spatial structures [1]. These structures are loosely referred to as “patterns”. In

the words of A. Newell, T. Passot and J. Lega [2],

“Patterns of an almost periodic nature appear all over the place. One sees
them in cloud streets, in sand ripples on flat beaches and desert dunes, in the
morphology of plants and animals, in chemically reacting media, in boundary
layers, on weather maps, in geological formations, in interacting laser beams in
wide gainband lasers, on the surface of thin buckling shells, and in the grid scale

instabilities of numerical algorithms.”

Whereas patterns appear in an incredibly broad range of physical systems, the rigorous
study of patterns is confined to systems for which a detailed microscopic description exists.
For this reason, fluid systems are especially good candidates for the study of patterns. In
fluid systems, patterns almost always evolve from an unstructured state via an instability.
In this thesis we investigate an electroconvection instability in a freely suspended smectic
A liquid crystal film first observed by Morris et al. [3-5]. Briefly, the experiment consists of
a rectangular film of smectic A that is subjected to a voltage drop. A schematic of the film is
shown in Fig. 1. Beyond a well-defined critical voltage drop, the film (which is initially sta-
tionary) begins to flow. The flow pattern consists of pairs of vortices bearing strong resemb-
lence to Rayleigh-Bénard convection rolls. The material used was 4-4’-n-octylcyanobiphenyl
liquid crystal (8CB) which was lightly doped with tetracyanoquinodimethane (TCNQ). In
the smectic phase, the molecules are arranged in layers, each layer consisting of orientation-
ally ordered long molecules. The film is always an integer number of layers thick. Each
layer of smectic A 8CB is approximately 3.16nm thick. In smectic A, the long axis of the
molecules is normal to the layer plane. In this arrangement, smectic A exhibits two dimen-
sional (2D) fluid properties in the layer plane. Flows normal to the layer are prevented.

Furthermore, the smectic A is isotropic in the plane, and so behaves as an isotropic 2D fluid



[4]. Faetti et al. [6] have previously conducted experiments on nematic liquid crystal films
in which they observed a similar pattern forming instability. More recently, this pattern
forming instability has been observed in smectic C liquid crystal films [7]. The smectic C
phase like the smectic A phase consists of molecules arranged in layers, the long axis of
the molecules in smectic C is at a fixed tilt to the normal to the layer, unlike smectic A
where the long axis is parallel to the normal to the layer. We emphasize, that even though
experiments in freely suspended films have used liquid crystals, the mechanism presented in
this thesis is independent of the particular properties of liquid crystals.

The objective of this thesis is to elucidate the mechanism of the instability which results
in surface-driven electroconvection in a suspended fluid film. The model we present requires
that the flow is 2D, that the fluid is isotropic in 2D and is a weak conductor. The driving
process is the electric force that results from the interaction between the electric field and
the charge density that resides at the film’s free surfaces. Since our system consists of a
poorly conducting fluid, we must invariably start with the equations of fluid dynamics and
electrodynamics, in fact with the equations of electrohydrodynamics. The subject of electro-
hydrodynamics (EHD) is concerned with how electrostatic forces alter the fluid velocity of
a charged electrically conducting fluid and as a consequence the effects of the restructured
fluid velocity on the electric field.

Nonequilibrium spatial patterns can be classified according to the linear instabilities
of the detailed nonlinear system [1]. The general classification of patterns are periodic
stationary, periodic oscillatory and uniform oscillatory; we elaborate on this classification
below. The study of instabilities in fluid dynamics basically asks the question, at what
value of a certain parameter or combinations of certain parameters (which will henceforth
be referred to as the control parameter(s)) does a flow alter? The reason the flow alters
is because it is unable to sustain itself against (and hence is unstable to) fluctuations in
the flow [8]. Instabilities in fluid systems have been studied extensively, experimentally
and theoretically, in several geometries and for several flows. Typical examples include

the instabilities of parallel flows between planes (Plane Couette flow and Hagen-Poiseuille



flow [10]), Rayleigh-Bénard convection(RBC) [8], Taylor vortex flow (TVF) [8,10], Bénard-
Marangoni convection [11] and electrohydrodynamic convection in nematic liquid crystals
[11,12]. There are several methods of investigating the instabilities of fluid flows. The
best established of these is linear stability analysis in which one linearizes the governing
equations to small (infinitesimal) disturbances to the base state. Then one assumes that the
disturbance can be expressed as a linear combination of a basic set of modes. This requires
a complete set of functions in which the disturbance can be expanded. It follows that
instability to any single mode implies instability of the system [8,13]. Hence identification
of the first unstable mode (or the most unstable for a given value of the control parameter)
gives the first point of instability. In linear analysis, the geometry and boundary conditions
constrain the choice of modes, i.e. they physically constrain the solution. One further
assumes that the mode has an exponential time-dependence. Typically the nt* mode of the

disturbance can be written as
Ap(r,t) = An(r)ev"t (1)

where A, (r) satisfies the boundary conditions and is the n'* function of a complete set
of functions. If the system is infinite (we restrict ourselves exclusively to this case for
the remainder of this thesis) or periodic in at least one spatial dimension, say z in cartesian
geometry, then the modes in that dimension are periodic, and may be conveniently expanded

in Fourier modes. Eqn. 1 is then replaced by
An(r,t) = A, (y, z)e et (2)

The exponential time-dependence implies that if a particular mode is unstable then it grows
exponentially. Obviously, this is only true in the region where linearization is valid. The
nonlinear terms are important and limit the growth of the mode and hence cause the am-
plitude of the pattern to saturate. The condition for instability is then that the growth rate
v, must have a positive real part. Hence, the problem of linear stability analysis, is one of

evaluating the growth rate. With the ansatz Eqn. 2 substituted into the linearized equations



(which are by definition first order in the disturbances) results in a eigenvalue problem for
the growth rate [8]. In general, the growth rate may be complex and the resulting insta-
bility /stability is classified by the sign of the real part of the growth rate and the presence
or absence of the imaginary part [1,8]. The flow is stable, if for all modes, the real part of
the growth rate is negative. The flow is unstable, if for any mode, the real part is positive.
Usually, when an instability occurs, the most unstable mode, the one with the largest real
part of the growth rate, is observed. If at the same time, the imaginary part vanishes, then
the instability is stationary resulting in a stationary pattern. If the imaginary part does
not vanish, then the instability is oscillatory resulting in a oscillatory pattern. If it happens
that at the instablity the most unstable mode has a non-zero k,,, then the instability is pe-
riodic resulting in a pertodic pattern. On the other hand, if at the instability, a zero Fourier
mode occurs then the instability is uniform resulting in a new uniform non-patterned state.
The appropriate combinations of growth rate and Fourier mode result in the three types of
patterns referred to earlier; periodic stationary, periodic oscillatory and uniform oscillatory.
When the real part of the growth rate vanishes, the resulting state is called neutrally or
marginally stable. The locus of the modes that have vanishing real growth rate, separate
the unstable modes from the stable modes. This locus is referred to as the neutral stability
boundary. If the vanishing of the real part of the growth rate implies that the imaginary
part also vanishes then the neutral solution is stationary and the “principle of exchange
of stabilities” is said to hold. It is sometimes difficult to prove or disprove the “principle
of exchange of stabilities” [8,9,13] and one often relies on experiment to suggest whether a
neutral stationary state exists.

Linear stability analysis identifies the point of bifurcation, i.e. the value of the control pa-
rameter and the selected mode at which the instability occurs. These parameters are refered
to as the critical control parameter and the critical mode. For pattern-forming instabilities,
the critical parameters correspond to a global minimum in the neutral stability boundary
at k # 0. However, linear stability analysis makes no predictions about the nonlinear evo-

lution of the selected mode beyond the critical parameter. There are many approaches to



the nonlinear treatment of the fluid equations, however, the one most directly useful to us,
and the only one we discuss, is the amplitude equation approach. It is known that there
is much similarity between instabilities in fluid systems and the theory of phase transitions
[1,13,14]. The Ginzburg-Landau (GL) amplitude equation, which describes dynamics close
to the critical point of a phase transition, also (with the meanings of the variables changed)
describes the dynamics near the bifurcation point of many fluid instabilities. By applying
a proper perturbation scheme, for example multiple scales expansion, it has been shown
for several fluid dynamic systems (for example RBC, TVF) that the full nonlinear set of
fluid equations can be reduced to the GL amplitude equation in the weakly nonlinear limit.
The GL amplitude equation describes the slow spatial and temporal variation of the bifur-
cated nonlinear solution just above onset; the pattern. For a one dimensional (1D) periodic

stationary pattern forming system, the appropriate GL equation is [1]

9A L L oPA
TOEZEA—9|A| A+§°ﬁ' (3)

In this equation, € is the reduced control parameter which is defined in terms of the control
parameter R. The reduced control parameter ¢ = (R — R.)/R. where R. is the critical
control parameter. 7y is the inverse of the linear growth rate, & is a correlation length and
g is a constant, while A is the slowly varying amplitude of a physical quantity, for instance

the velocity of a convecting fluid v, expressed as
v~ AeeT, (4)

The linear growth rate and the correlation length can be found from linear stability analysis.
The linear growth rate is the growth rate of the critical mode in the limit e — 0% and the
correlation length &, is a measure of the curvature of the neutral stability boundary at the
critical values. One can easily see this from Eqn. 3. The linearization of the GL equation is

obtained by setting ¢ = 0. For marginal stability, the pattern is stationary, hence we have

0%2A



If we assume that the amplitude A has a slow spatial dependence ~ e*** where k is the

reduced wavenumber k = k — k., Eq. 5 gives
0=¢e— E2k2 (6)
Substituting for & and e gives the neutral stability boundary
Ro(k) = Re + Rell(k — k). (7)

Thus the linear approximation to the time-independent GL equation approximates the neu-
tral stability curve in a Taylor expansion about (k. R.) up to the quadratic term. By
comparison, the correlation length is directly proportional to curvature of the neutral sta-
bility boundary R,(x) at its minimum. We can investigate the time dependent linearized

GL equation by ignoring the spatial variation. We consider

0A

TOE = EA, (8)

which is valid in the limit € — 0%. It follows that the time-dependence of A must vary like
exp(et/7y). This time-dependence reproduces the exponential growth from linear theory, so
that 7y can be extracted from the linear theory.

