
LOCALIZATION OF LIGHT
Light in certain dielectric microstructures exhibits localized
modes, similar to the localized wavefunctions of electrons
in disordered solids. These microstructures show new effects
in both classical optics and quantum electrodynamics.

Sojeev John

Since the beginning of scientific inquiry the nature of light
has played a vital role in our understanding of the physical
world. Physicists have marveled at the dual nature of
light as both corpuscle and wave; we have harnessed the
remarkable coherent properties of light through the use of
lasers; and the quantum mechanics of the interaction of
photons with matter continue to provide fascinating
avenues of basic research. In essence, any alteration of
electromagnetism, the fundamental interaction governing
atomic, molecular and condensed matter physics, will lead
to fundamentally new phenomena in all these areas.

At the microscopic level, ordinary matter exhibits
behavior analogous to light waves. Electrons in a crystal-
line solid produce electrical conductivity by a constructive
interference of various scattering trajectories. The wave
nature of the electron gives rise to allowed energy bands
and forbidden gaps for its motion in the solid. Disorder in
the crystal hinders electrical conductivity, and for some
energies the electronic wavefunctions are localized in
space. This remarkable phenomenon, first discussed by
Philip W. Anderson' in 1958 but fully appreciated only in
the last decade, arises from wave interference, an effect
common to both photons and electrons. Yet it is only
recently that physicists have begun to ask whether
scattering and interference can give rise to an analogous
localization of light in an appropriate dielectric micro-
structure.2 The semiconductor is an electronic material of
fundamental importance in present day technology. Is
there an analogous photonic material that may perform
the same functions with light that semiconductors do with
electrons? It is my aim in this article to describe such a
new class of strongly scattering dielectric microstructures.
Some of these microstructures will soon allow experimen-
tal confirmation of localization of light.

Light localization is an effect that arises entirely from
coherent multiple scattering and interference. It may be
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understood purely from the point of view of classical
electromagnetism. In traditional studies of electromag-
netic wave propagation in dielectrics, scattering takes
place on scales much longer than the wavelength of light.
Localization of light, much the same as that of electrons,
occurs when the scale of coherent multiple scattering is
reduced to the wavelength itself. This is an entirely new
and unexplored regime of optical transport with both
fundamental and practical significance. Photons in a
lossless dielectric medium provide an ideal realization of a
single excitation in a static random medium at room
temperature. (By contrast, studies of electrons in a
disordered solid are hampered by the inevitable presence
of electron-electron and electron-phonon interactions.)
High-resolution optical techniques also offer the unique
possibility of studying the angular, spatial and temporal
dependence of wave intensities near a localization transi-
tion. On the practical side, multiple-scattering spectrosco-
py is already proving to be a valuable tool in studying the
hydrodynamics of colloids, suspensions and other dense
complex fluids. Multiply scattered electromagnetic waves
already provide a valuable noninvasive probe in medicine.

Light localization, which occurs at the classical level,
also has fundamental consequences at the quantum level.
The quantum consequences are most readily seen in
analogy with the electronic energy band gap of a
semiconductor: Certain dielectric microstructures have
no propagating modes in any direction for a range of
frequencies and exhibit what is called a "complete
photonic band gap." Such microstructures consist of
periodic arrays of high-dielectric spheres or cylinders with
diameters and lattice constants comparable to the wave-
length of light. Figure 1 shows one such microstructure in
which a complete bandgap for microwave radiation has
been observed. Strictly speaking, such a structure has no
allowed electromagnetic modes in the forbidden frequency
range, although an impurity placed in the material will
introduce localized modes in the gap, an effect that is also
familiar in semiconductors. But in this photonic analog of
a semiconductor, an impurity atom with a transition
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Dielectric structure that exhibits
strong localization of
electromagnetic waves. The
patterned structure, which has the
point-group symmetry of an fee
lattice, is made by drilling
cylindrical holes in a material
whose refractive index is 3.6.
The pattern of holes is best
understood by imagining an
inverted cone with a 35.26°
opening angle centered at each
circle. The axes of the holes are
three equally spaced radial lines
on the surface of the cone. The
crisscrossing of cylindrical air
holes beneath the surface appears
as small triangles inside the
circles. The holes are 8 mm
apart. Eli Yablonovitch and his
colleagues at Bellcore have found
that this sample exhibits a
complete photonic bandgap for
microwaves. Figure 1

frequency in the band gap will not exhibit spontaneous
emission of light; instead, the emitted photon will form a
bound state to the atom! Thus localization of light and the
concomitant alteration of quantum electrodynamics sug-
gest new frontiers of basic research spanning the disci-
plines of condensed matter physics and quantum optics.

Localized electrons and localized photons
Nature readily provides a variety of materials for the
study of electron localization. In disordered solids local-
ization is more often the rule than the exception. This is
easily seen from the Schrodinger equation for an electron
with effective mass m* moving in a potential V(x) that
varies randomly in space:

2m*
V2 = Eipix) (1)

Electrons with sufficiently negative energy E may get
trapped in regions where the random potential V(x) is very
deep. The rate for electrons' tunneling out of the deep
potentials depends on the probability of finding nearby
potential fluctuations into which the trapped electron can
tunnel. This rate increases as electron energy increases.