Surprisingly, even for complex nonlinear systems, the dynamics of the pattern can be
described by theoretically simple equations of universal form. The GL equation discussed
above is a classic example of this universality. The universality of these equations reflects
the symmetries of the instability, in fact the amplitude equation describes the bifurcation
from the base state to the pattern state. Whereas, model amplitude equations (due to
their universality) can be used to study patterns in different physical systems, a theoretical
exposition must begin with the linear instability of the particular system. For the GL
amplitude equation described here, the symmetry of the instability is manifested in the
cubic term. It is the first nonlinear term that preserves the symmetry of the equation under
a sign change in A and it serves to saturate the growth of A [1]. Different instabilities

for different flows with this symmetry have different amplitude equations, but the general



form for a 1D periodic stationary pattern up to the cubic order is as given in Eqn. 3. The
physical differences between individual systems is contained in the different coefficients; these
coefficients are determined from the microscopic or detailed description of the individual
system. The GL equation supports a supercritical bifurcation. It is ubiquitous in physical
systems and almost always occur in systems where the instability breaks a symmetry [1,15].
In this case, a translationally invariant system (the unstructured state) is replaced by a
periodic pattern which breaks the continuous translational invariance. The bifurcation in
the GL equation is described (when g > 0) by: when ¢ < 0, the amplitude A = 0. As ¢ is
raised through zero, a non-zero solution to the amplitude A is found. Hence the solution
bifurcates at € = 0 or at R = R.. The amplitude A is referred to as an order parameter
and the essential criterion is that the order parameter vanishes for ¢ < 0 and is non-zero
for ¢ > 0. The terms “order parameter” are chosen in analogy to the theory of phase
transitions. The GL equation that we have discussed (with g > 0) describes a continuous,
or second order, phase transition.

The remainder of the thesis is organized as follows. In Section 2, we describe the relevant
geometry and describe the base state. In Section 3, we outline the governing equations and
present a linear stability analysis. In Section 4, we discuss results of the linear stability
analysis, compare with experiments by Morris et al. [4] and Mao et al. [18], and suggest

avenues for future work. Section 5 is a short conclusion.

II. THEORETICAL MODEL

A. Overview of previous experimental results

The linear stability analysis that will be developed in the next section has been preceded
and motivated by experiments in suspended smectic A films [5,16,17]. In these experiments,
the smectic A liquid crystal film spanned a rectangular region approximately [ = 20mm

long and d = 2mm wide as shown in Fig. 1. The long sides of the film were supported



by tungsten wires of diameter ~ 20um. The short sides were supported by glass or plastic
wipers that were used to draw the film. The experiments used films of thicknesses, s between
~ T and 350nm. The temperature of the film was between 23° and 25°C. The 8CB liquid
crystal has the following phases: solid <2C 5 smectic A <22%S5 nematic +2%, isotropic.
It is only in the smectic A phase that the liquid crystal behaves as a 2D fluid. The nematic
phase is only partially orientationally ordered and does not display the pronounced layering
of the smectic A phase. The flow was visualized by observing the motion of dust or smoke
particles in the film with an optical microscope. The experimental procedure for locating
the onset of electroconvection was to gradually increase the potential difference, V', across
the film and to determine the voltage, V. at which the film first begins to flow. The potential
drop was applied symmetrically, i.e. one of the tungsten electrodes was maintained at —V//2
volts while the other at +V/2 volts.

The film is observed to undergo a 2D spatially periodic flow consisting of vortices similar
to classic thermal convection rolls, when the applied voltage exceeds a well-defined critical
threshold, V.. The pattern is observed to be time stationary and the onset of electrocon-
vection is found to be non-hysteretic. The pattern wavelength at onset, A., is the length of
the basic repetitive unit (in this case a pair of rolls). Based on measurements from several
film of widths, d, it was found that [17] A\ = (1.294 + 0.015)d. The critical voltage
was found to increase linearly, for thin films, with film thickness, s, and was approximately
independent of the film width, d. Experiments were also performed with an A.C. voltage
[5]. For low frequencies (less than one hertz) the vortices are seen to periodically reverse
at the applied frequency. The critical voltage increases with increasing frequency. For high
frequencies (greater than a few hertz) the convective vortices are relegated to two rows along
the electrodes and do not extend into the central region of the film. The wavelength of the
pattern is reduced with increasing frequency.

The correlation length, &, was determined by fitting the amplitude of the measured
flow velocity to a solution to the GL amplitude equation. It was found that [18] %" =

0.36 £ 0.02d. This was accomplished as follows: at a fixed ¢ > 0, and along a line at a



fixed distance and parallel to the electrodes, Mao et al. [18] determined the amplitude of the
component of the flow velocity parallel to the electrodes as a function of distance from the
film edge. The velocity amplitude is pinned to zero (by rigid boundary conditions) at the
film’s edge and grows to a maximum at the film’s center. The amplitude profile so obtained
was fit to solution to the time-independent GL equation with A = 0 as a boundary condition
at the edge of the film (i.e. at z =0) and A — A, as x — oo. In this fit, the correlation
length is a fitting parameter. The linear growth rate, 79, was determined by fitting the
measured time evolution of the amplitude of a component of the flow velocity of a film of
known thickness (in this case 20 layers) when it was subjected to a sudden change in the
applied voltage; it was found that [18] 75°*#* = 0.505 + 0.015 seconds. The measured time
evolution of the amplitude of the flow velocity was fit to a solution of the time-dependent
GL equation in which the spatial derivatives are neglected (i.e. the point at which the time
evolution of the amplitude was measured was far away from the film’s edges and from the
electrodes). The boundary conditions for the relevant solution are: for ¢ < 0, € = 0 and
A = Ay, and for t > 0, € > 0. In the fit, the linear growth rate, 7o"!, is a fitting parameter.

In the next section, we describe the theoretical geometry and state the assumptions that

are part of the model we propose.
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I11I. GEOMETRY

Since the experiments (see Fig. 1) have [/d R 10, we treat the film as an infinitely long
strip spanning the region —oo < z < oo, —d/2 < y < d/2. Similarly, since s/d ~ 107,
we treat the film as a sheet with zero thickness. The theoretical geometry and coordinate
system are shown in Fig. 2. We always have the electrode at y = d/2 at a voltage V/2,
while the electrode at y = —d/2 is at —V/2. Neglecting the film thickness is equivalent to
saying that the flow and all other field properties (electric potential, density etc.) within the
film are 2D, being independent of the z coordinate. The assumption of 2D flow is especially
reasonable in the context of smectic A films for reasons noted in the Introduction.

We will assume that the fluid is isotropic in the zy plane and is a poor conductor. Liquid
crystals in the smectic A phase have anisotropic conductivities and dielectric permitivities.
Since the current is always in the plane of the film, we are interested in the in-plane con-
ductivity (i.e. the conductivity that is perpendicular to the long axis of the liquid crystal
molecule). This conductivity for 8CB smectic A is ~ 1077(Qm)~". Typical voltages in
electroconvection experiments are around 20 volts. The resulting currents in the film are
~ 107 amperes. This is a sufficiently small current that we can ignore the effects of the
resulting magnetic field. We will for completeness begin our theoretical treatment by in-
cluding a dielectric permitivity, €, for the film, but we will subsequently show that dielectric
polarization effects can be neglected. Since the smectic A has dielectric anisotropy, we note
that in our 2D model, only the dielectric permitivity in the plane of the film is required. This
is the dielectric permitivity perpendicular to the long axis of the liquid crystal molecules
and will hereafter be referred to as € .

In the experiment, the film’s free surfaces are in contact with air at atmospheric pressure.
We expect that the flow of the film couples to the air and hence there is some air drag on the
film when it is convecting. In the theoretical model we ignore this coupling. The smectic
A with the dopant, TCNQ, form a chemical complex whose electrochemistry we neglect.

We completely ignore the nature of the charge carriers, their mobilities and all electrode
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reactions. We also ignore the diffusion of charge. Due to the film’s small mass and heat
capacity, its large surface area in contact with the air, it is expected that the film is always
in thermal equilibrium with the surrounding air. Viscous and ohmic heating can thus be
ignored.

For the film shown in fig 2, we will treat two electrode geometries. The first case, the
“wire” case, matches the experiment closely. In this case the electrodes are lines infinitely
extended in the z direction and located at z = 0 and y = +d/2. The other case, the “plate”
case, consists of electrodes in the form semi-infinite planes, infinitely extended in the z
direction, one of which is located at z = 0 and —oco < y < —d/2, while the other is at z =0
and d/2 < y < co. Experimentally this geometry would be represented by electrodes in the
form of wide knife edges. The base state, that is the physical description of the film before
the onset of electroconvection, is described for these two electrode geometries in the next
section. It will be seen that while the hydrodynamical description is simple, the electrostatic

description is quite involved.
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A. The Base State

When a voltage V' < V,, is applied to the film, there is no fluid motion. Since smectic A
is isotropic in the plane and we ignore all z variation in any parameter within the film, the
current density in the film is constant and uniform. Furthermore, we know experimentally
that the material is ohmic, hence the electric field within the film is constant and given by
E = —V/d §. Since the in-plane electric field is constant, so is the polarization, P. Since
the polarization charge density is given by the negative of the divergence of the polarization,
¢t = -V 13, the base state has a vanishing polarization charge density. It also follows,
that since the in-plane electric field is constant, the electric potential decreases linearly from
the positive electrode to the negative electrode along the film’s surface. From the electric
field lines in the yz plane as shown schematically in Fig. 3, it is immediately evident that
the component of the electric field normal to the film is discontinuous across each of the
film’s two free surfaces.

This discontinuity in the z component of the electric field at the film’s surface supports
a surface charge density there. The charge density builds up on both surfaces, however in
the calculation that follows we will solve for the surface charge density on the upper surface
of the film. Exploiting the mirror symmetry of the problem in the z = 0 plane, we scale the
charge density so obtained by a factor of two to account for the lower free surface. In all
subsequent calculations that involve the surface charge density, we treat the problem in the
upper half space only, and use the mirror symmetry to account for the lower free surface.
The base state surface charge densities will be explicitly calculated for the two electrode
cases in the following subsections. The remaining description of the base state consists of
describing the body force field and the pressure distribution. The principal body force is
the electrostatic force which is a result of the interaction of the surface charge density and
the in-plane electric field. Since the electric field in the base state is a constant, the force
is simply proportional to the surface charge density. In principle, given the force field one

can calculate the pressure distribution for hydrostatic balance. We do not bother with this
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calculation since the pressure term will be eliminated in all subsequent analysis. However,
it is easy to show that the pressure is a maximum at the centre of the film (y = 0). As
expected, all parameters in the base state are independent of x, the coordinate along the
film’s length. The description so far is qualitative and applies to both electrode geometries.

To proceed we calculate the surface charge densities for the two electrode cases.

1. Surface Charge Density for the “wire” case, quire

In the wire geometry, the potential is specified at the lines z = 0,y = £d/2 and the z
derivative of the potential is zero for z = 0, |y| > d/2. Thus, in the upper half of the yz
plane, we must solve a mixed boundary value problem for the 2D Laplace equation with
Dirichlet conditions for z = 0, —d/2 < y < d/2 and Neumann conditions for z = 0, |y| > d/2.
For this specific case, the mixed boundary value electrostatic problem may be solved by the
theory of dual integral equations [19]. A brief introduction to the method of dual integral
equations in the context of this problem is given in the appendix. We must solve for the

electric potential, ¥,

0? 02

subject to the mixed boundary conditions

1%
V(y,0) =~y ly| < d/2 (10)
By
N2 _ ly| > d/2. (11)
aZ 2z=071

By separation of variables and using the fact that ¥(0,0) = 0 when y = 0, we make the

ansatz that the potential in the upper half plane is given by

U(y,z) = /Ooo @e“ sin (ky)dk. (12)

With this ansatz we find the dual integral equations

I A](f) sin (ky)dk — %y | < d/2 (13)

/O = A(k) sin (ky)dk = 0 ly| > d/2. (14)
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This pair of integral equations may be solved for the potential in the upper half plane by

the method of Sneddon [19], giving
U(y,z) = %/ %e_kz sin (ky)dk, (15)
0

where J; is the first order Bessel function of the first kind. The surface charge density is
given by

oY (y, 2)

o kd. .
- — ¢V /0 Ji(%) sin (ky)dk. (16)

Quire (y) = _260

z=01
In accordance to what we have said earlier, the factor of two in the above equation accounts

for the two free surfaces. Eqn. 16 can be evaluated [20] for |y| < d/2 giving

() 260V Y
Quire\Y) = .
d\/(d/2)> —y?

This charge density diverges at the position of the electrodes, which is to be expected.

(17)

In practice, the finite size of the electrodes (in contrast to the model electrodes of zero
radius) eliminates this unphysical divergence [21]. In later sections, it will be seen that the

divergence of the charge density is sufficiently weak to be mathematically tractable.

2. Surface Charge Density for the “plate” case, qpiate

In the plate electrode geometry, we specify the potential on the whole y axis with —V//2
for y < —d/2 and +V/2 for y > d/2. Across the film the potential changes linearly from
—V/2 to V/2. This is then a purely Dirichlet problem for the Laplace equation, 9, which
may be solved using a Green function [21,22]. The appropriate Green function is constructed

from a unit line charge at (v, 2’) and its image at (y', —2’)

(18)

G(y,zy,2") = —log
The potential at any point in the upper half plane is given by

dy’ (19)
z'=0

1 oo oG
¥.2) = =g [ V0005
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where the derivative of the Green function is with respect to the normal directed outwards

from the upper half plane. Evaluating this using the Green function Eqn. 18 gives

Uy, 2) = %/_Z%dy' (20)

in which
14 d
U(y,0) =—— —co>y> ——
(y,0) 5 02y >—7
_V 4yl (21)
—d’ 2 =¥ 3
Vv d
= = s Sy< o
2 2
The surface charge density on both free surfaces is given by
m 9Y(y, 2)
— —Qylate =9 22
€o qpl t (y) ™ az ot ( )
/g—_v dy +/% _2Vyjd +/OO—V dy’ (23)
—o 24 (y—y)? e 42—y T e YT i

The last line above results from having interchanged the order of differentiation and inte-
gration and using Eqn. 20 and Eqn. 21. After integration, the resulting expression was
expanded in power series in z and evaluated at z = 0. After some simplification the charge

density for the “plate” electrode case is given by

2V eq ‘y—d/Z‘

24
md Cly+d/2 (24)

Qplate (y) =

Once again, as expected, the charge density diverges where the film and electrode meet.
The divergences, as noted earlier, are unphysical and finite size effects of the electrodes
would remove the divergences. We nevertheless use both charge densities as derived and the
divergences prove to be mathematically tractable. The shape of the surface charge density
has significant effects on the theoretical predictions for the onset of electroconvection. The

surface charge densities of the two electrode geometries are plotted in Fig. 4.
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3. “Charge Inversion” and the Mechanism for Electroconvection

It is evident from Fig. 4, that there is greater positive surface charge density close to the
positive electrode and greater negative surface charge density close to the negative electrode.
This is also schematically depicted in Fig. 3. We refer to this configuration as charge
inversion and it is analogous to the unstable “top-heavy” mass density configuration in
Rayleigh-Bénard convection. It is easy to see that this configuration is potentially unstable.
Consider two parcels of film (of equal area) located at y = ¢/ and y = ' + A. Taking the
linear dimensions of the parcel as small compared to the film width, we may approximate
the average surface charge density of the parcel by the value of the surface charge density
at the centre of the parcel. Hence, the surface charge density of the parcels are respectively
¢2(y') and g2(y' + A). Since the in-plane electric field is a constant in the base state, the
force per unit area on each of the parcels is simply proportional to the surface charge density
of the parcel. Consider the interchange of the two parcels. Then the potential energy of the

system is reduced by;
a(y + LD)E- (—AF) + a:(y)E - A3 (25)

In this case E = —V/d §, reducing Eqn. 25 to

VA

N C U SEA) (26)

It is clear that this is always positive and so the exchange of parcels tends to lower the
potential energy of the system, hence this configuration of charge density is potentially
unstable. It is also easy to see that in a film which has a surface charge density without
an inversion, the exchange of parcels leads to an increase in the potential energy. This
criterion for potential instability can be stated more succintly as E - Vg, < 0 [23]. The
stabilizing mechanisms are the conduction of charge density and the dissipation due to
viscosity. Hence, the instability occurs when the rate of dissipation of kinetic energy by
viscosity can be maintained or superceded by the rate of release of potential energy due to

the electric force.
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Even though the total charge density vanishes in both electrode cases, it is clear from
Fig. 4 that there is more charge separation in the “wire” case. The y derivative of the charge
density is greater in the “wire” case than in the “plate” case. Hence, we should expect that
the “wire” configuration is potentially more unstable than the “plate”configuration. Our
results demonstrate this. In the next section, we describe the equations that govern this

electrohydrodynamic system and carry out a linear stability analysis.

IV. LINEAR STABILITY ANALYSIS
A. Governing Equations and the Linearized System

The governing equations are those of electrohydrodynamics (EHD). These consist of the
Navier-Stokes equation, mass and charge continuity equations and the appropriate Maxwell
Poisson equation. Since we consider two dimensional fluid motion only, the Navier-Stokes
equation and mass and charge continuity equations are valid in two dimensions, namely
the zy plane. However, the closure relation, the Maxwell Poisson equation, relates a surface
charge density to the potential on the film, and as noted in earlier sections, the surface charge
density is related to the potential in the space exterior to the film, hence, this equation is
three dimensional.

The fluid velocity 4 is confined to the film plane, with 4 = uX + vy. The film is
treated as a two-dimensional conducting dielectric fluid, with areal material parameters
P2 = Sp, My = SN, 03 = so, where s is the film thickness and p is the bulk density, 7 is the
bulk molecular viscosity, and o is the bulk conductivity. (In smectic A films, the viscosity
is highly anisotropic; the relevant component to use for n is 73, the viscosity related to
shears within layer planes.) The two-dimensional pressure field is given by P, = sP. The
appropriate dielectric constant is €, the in-plane dielectric permitivity. The body force
in the Navier-Stokes equation is the electrostatic force, which results from the interaction

of the in-plane electric field, E, with the charge densities; surface charge density, ¢, and
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the polarization charge density, ¢.**. We have already noted that the polarization charge
density vanishes in the base state but this is not the case for the perturbed equations, where
the polarization is in general not constant. However, we will show that this charge density
and the force terms that subsequently appear can be neglected. The Navier-Stokes equation
for 2D motion is

ou o - _ = ol |
P21 5¢ + (@ Vo)i| = Vo3 + Vo + o Ep + 2" Es, (27)

where V5 is the two-dimensional gradient operator, X9/9z + §9/9y. The fluid is assumed

to be incompressible, so that the mass continuity equation reduces to
V- ii=0. (28)

The charge continuity equation in the zy plane is

(g2 + Q2p0l)
Ot

=V, Ty =~V (gl + ¢ + 02E>), (29)
in which J o 1s the two-dimensional current density in the plane of the film, which contains
contributions from both conduction (05E,) and convection (g2 + ¢P'w). To close the
system, we require the Poisson equation that relates the electric fields to the charge densities.
In practice however, we do not use the Poisson equation directly, but instead we use the
Laplace equation with the assertion that the charges lie on the boundary. We do this by
choosing a volume in which the Laplace equation is valid and whose boundary consists, in
part, of the film surface and electrodes. In the base state, this was particularly simple (since
all variables were independent of the z coordinate), where we chose the upper half yz plane
as our volume, with the boundary consisting of the y axis and a semi-circle at infinity. In

general, we choose the upper half-space with boundary the zy plane (the film and electrodes

are in this plane) and a hemisphere at infinity. Hence we have
V20 = 0. (30)

in the half space z > 0, where ¥(z,y, z) is the potential. The surface charge density on the

two free surfaces is given by
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oV (z,y, z)

QQ(Q:,?/) = _260 (31)
9z 2z=07F
The in-plane electric field, Eg, is given by
EQ = —VQ\I](.’L',y,O) = —Vg\:[jz. (32)

The 2D polarization, 132, is always confined to the film plane and is given by P, = S€0X8E27
where y. is the electric susceptibility of the smectic which is related to the dielectric per-

mittivity by €, = €9(1 + x.). The 3D polarization charge density is equal to
¢ = -V - P. (33)

However, keeping in mind that the polarization is entirely 2D, the 2D polarization charge

rol is given by

density, ¢
Q2p0l = 8€0XeV22‘1’2 (34)

where we have made use of Eqn. 32. The set of equations 27 - 34, define our system. At

this time we specify rigid boundary conditions on the flow at the edges of the film,

Il
=)

u=0 and at y = +d/2. (35)

Q3|Q3
< |

Expanding the divergence in Eqn. 29, using Eqn. 28, the charge continuity equation becomes

d(ga + ™) | - E
% +1- Va(go + ") + 02Va - Ey = 0. (36)

One may be tempted at this stage to equate the 2D divergence of the in-plane electric field to
the surface charge density. This is incorrect and we emphasize that whereas a charge density
is proportional to the 3D divergence of the electric field, there is no simple in relation for
this system between the surface charge density and the 2D divergence of the in-plane electric

field. To examine the stability of the base state, we introduce perturbations

i=04d", (37)

q2 = Q2(0) + Q2(1), (38)
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@" =0+ g™ V), (39)
P, = RO + W, (40)
E, =E + B, (41)

U =0 4 g (42)
\112 - ‘112(0) + ‘112(1). (43)

Several of the above equations are not independent and will be used to simplify the system.
In all perturbations the superscript (0) refers to the non-zero base state solution while the
superscript (1) refers to the infinitesimal perturbations about the base state. Substituting
these perturbations into equations 27 - 36, using some of the properties of the base state

and linearizing we get

ou (1) 25(1) | (O (g
Pr—p = — VB +nVoy"u'/ + ¢ E, X
+<q2(1) B,© 1 OB, 4 g O Ey@)y (44)
Vy-d = 0 (45)
a —
§<q2<1) + g™ (1)) = — i .V,
- 0oV (EO% + BO9) (40
vie = o (47)
o)
W= _2 48
q2 €0 92 o ( )
Egl) - — VQ\IJQ(I) (4:9)
Q2p0l @ = 560X6V22\I’2(l) (50)
v

i = 0 and

=0 at y=4+d/2. 51
o at y / (51)

It is immediately clear that the convection of polarization charge density is of higher order in
perturbed quantities because it disappears from the right hand side of the charge continuity
equation, Eqn. 46. We now reduce the system by a series of algebraic manipulations. For
brevity, we only state them rather than elaborate the details. We eliminate the pressure

field by taking a curl of Eqn. 44. We take a second curl of the resulting equation, use
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vector identities and the incompressibility condition to simplify the resulting fourth order
differential equation, finally selecting only the ¥ component. We use the properties of the
base state solution wherever appropriate in the above set (for example Ey(o) = V/d etc.),
replace electric fields with the relevant gradients of the potential, eliminate the polarization
charge density by replacing it in terms of the potential. This results in the following reduced

set of equations:

0

V 820,V 9g,© 92y, (1)
772V22V22'u(1) _ p2gv22v(1) Vo q2 2

d 0z + dy  0x?

Vey 02
+ XeSTO @qu&m =0, (52)
P dq (0) 32\11(1) 82\11(1)
900 vz\pm) 9% _ ( 2 2):0 53
ot <Q2 t XeS€o V2 VW2 | +v 72\ “5p2 92 5 (53)
vie =
BAASY;
q2(1) = —2¢ B (54)
z=0%1
1
\II( ) = \Ij(l)|z=0+

The above set consists of three equations with three unknowns. The first equation results
from the Navier-Stokes equation, the second from the charge continuity equation and the
third is the Poisson equation written as the Laplace equation for a charge free volume with
charge density only on its bounding surface. At this stage, we emphasize that it is Eqn.
54 that connects Eqns. 52 and 53. This closure, however, has no trivial inversion. For
example, the Laplace equation is a difficult 3D mixed boundary value problem in the “wire”
case. In the next section, we show that this reduces to a mixed boundary value problem
for the Helmholtz equation in 2D. Also note that the polarization charge density plays no
part in the coupling between the surface charge density and the potential described by Eqn.
54. The reason for this is that the polarization is entirely two-dimensional and is always in
the film plane. Hence, there does not exist a surface polarization charge density but rather

a volume polarization charge density which has no z dependence and so can be trivially
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converted to the 2D polarization charge density, appropriate for a thin film. The difference
between a 2D polarization charge density and a surface polarization charge density is that
the former is a result of the non-vanishing in-plane divergence of the polarization while the
latter requires a discontinuity in the normal component of the polarization. Reiterating, the
polarization always has vanishing normal component, and so the vanishing of the surface
polarization charge density means that there are no further boundary conditions to be
applied to Eqn. 54 that originate from the polarization. The linearized set of equations 52 -
54, with physically determined boundary conditions consitute the governing set of equations
in our model. In the next section, we choose an appropriate scaling and define relevant

dimensionless parameters.



23

B. Normal Mode expansion and Non-Dimensionalization

Following the procedure discussed in the Introduction, we expand the velocity, charge
density and potential perturbations in normal modes which are periodic in x with wavenum-

ber k, and have growth rate -,

’U(l) — A(y)eikm+'yt’ (55)
¢V = O(y, k), (56)
VW = Q(y, 2, k, y)e™ . (57)

After substituting these into equations 52, 53 and 54, we non-dimensionalize the system
by dividing lengths by d, times by €yd/os and charge densities by €,V/d. Let D = 9/dy
and define new dimensionless quantities x = kd, and Q(y) = d®?Dq”(y)/e;V. The choice
of non-dimensionalizing the length by d, and the charge density by €,V/d appear naturally
from the experimental geometery and the analytic expression for the surface charge density.
The time scale is chosen (in retrospect) to conform with the charge relaxation time for a
thin sheet [5,16]. This time scale is a factor d/s larger than the charge relaxation time for
a bulk medium. The resulting equations (where A, © and Q are now understood to be

dimensionless) are:

(D? — K?) <D2 - %)A + K;?R(@ — Q0 — X%(D2 - KQ)QQ) =0, (58)

(D? — %) — QA — 7(@ + Xe—(D? — /12)Qg> =0, (59)

8 2
o
o=_22° | (60)
0z ot
QQ - Q|z—0

As noted earlier, the ratio of film thickness to width, s/d ~ 1075, This ratio occurs in the

Egns. 58 and 59, in conjunction with terms that originated from the polarization charge
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density and the electric force acting on this density. Compared to all other terms in the
equations above, the effects of polarization are obviously negligible in the limit of vanishing
s/d (and of course finite x.). Since for 8CB and other smectic materials y. ~ 10, we will
henceforth neglect these terms.

The closure relation Eqn. 54 is a 3D Laplace equation with a boundary surface charge
density. However, as referred to earlier, the periodic dependence of the potential in the
x coordinate reduces this 3D Laplace equation to a 2D Helmholtz equation. Eqn. 60 is
the appropriate Helmholtz equation that links Eqn. 58 with Eqn. 59. Since Eqn. 60
is valid in the half plane x = 0, z > 0, which is perpendicular to the plane of the film, it
determines the rather complicated nonlocal coupling between the in-plane potential function
D (y, k,7) = Qy, 0, k,7v) and the charge density function ©(y, ,v). We emphasize that the
closure relation which couples the electrodynamics (the charge continuity equation) to the
fluid dynamics (the Navier-Stokes equation) is valid in a domain that is orthogonal to the
domain in which the fluid equations are valid.

In Eqns. 58 and 59 there are two dimensionless parameters: R, a Rayleigh-like number

and P, a Prandtl-like number. In terms of the bulk material parameters, they are given by

2v2
R=2"_ (61)
ons
€o7]
P = i 62
posd (62)

R, the control parameter, is proportional to V2. It is interesting to note that R is indepen-
dent of d, the width of the film. The Prandtl-like parameter P may be regarded as the ratio
7,/ T» of the two time scales in the problem, the viscous relaxation time 7, = pd®/n and the

charge relaxation time for thin films [5] T,

. = €0d/0s.

The nonlinear y dependence of the base state charge density go® (y) or equivalently
the non-constant slope of the base state charge density 9¢,(®) /0y, is contained in the non-
constant, non-dimensional coefficient Q(y). For the two electrode configurations, “wires”

and “plates”, we find from Eqns. 17 and 24 that they are given, respectively, by
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4 8

e ) .

Qwire (y) -

These are plotted in Fig. 5. The divergences in Q(y) correspond to the unphysical
divergences in the base state surface charge densities previously described. Note that
Quire(Yy) > Qpiate(y). In the next section we proceed to search for neutral solutions at

the onset of the electroconvective instability.
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C. Marginal Stability and Results

We now wish to investigate the stability of the following simplified set of linearized

equations, which are valid in the limit s/d — 0;

(D? — k2 <D2 2 %)A KR <@ - QQ2) — 0, (64)
(D* — K*)Qy — QA — O = 0, (65)

82
e 2o

022
o0
o— 22 (66)
9z z=0*
QQ - Q|z=0

Stability of the base state corresponds to a real and negative value of the growth rate,
~. Instability of the base state occurs when the growth rate has a real and positive part.
Marginal or neutral stability occurs when the growth rate vanishes. At this point the problem
reduces to determining the values of the parameters R, P, k and  such that non-trivial
solutions are permitted by the Eqns. 64, 65 and 66, subject to the boundary conditions

(now non-dimensionalized)
Aly = £1/2) = DA(y = £1/2) = 0. (67)

and
Oy = £1/2) = 0. (68)

The latter boundary condition is simply that the potential at the electrodes is fixed and not
subject to any perturbations. In searching for marginal solutions, v = 0, implies that the
problem simplifies to searching for values of R and x such that Eqns. 64, 65 and 66 with
~v = 0 have non-trivial solutions that satisfy the boundary conditions Eqns. 67 and 68. When

v = 0, the dimensionless number P drops out from the above set of equations. Hence, the



27

parameter space is significantly reduced when looking for marginal solutions. Since Eqn.
64 consists of a fourth order differential operator acting on the velocity perturbation, A,
subject to the rigid boundary conditions given by Eqn. 67, we are permitted to assume
an expansion for A(y) in terms of a complete set of orthogonal functions that satisfy the
rigid boundary conditions (in this case they are also the eigenfunctions of the fourth order

differential operator), viz:

Ay) = 2_ AuCunly), (69)

where the C,,(y) are even Chandrasekhar functions [8], given by

cosh(A,y) cos(Any)
Cr(y) = cosh(Ap, /2) B cos(An/2) (70)

Here A, is the mth root of [8] tanh(\,,/2) + tan(\,,/2) = 0. Only the relative amplitudes
of the modes are important in the expansion Eqn. 69. Hence, we set A; = 1.

The symmetry about y = 0 of the variables in the set of Eqns. 64 - 66, the boundary
conditions and the occurence of differential operators of even order imply that the solutions
are either even or odd. We restrict the expansion to even functions. As in RBC, the
expansion in odd functions can be shown to predict a higher onset than the expansion in
even ones. The even functions have also been shown to be a good fit to velocity data [5].
Consistent with the velocity perturbation expansion, we expand the potential and charge

density perturbations

0= 4,0, ©6=34,6,, (71)

where €2, and ©,,, are the solutions corresponding to A = C,,, in Eqns. 65 and 66. Further,

we denote Qs,,, = Q,,|.=0. We now procede to solve for €2, and ©,),.

1. The potential function Qg for v =0

Substituting C,, for A,, in Eqn. 65 with v = 0, gives
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(D2 - 52)Q2m = Qcm; (72)

which may be solved directly by Fourier expansion. Since QC,, is even, we expand in the

interval [—1/2,1/2];

QC,, = Z by COS (2nTY), (73)
n=0
in which
bo = 2 /0E QY)Crn(y)dy, by, = 4/0E Q(y)C(y) cos (2nmy)dy. (74)

The potential perturbation is also even and for purposes of expansion is periodic with the

same interval:
Qomp(y) = io Ay, €OS (2n7TY ) (75)
where (2, denotes the particular solution. Then the differential equation above becomes
- i [(2n7)? + K*]a@mn cos (2nmy) = i binn cOs (2n7Y) (76)

n=0 n=0

from which it follows that
bn = —mn[(2n7)* + K] (77)

The general solution is

byn cos(2nmy)

[(2n7)? 4 K2] (78)

Qom(y) = A(x) cosh (iy) = 3

n=0
where the first term is the homogenous solution while the second term is the particular
solution to Eqn. 72. Imposing the boundary condition Eqn. 68 on the potential perturbation

determines A(k), giving for the potential

o0

- b, (—1)" cosh (ky)
Qo = Z [(271’71')2 + ,{2] < cosh (/{/2)

n=0

— cos (2n7ry)> . (79)
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Qa.m, has been calculated using a Romberg numerical* integration scheme [25]. The Romberg
integration scheme was used to tabulate the integrals for b,,, in Eqn. 74 for the each of the
two electrode cases Qpiate and Quire, given by Eqn. 63. We used an upper cutoff of n = 29,

which was dictated by the double precision accuracy of the Romberg scheme.

2. The charge density function ©,, for v =0

The surface charge density perturbation that results from the potential perturbation,

Qa,, calculated above, amounts to solving the Helmholtz problem specified by Eqn. 66;

o0,
0z

82
lDQ + — — K2] Qm(y7 Z, F.]) = O, @m = -2 (80)

0z2

z=07F

subject to Qa,, = Q,,(y,0,k) on the film (—1/2 < y < 1/2). Outside the film along
the y-axis (|y| > 1/2) we have for the “wire” case the corresponding Neumann condition
that the normal derivative of the potential perturbation vanishes and for the “plate” case
the Dirichlet condition §2,,, = 0. The perturbed surface charge density is calculated by first
determining the potential in the appropriate half space by a successive overrelaxation scheme
(SOR) [25] and then numerically evaluating a one-sided derivative at the film surface. We
solved the Helmholtz equation 80 for €2,,, for each of the two electrode cases, using a simple
SOR algorithm. Because 2, is even in y, it need only be relaxed in the first quadrant of
the yz plane. We used an N x N square lattice of cells in this quadrant, with N, < N
points between y = 0 and y = 1/2. On the outer edges of the lattice, we set 2, = 0 to
enforce the zero boundary condition at infinity. Starting with N = 100 and Ny, = 50, we
systematically increased N and Ny, is such a way that Ny,,/N — 0. All the quantities
calculated below showed a small residual monotonic variation with N¢;,,; we removed this

by plotting each against 1/Ny;,, and extrapolating to 1/Nyiy,, — 0. From the resulting €,,,

*The numerical details for the entire linear stability analysis can be found in ref. [24]. The author

is indebted to Professor S.W. Morris for the numerical solution to the linear stability problem.
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the charge density perturbation ©,, was determined from Eqn. 80 by taking the one-sided z
derivative numerically. ©,, was therefore only known at Ny;,,, lattice points across the film.

For the purposes of integration, we used a Chebyshev interpolation [25] of these points.

3. The charge density function ©,, for v #0

The potential function €25, and the charge density function ©,, for v # 0 are obtained

by solving
(D? = K%)Qam = QCr, + 7O, (81)

by a numerical iterative scheme. We used the v = 0 solution Eqn. 79 to find a first
approximation 2,,”. From this, we calculated the corresponding approximate to the charge
density function 0,," using the relaxation algorithm. Then QC,, + 'y@m[o] was Fourier
expanded in the same manner as QC,, in Eqns. 73 and 74 above. This expansion was used
to find a series solution analogous to Eqn. 79 for the next approximation Qs,!Y, which
was then relaxed to find ©,,[). This sequence of steps was iterated until it converged for
both Q,,, and ©,,. The convergence criterion was a sum of the squares of 100 differences in
successive iterates distributed on 0 <y < 1/2. For |y| < 0.1, the sum converged after 7 or 8
iterations to a precision limited by the Romberg integration scheme used to find the Fourier
coefficients. In each case, for relaxation, the Dirichlet conditions on €, for —1/2 <y < 1/2
and z = 0 are given by Qo ! from the jth order iteration. Beyond the film, for |y| > 1/2,
z = 0, we applied the Dirichlet condition €2,, = 0 in the plate electrode case, and Neumann

conditions (99Q,,/9z)|,—¢+ = 0 in the wire case.

4. The Compatibility Condition and the Neutral Stability Boundary

To find the general compatibility conditions on solutions, we substitute the expansions

for A, €, and © into Eqn. 64,
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i < <D2 K* — 5)0 + F»ZR[ Qﬂsz m=0. (82)

m=1

Multiplying by the Chandrasekhar function Cj(y) and integrating from y = —1/2 to y =
+1/2, we form inner products, denoted by (---). Then Eqn. 82 becomes a linear homogenous
system for the expansion coefficients. For non-trivial solution, we require that the matrix
defined by the linear operator (i.e. the inner product on Eqn. 82) should be singular. This

is the compatability condition;

“(Cl(p2 — K2 (D2 — K2 %>0m> + mz(cl[ QQ%})H —0. (83)

Using the orthogonality property of the Chandrasekhar functions we get

l (le - H25lm)

H()\fn + 54)5lm - 2’£2le + KQRF’lm - P

=0, (84)

where F,, = (C1(0,, — Q€Qap,)). The matrix elements X, are given analytically by [§]

Im — m 85
Xim = (C"C
2
- cren—cuch|  1#m (56
I~ '‘m y=3
1.1 1
C/”C” _ = CI// 2 l — 87
- o] 1=m (57)

where C” = D?*C,,(y), etc. The matrix elements Fy,,(k,7) were evaluated numerically for
each electrode configuration using Romberg integration [25]. The divergences in Q(y) at the
edges of the film are overcome because C;(y) approaches zero faster than either Qir(y) or
Qplate(y) diverges at y = £1/2. For the first few Chandrasekhar functions, C,,, the functions
O,, and 25, are simple smooth functions which are straightforward to integrate numerically.

To find the conditions for marginal stability, we set v = 0 in the compatibility condition

Eqn. 84.7 The dimensionless group P drops out, so that the marginal stability conditions

fSetting v = 0 is to assume that the “principle of exchange of stabilities” holds. It is standard

procedure to first establish that the growth rate, «y is real before assuming that a marginal state
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are independent of the Prandtl-like number, just as is in the Bénard problem. With v = 0,
and the Prandtl-like number irrelevant, we seek the solution set consisting of the pair (k, R)
such that Eqn. 84 holds. Then the locus of this solution set defines the marginal (neutral)
stability boundary, R,(x) which separates the stable (v < 0) from the unstable (v > 0)
regions in (k, R) space. This locus is evaluated systematically for both electrode geometries.
We choose a value of k, set [ = m = 1 and calculate Fj;(k). Then Eqn. 84 can be simply
solved to get the first approximation R (k). At the next order, we find F, (k) for I,m = 1,2
and search near R (k) for roots of the 2 x 2 determinant 84 to find RIZ (k). We can then
use A; = 1 to find A, in Eqn. 69 by backsubstitution. We carried this algorithm to the

=2 and

third order in the Chandrasekhar expansion, for which the maximum of |A3| =~ 10
the resulting neutral curve R,(x) no longer changes significantly.

Fig. 6 shows the neutral curve for the two cases of electrode configuration, “wire” and
“plates”. The minima of these curves define the critical values k. and R. = R,(k.) for each
case. These values are collected in table I.

Fig. 7 shows the amplitudes Ay and Az for the wire case, relative to A; = 1. It is
clear that the higher terms in the Chandrasekhar expansion contribute very little to the

sum 69. We can calculate the dimensionless correlation length & which appears in the

Ginzburg-Landau equation from the curvature of R,(k) for k near k.. We define [1,26]

1 d?%e,
é-g -5 2 ’
2 dk o

=Kec

(83)

where . = (R,(k)/R.) — 1. To find & accurately, we fit . to a parabola over a range
k = k. £ Ak and then systematically reduced Ak until the value of & taken from the fit
became independent of Ax. This corresponded to a fitting range such that e, < 5 x 107

The values of & are given in table I. There is a slight dependence of the correlation length

exists. However, we know from experiment that the system evolves to a stationary roll state. Hence
we are justified in ruling out the possibility of a time-dependent solution and simply assuming that

the imaginary part of the growth rate vanishes.
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on the electrode geometry, i.e. on the base state charge density profile.

5. The Linear Growth Rate ~y

Returning to the full compatibility condition Eqn. 84 with v # 0, we consider the
behavior of the growth rate v of the linear modes near the critical values of R and x. Our
objective is to calculate the dimensionless time 7y in the Ginzburg-Landau equation which

sets the scale of the linear growth rate near onset. We define [1,26]

Ty = . (89)

K=Kc,e=0T1

The matrix element Fy,,(k, ) is rather expensive to calculate for v # 0, because we must use
the iteration scheme outlined earlier. It is most computationally efficient to choose a value
of v, fix k = K., and then solve Eqn. 84 for R. This was done for ten values of v in the range
—0.1 < v < +40.1, using three Chandrasekhar modes. The results depend on the Prandtl-like
dimensionless group P. The resulting function v(e), where e = (R/R.) — 1, is very nearly
linear in e with a P-dependent slope and (0) = 0. We determined 7y from polynomial fits
to y(g) for P > 0.01. The results are slightly dependent on electrode configuration; they
are collected in table II. Values of 7y are plotted as a function of P for “wire” electrodes in

Fig. 8. For P > 1, 79 becomes nearly independent of P, and tends to a limiting value.

V. DISCUSSION

A. Reduction to Rayleigh-Bénard convection

By an ad hoc assumption we can reduce our linearized set of equations into a form
that is mathematically equivalent to the Rayleigh-Bénard equations. The assumption is
unjustified but is only mentioned here to elucidate the similarities and more important, the
differences between thermally driven convection and surface electroconvection. If, instead

of the Maxwell Poisson equation, the closure relation (or for purposes of comparison, the
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equation of state), we introduce the linear relation © = (32, then our system reduces to
Rayleigh-Bénard convection. A local and linear relation between the surface potential and
the surface charge density implies that in the base state the charge density profile is linear
and that its derivative is a constant, hence we replace Q(y) by the constant Qg. Making

these changes to the pair of Eqn. 64 and 65, we get

(D? — K?) <D2 K- %)A KR <5 - QO) 0, =0, (90)

(D2 — K? - 78)22 = QoA. (91)

Up to scaling and trivial redefinition of variables this pair is equivalent to the correspond-
ing Rayleigh-Bénard convection equations [8]. The fact that we have a different closure
relation or equation of state that relates two of the three variables in the problem makes
electroconvection interestingly different from Rayleigh-Bénard convection. This equation of
state is implicitly defined by a partial differential equation with its own set of boundary
conditions. As we have mentioned there is no simple inversion or integral solution to this
partial differential equation, hence we do not have a simple functional equation of state as in
Rayleigh-Bénard convection. There is added difficulty in this problem, since the instability
results via an inversion of surface charge density. The nonlocal interaction of the surface
charges results in the disconnected spaces or domains of validity for the fluid problem and

for the electrostatic problem.

B. Comparison to previous experiments

Egn. 61, combined with the neutral curve, predicts that the onset of convection occurs

at a critical voltage, proportional to the film thickness s, given by

V. = i\/JnRC. (92)

€o
V. has been found experimentally to be proportional to s in smectic films [5,17,18]. The linear

relation holds well for thin smectic films (2 - 24 smectic layers or 6.32 - 75.84 nm). For larger
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thicknesses, V. grows somewhat more slowly than the predicted linear growth. This is almost
certainly a consequence of layer-over-layer shears in the z direction that we have neglected.
A linear dependence of V, on s was also observed in the “vortex mode” in suspended nematic
films [6], although these films have relatively large thickness nonuniformities and exhibit slow
flows even below the onset of convection making V.(s) considerably more difficult to measure.
The dependence of V. on ,/on follows inevitably from dimensional analysis; no experimental
data is currently available that might demonstrate this relation. The linear dependence of
V. on s,/on is also predicted for the “vortex mode” in nematic films proposed by Faetti,
Fronzoni and Rolla [6]. The quantitative comparison between Eqn. 92 and experimental
data is reasonable. The material parameters, the conductivity ¢ and especially the viscosity
n are not well known. In experiments by Morris et al. [5] the conductivity for the film
was measured to be (6.6 & 0.3) x 1078(Qm) ", The viscosity that we use is estimated by
extrapolating measurements of 77 made in the higher temperature nematic phase [29,30]. At
23°C, the temperature at which Morris et al. conducted their experiments, the relevant
viscosity is 0.045 £+ 0.008 kg/ms. The effects of doping the 8CB on viscosity have yet to
be investigated. We expect that there is a significant change in the viscosity of the doped
sample from the pure sample based on observing that the smectic-nematic phase transition
temperature is higher for the doped smectic. Morris et al. report that V./s = 0.22 4+ 0.05
volts/layer, where s is measured in units of the smectic layer thickness. Using the above
values for the conductivity and viscosity, and using R. for the “wire” case, we find that
theory predicts V./s = 0.17 4 0.02 volts/layer, which is consistent with the data. However,
later experiments by Mao et al. [18] found V,./s = 1.054-0.01 volts/layer. Using an estimated
conductivity of (2.0 4+ 0.2) x 1077(Qm) ", these data seem to require a value of viscosity
much larger than the above extrapolated estimate. Resolution of this discrepancy will have
to wait until the conductivity and viscosity can be independently measured in the same
sample.

The most recent experiments on smectic films [18] show no dependence of V. on d for

films with d between 0.7 and 2.0 mm, with thicknesses s between 2 and 25 molecular layers,
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that is, between 6.3 nm and 80 nm. This is consistent with the prediction of Eqn. 92. Over
about the same range of thickness, as noted above, V, is also proportional to s, as predicted.
A weak variation of V, with d was, however, observed in earlier work [5] for d in the larger
range of 0.36 mm to 3.5 mm. This work used a thicker film (107 molecular layers, or 340
nm) and a slightly different electrode configuration, with guard electrodes outside the main
electrode wires. These features may have contributed some d-dependent three-dimensional
effects. Finite size effects of the electrode wires must certainly become significant for small
d. The dependence on d observed, shown in Fig. 2 of Ref. [5] is strongest for small d, and
tends to decrease for larger d, as one would expect from finite electrode size effects. In
suspended nematics [6], it is also observed that V, increases only weakly with d.

The wavenumber at onset observed in smectic film experiments is [18] k"' = 4.94 +
0.03 d=!. The measured value of d is uncertain to £5%, so this result yields a measured
dimensionless wavenumber x&?* = 4.94 + 0.25. This is in good agreement with the value
of kK, = 4.74 found from the minimum in the calculated neutral curve for “wire” electrodes.
At present, no data is available for comparison to the predictions for the plate electrode
geometry. The precise position of the critical parameters (k., R.) depends on the base state
surface charge density (or more directly through the slope of the base state surface charge
density, Q(y)). Figures 4 and 5 reveal that the “wire” case has a steeper slope in the surface
charge density than the “plate” case. As we suggested earlier this should result in the “wire”
case having a lower critical voltage than the “plate” case. This is indeed the case (see table
D).

There is good experimental evidence [5,18] that the onset of electroconvection in smectic
A films is a supercritical bifurcation which can be described by the Ginzburg-Landau equa-
tion with € oc V2. The ¢ dependence of the flow velocity above onset, the behavior of the
amplitude of convection near a lateral boundary and the dynamics of changes in the pattern
after sudden changes in € are all well described by fits to Eqn. 3. Our predicted correlation
length from the linear stability theory for the “wire” case, & = 0.285, is about 20% smaller

than the experimental value of £ = 0.36 = 0.02. This is in fair, but not completely sat-
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isfactory, agreement. Experimentally, determing the correlation length requires the film to
be convecting at some measurable velocity. In a convecting film, we expect that the film
couples to the air and the effects of air drag may explain the difference between experiment
and theory. To arrive at both k%7 and & " the experimental measurements were made
nondimensional by dividing by the measured film width d, which is known to within about
5%.

All realistic smectic films are sufficiently viscous that they have values of P > 1, so that
we expect the infinite-P limiting value of 7y to apply. This is easily seen for the rectangular
films that experiments have been performed on. Substituting typical values for the film
width and thickness, the mass density is approximately 10® kg/m?3, and using the values of

the conductivity and viscosity given earlier we find

~ 100. (93)

The experimental time relaxation parameter is non-dimensionalised using 7, = €yd/os.
The conductivity o for doped 8CB has been measured both at 1kHz in a bulk sample
[27] and at dc in an annular film [28]; over this frequency range, it changes by a factor
of three. This suggests that the conductivity might depend on some frequency dependent
electrochemistry and on some surface conductivity. The conductivity appropriate for the
theory is the conductivity of the film; the conductivity measured wn situ. Using the dc
value, (3.3 £ 0.1)_7(Qm)71, gives a dimensionless experimental 7, which is 70% larger than
the theoretical value of 0.351, while using the 1kHz value of (1.11 + 0.09) x 10~ 7(Qm) ™",
gives a dimensionless experimental 75 which is 40% smaller than the theoretical value. One
must remember that 7y is determined experimentally by measuring the time evolution of the
velocity field of the film when subjected to a sudden change applied voltage. It is plausible to
suggest that this involves a transient time-dependent coupling to the air i.e. the air drag is
a function of the velocity of the flow. The differences between the theoretical model and the
experiment in this respect may account for some of the difference in predicted and observed

values of the linear growth rate.
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In general, the agreement between theory and experiment is satisfactory for the quantities
ke and &g, which scale simply with the width of the film d. However, there is only ambiguous
agreement for the quantities V,/s and 7y, whose scaling involves the conductivity and/or the

viscosity, which are poorly known.

C. The Nonlinear Electroconvection Equations

Having solved the linear problem, we can now return to the original incompressible
EHD equations, non-dimensionalize and algebraically manipulate them to suit any 2D film
electroconvection geometry. We emphasize “film” to imply the coupling of the electrostatic
force to the hydrodynamic problem through the free surfaces. Then we have for the velocity

field, s, the potentials, U5 and ¥ and the surface charge density, g.;

1 8 . 1/, _
[V22 - 5@1 <V22UZ) + RlV2 X <V2Q2 X V2\I/2>] = 5(“2 : VZ) <V22u2> (94)

a —
% + us - Vg(]g — v22\II2 =0 (95)
ViU =0,
ov
q2 = —2— J (96)
0z z=0%*
\Ij = \Ilg.
z=0

These equations hold in any 2D electrode geometry where the film is assumed to lie on
the plane z = 0. Since we have an incompressible 2D flow, we can in principle replace the
velocity field with a stream function, ¢ such that iy = V X (0,0,%). In the above, the

dimensionless parameters R and P are

602‘/2‘ _ €om

R =

(97)

ons?’ - posL’
where L is the length scale appropriate to the geometry. In rectangular geometry, we used

the film width d. Recent experiments were in the large Prandtl-like number limit, in which
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case Eqn. 94 simplifies. This simplification results in the loss of time-dependent terms
and intrinsically nonlinear terms from Eqn. 94. Low Prandtl-like number films would make
interesting study in the nonlinear regime, however, unless one finds materials with the proper
material parameters or one can make films an order of magnitude wider, there is little hope
in reducing the Prandtl-like number and still retaining the validity of EHD.

Furthermore, the limitation to 2D flow means that the breadth of secondary instabilities
is limited to those that do not involve changing the vortex axis. Note that vortex stretching
is itself impossible in 2D fluid dynamics [31]. The secondary instability that appears in this
system is the Eckhaus instability [1,11]. This instability restricts the range of wavenumbers
that can appear beyond onset. In experiments, this corresponds to the number of vortices.
Vortex pairs can be added or removed as a function of the applied voltage beyond the critical
voltage. As such, the Eckhaus instability determines the band of stable wavenumbers for the
vortex state. In principle we can calculate the Eckhaus boundary. This involves (see [32,33])
carrying out a numerical procedure to determine the nonlinear solution that describes the
vortex state. A linear stability analysis about the vortex solution renders the linear system
that determines the Eckhaus boundary. However, in systems of finite length, end-effects
dominate. End-selection is the mechanism of creation or destruction of vortex pairs from
the ends of the film. This selection process further constrains the band of stable wavenumbers
[34,35]. The calculation of the end-selection boundary consists of first truncating a multiple
scales expansion of the full set of equations to get the appropriate Ginzburg-Landau equation
and then solving this equation with relevant boundary conditions [34]. We do not present
this here; it is work in progress [36].

It has been found experimentally that when the film is subjected to potential drops large
compared to the critical voltage, the flow becomes unsteady [16]. With the exception of
wavenumber selection instabilities and unsteady flow, no other secondary instabilities have
been observed. This suggests that the system has a relatively clean transition to unsteady
flow. The state of unsteady flow has yet to be investigated, however in a 2D model, the lack

of vortex stretching implies that the flow may become 2D turbulent [37,38].
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VI. FUTURE WORK

Annular films of smectic A 8CB also exhibit electroconvection [16]. An annular film is
shown schematically in Fig. 9. We intend to study experimentally and theoretically the
electroconvection instability in annular films. Electroconvection in annular films allow for
the study of hydrodynamic instabilities with a radial force term. There are few experi-
mental systems in which this is possible. RBC is obviously ruled out since the bouyancy
force has a directional preference (due to gravity) which cannot be altered on the laboratory
scale. Importantly, annular electroconvection is intrinsically non-axisymmetric. Most ex-
periments and theory in annular (or concentric cyclinder) geometry consider axisymmetric
instabilities [9,39,40]. We refer mainly to Taylor vortices in Taylor-Couette flow which are
axisymmetric. The second bifurcation in Taylor-Couette flow is non-axisymmetric [9,39].
The first bifurcation however, in annular electroconvection is non-axisymmetric. There are
other systems where the first bifurcation is non-axisymmetric, for instance Taylor-Couette
flow with counter-rotating cylinders [39-41], however, most of them are 3D systems, annular
electroconvection in a film is 2D.

Experimentally the differences between annular and rectangular films are significant.
The rectangular film has ends and is subjected to end-effects [35], whereas the annular film
is free of end-effects. Leak-currents are significant in a rectangular film due to the excess
liquid crystal at the edges but are virtually non-existant in an annular film. Experimen-
tally, the annular geometry permits plenty of interesting variations. It is easy to alter the
hydrodynamic base state of the film by imposing a shear, by rotating the inner electrode of
the annulus. The resulting 2D Couette flow is known to be linearly stable [10]. However,
with annular electroconvection we can study the effects of a Couette base state on the elec-
troconvection instability. The other variation in annular geometry that we consider is the
eccentric annulus, in which the inner electrode is off-centre. In such a geometry the fluid
and electrodynamics is further complicated by non-trivial azimuthal dependencies. It is our

intention to study the effects of these symmetry breaking processes on electroconvection in
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the annular geometry; by physically changing the geometry to an eccentric annulus (this
breaks the inherent azimuthal symmetry in cylindrical geometry), and by altering the base
state from a quiescent fluid to that with a shear (this breaks a rotational symmetry and
forces a distinction between right and left handedness). Both symmetry breaking processes
can also be combined, i.e. the study of electroconvection in an eccentric annular geometry
with an imposed shear base state.

Experimentally, we intend to directly measure the current transport through the film.
The onset of electroconvection is accompanied by an increase in the current transport i.e.
a decrease in the film resistance [5]. This method will allow for a more accurate deter-
mination of the onset of electroconvection compared to the visual determination of prior
experiments, which required microscopic particles in the flow and the assumption that they
behave passively. The behaviour of the convection current as the voltage is varied will be
the diagnostic for determining the nature of the bifurcation. Furthermore, the slope of the
voltage-current characteristic before the onset of convection gives the resistance and hence
the in situ conductivity of the annular or eccentric film. The annular geometry can also be
made amenable to measure the in-plane viscosity of the smectic film. We intend to do this
by setting the inner electrode to a sinusoidal oscillation of known frequency and amplitude.
We would then follow particles in the flow and measure the amplitude of their oscillation as a
function of their position. Their amplitude is related to the viscosity of the film. The effects
of air drag on the viscosity so measured can be accounted for by repeating this experiment
as a function of film thickness, the frequency of oscillation of the inner electrode, and using
different gases and gas pressures.

Our goal for theoretical work in annular electroconvection, is to predict from the pertinent
equations, the points of bifurcation for the various experimental scenarios described earlier.
This can be achieved by a linear stability analysis of the system of equations about the base
state for the particular scenario. We will follow this with a weakly non-linear analysis to
describe the pattern dynamics of the systems and finally we may work towards determining

the stability boundaries for secondary instabilities.



42

VII. SUMMARY AND CONCLUSION

In this thesis, we have proposed a mechanism to explain the electroconvective instability
observed by Morris et al. [3,5] in freely suspended suspended smectic A liquid crystal films.
The mechanism we have proposed is valid for any freely suspended fluid film provided the
flow is constrained to move two dimensionally, the fluid is isotropic in 2D and that the fluid
is a poor electrical conductor. The pattern forming instability results from the electrostatic
force that acts on the charged fluid. As shown in this thesis, the electrostatics require that
the fluid carries a surface charge density. In the base state, we have determined that this
surface charge density is “inverted” resulting in an unstable configuration. This non-trivial
base state charge density is calculated in detail for two electrode geometries.

Relevant governing equations for the theoretical model are explained. A linear stability
analysis of the set of equations about the base state is carried out. The complicated, non-
local coupling between the surface charge density and the electrostatic force is discussed.
Dimensionless parameters appropriate for this system are described: the control parameter,
R, and the Prandtl-like parameter, P. Results from the analysis are presented. A neutral
stability boundary for the control parameter, R, as a function of the pattern wavenumber,
k is plotted. The onset of the instability (the point of bifurcation) is determined from this
curve. The correlation length for the pattern and the linear growth rate are defined and
calculated.

Theoretical results are compared with experiments by Morris et al. [4,5] and Mao et
al. [18]. There is good quantitative agreement between the predicted and observed pattern
wavelength and pattern correlation length. Theory predicts that the critical voltage varies
linearly with the film thickness and is independent of the film width. On both counts, there
is qualitative agreement with experiment. A quantitative test of the theory for the critical
voltage and the pattern growth rate will require more accurate values of the viscosity and
conductivity of smectic A 8CB.

We have proposed future experimental and theoretical work on electroconvection in an-
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nular films. In this geometry, we have illustrated the various experimental scenarios that
we plan to investigate: a sheared base state and an eccentric annular configuration. We
have also described a method to independently determine the viscosity and conductivity of

smectic A in the same geometry.

APPENDIX A: MIXED BOUNDARY VALUE POTENTIAL THEORY

In this appendix, we briefly introduce mixed boundary value problems for the Laplace
problem. We rely freely on the Sneddon’s [19] excellent monogram on this subject. Realistic
Laplace problems are often described by the Laplace equation for some potential function
subject to mixed boundary conditions. Elliptic partial differential equations with a closed
boundary on which are specified either Dirichlet or Neumann conditions are known to have
unique solutions [22]. Mixed boundary value problems have the boundary divided into a
finite number of subregions with each subregion of the boundary being described by either
Dirichlet or Neumann conditions (there must be at least one Dirichlet subregion and one
Neumann subregion). For 2D Laplace problems where the boundary consists of two regions,
one with Dirichlet boundary conditions and the other with Neumann boundary conditions,
the problem is reduced to:

Find a plane harmonic function ¥(y,z) in the space z > 0, which vanishes as

(y? + 22) — oo for z > 0, and which satisfies the mixed boundary conditions

oU
U(y,0)=F(y), |yl <1 5 =0 ly| > 1, (A1)

z=0
where F(y) is prescribed.
Note that the domain for the potential is doubly infinite and that the Neumann conditions

are homogenous. We will consider two possible solutions depending on the form of the

specified function F(y). If F(y) is an even function then an ansatz is
U(y,z) = / kK LA(K) cos(ky)e = dk (A2)
0

Applying the boundary conditions gives the dual pair
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/ TEVA®K) cos(ky)dk = F(y)  Jy|< 1 (A3)
0
/ T AR cos(ky)dk =0 |y[> 1 (A4)
0
where F(y) is continously differentiable in the interval |y| < 1. These and the next pair of

dual integrals that we will consider are dual integral equations with trigonometric kernels.

We make use of the following cases of the discontinuous Weber-Schafheitlin integral:

/0 (k) cos(ky)dk = 1; lyl< 1, (A5)
/0 TEUL (k) cos(ky)dk = 0; ly[> 1, (A6)
7 H ) cos(hy)ak = %}"n(o, 12,97 lyl< 1, (A7)
/0 ” Jon (k) cos(ky)dk = 0; ly|> 1. (A8)

In the above, F,, is the nth Jacobi polynomial. From these, it follows that a solution to dual
integral Eqns. A3 and A4 is
A(k) = agkJy(k) +2 Z nay Jop (k) (A9)
n=1

with the constants chosen (having used the orthogonality of the Jacobi polynomials).

ao:% 1&0{ A10
7T/0 /(1_y2) Y ( )

R N 19\"
“ T TA/2)0(n + 1/2)/0 (1 — y2)i/2n <§3—y> Fly)dy n=>1 (A11)

The Jacobi polynomials form a complete set of orthogonal functions on the interval (—1,1).

They are defined in terms of the generalized hypergeometric functions [42]:
Fola,b,z) =3 Fi(—n,a+ n;b;x) (A12)

The constants a,, for the even case are found using the following orthogonality condition

L _1 smo; i 1#0
/ w (1 —u) 2 F(0,1/2, u) F;(0,1/2, u)du =
0 mé; if i= 0.

On the other hand if F(y) is odd then an ansatz is



45
U(y, z) = / kL A(K) sin(ky)e ™ dk (A13)
0
Boundary conditions render the dual integral equations:

/0 Tk AR sin(ky)dk = F(y)  |yl< 1 (A14)

/0 TAR) sin(ky)dk =0 |y[> 1 (A15)

The analytic solution to the above pair given by Sneddon is

A(R) = 3 (2 + 1)anTon s (k) (A16)
with
B 2(—1)" 1 gtz g F(VE)
= A T 1) (1—k)1/2—"8k”< Jr Jik nz0 (A17)

To illustrate the usage of the above derivations we present the explicit solution for the
base state charge density for the “wire” case. We need to solve the Laplace equation in 2D
for the electric potential ¥(y, 2);

< ? 0?2

o2 + @)‘I’(y, z) =0, (A18)

subject to the mixed boundary conditions

1%
Uy, 0) =~y ly| < d/2 (A19)
W2, ly| > d/2. (A20)
82 2=071

For the purposes of this Appendix, we employ a non-dimensionalization where lengths are
scaled by half the film width, d/2, and potentials by V. This leaves Eqn. A18 unchanged
but casts Eqns. A19 and A20 into a form suitable for direct application of the method of

dual integrals,

ly| <1 (A21)

ly| > 1. (A22)
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By separation of variables and using the fact that ¥(0,0) = 0 when y = 0, we make the

ansatz that the potential in the upper half plane is given by
© A(k
U(y, z) :/ %ekl sin (ky)dk. (A23)
0

With this ansatz we find the dual integral equations

I Al(f) sin (ky)dk = 2 yl <1 (A24)
/0 ~ A(K) sin (ky)dk = 0 ly > 1. (A25)

This pair of dual integral equations for the Laplace equation has a solution given by Eqn.
A16 whose coefficients are given by Eqn. A17. Due to the utter simplicity of the prescribed

function ¥(y,0) = F(y) on the interval (—1, 1), the only non-vanishing coeffiecient is ao;

1
/ du - (A26)
\[ 1—u)
The solution for the dimensionless potential is then
% Jy( 1 .
Y,z 2/ %2 sin (ky)dk. (A27)
Reverting to the physically relevant dimensional form, we get
VvV oroeo J kd
U(y,z) = 5/ %6_’” sin (ky)dk, (A28)
0

where J; is the first order Bessel function of the first kind. This is precisley Eqn. 15 The

surface charge density is given by

oV (y, 2)

wire =-2
Guire () g

— ¢V / T sin (ky) i, (A29)

z=0

where the factor of two accounts for the two free surfaces. This integral is analytic and the

result, Eqn. 17, is reproduced below:

() 2¢V Y
Quire\Y) =
d (d/2)? —

In passing, we make some remarks on other mixed boundary problems. Mixed boundary

(A30)

problems can also be solved in axisymmetric geometry where one sets up dual integrals with
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Bessel kernels. Both, dual integrals with Bessel kernels and those with trigonometric kernels,
can be solved for non-homogenous Neumann conditions. There are also generalizations to the
case when the boundary is divided into three regions resulting in triple integral equations
with both the Bessel kernel and the trigonometric kernel. In 2D singly infinite domains
(rather than doubly infinite domains) the dual and triple integral equations can be replaced

by dual and triple series relations for which there exist some analytic methods.
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FIG. 2. Coordinates for the theoretical model.
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TABLES

TABLE I. Quantities calculated from the neutral curve.

electrode geometry wires plates
critical wavenumber, k. 4.744 4.223
critical control parameter, R, 76.77 91.84
correlation length, & 0.2843 0.2975

TABLE II. The linear growth rate, 7o~ .

‘P parameter 7o for wire electrodes Tp for plate electrodes

0.01 2.578 2.742
0.03 1.094 1.162
0.10 0.574 0.609
0.30 0.426 0.451

1.00 0.374 0.395
10.00 0.354 0.374

00 0.351 0.372