To quantify these ideas, consider F(x) to have a root-
mean-square amplitude Vrms and a length scale a on
which random fluctuations in the potential take place.
The correlation length a for the disorder defines an energy
scale ea =#7(2m*a2). For example, in an amorphous
semiconductor, a is the interatomic spacing, ea plays a role
analogous to the conduction bandwidth of the semiconduc-
tor and the zero of energy corresponds to the conduction
band edge of the corresponding crystal. In the weak
disorder limit, Vrms4erl, a transition takes place at an
energy Ec ~ — Vrms

 2/ea. Successive tunneling events
allow an electron of energy greater than Ec to traverse the
entire solid by a slow diffusive process and thereby
conduct electricity, whereas electrons of energy lower
than Ec are trapped and do not conduct electricity.
Anderson first discussed this transition in 1958, and Nevill
Mott called the critical value Ec the mobility edge.3 For

energies much greater than Ec, the scale on which
scattering takes place grows larger than the electron's
de Broglie wavelength and the electron traverses the solid
with relative ease. However, if the disorder becomes
stronger, so that Vrms > ea, the mobility edge moves into
the conduction band continuum (E> 0), and eventually the
entire band may be filled with states exhibiting Anderson
localization. Since disorder is a nearly universal feature
of real materials, electron localization is likewise a
ubiquitous ingredient in determining electrical, optical
and other properties of condensed matter.

In the case of monochromatic electromagnetic waves
of frequency <u propagating in an inhomogeneous but
nondissipative dielectric medium, the classical wave
equation for the electric field amplitude E may be written
in a form resembling the Schrodinger equation:

- V2E + V(V • E) - ^- efluct (x)E = e0 ^- E (2)
c2 c2

Here I have separated the total dielectric constant e(x) into
its average value e0 and a spatially fluctuating part
ffluct (x). The latter plays a role analogous to the random
potential V(x) in the Schrodinger equation; it scatters the
electromagnetic wave.

In a lossless material, in which the dielectric constant
e(x) is everywhere real and positive, several important
observations based on the analogy between the Schro-
dinger (1) and Maxwell (2) equations are in order. First of
all, the quantity e0co2/c2, which plays a role analogous to
an energy eigenvalue, is always positive, thereby preclud-
ing the possibility of elementary bound states of light in
deep negative potential wells. It is also noteworthy that
the laser frequency u multiplies the scattering potential
eMuct (x). Unlike an electronic system, where localization is
enhanced by lowering the electron energy, lowering the
photon energy instead leads to a complete disappearance
of scattering. In the opposite high-frequency limit,
geometric ray optics becomes valid and interference
corrections to optical transport become less and less
effective. In both limits the normal modes of the
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electromagnetic field are extended, not localized. Finally,
the condition that e0 + eMuc, > 0 everywhere translates into
the requirement that the energy eigenvalue be always
greater than the effective potential (&>2/c2)eMucl(x)|.
Therefore, unlike the familiar picture of electronic local-
ization, what we are really seeking when searching for
localized light is an intermediate frequency window
within the positive energy continuum that lies at an
energy higher than the highest of the potential barriers!
(See figure 2.) It is for this simple reason that ordinary die-
lectrics appearing in nature do not easily localize light.

Independent scatterers
The physics underlying the high- and low-frequency limits
in the case of light can be made more precise by
considering scattering from a single dielectric sphere.
Consider a plane wave of wavelength A impinging on a
small dielectric sphere of radius a 4A of dielectric constant
ea embedded in a uniform background of dielectric

POSITION

Photon

POSITION

Scattering potential for electrons in a solid
(black curve, top) and for photons in a
random dielectric medium (black curve,
bottom). The effective scattering potential for
photons is (&>2/c2) eMuu, where eUuu is the
spatially varying part of the dielectric. The
electron (blue) can have a negative energy,
and it can be trapped in deep potentials. By
contrast, the eigenvalue (a>2/c2) e0 (gray line)
of the photon (red) must be greater than the
highest of the potential barriers if the dielectric
constant (e0 + e,lua ) is to be real and positive
everywhere. Figure 2

constant ef, in which the spatial dimension d = 3. The
scattered intensity 7sc.,tl at a distance R from the sphere
can be a function only of the incident intensity /„, the
dielectric constants ea and eh and the lengths R, A and a.
In particular /scaU must be proportional to the square of
the dipole moment induced in the sphere, which scales as
the square of the sphere volume, and by conservation of
energy, it must fall off as R'1 ' with distance from the
scattering center:

fM,e,,,eh)——I()
hi

(3)

Since the ratio /scatt //„ is dimensionless, it follows that
/"i W, £„, eb) = fkea> eb )i'A.'1 ' ', where f2 is another dimen-
sionless function of the dielectric constants. The vanish-
ing of the scattering cross section for long wavelengths as
A "' ' ", obtained here by purely dimensional arguments,
is the familiar result explaining the blue of the sky.

The weak A "'H " scattering is the primary reason
that electromagnetic modes are extended in most natural-
ly occurring three-dimensional systems. This behavior
holds also for a dense random collection of scatterers. In
that case, the elastic mean-free path / is proportional to
A'1 + ' for long wavelengths (see figure 3). This generaliza-
tion of Rayleigh scattering to d spatial dimensions is also
applicable to anisotropic dielectric scattering systems.
For example, a layered random medium in which scatter-
ing is confined to directions perpendicular to the layers
would be described by setting d=l. Alternatively, a
collection of randomly spaced uniaxial rods4 in which
scattering is confined to the plane perpendicular to the
axes of the rods would be described by setting d = 2. A
consequence of the scaling theory of localization, which
applies to both electrons in disordered solids and electro-
magnetic waves in disordered dielectrics, is that all states
are localized in one and two dimensions. For electromag-
netic waves in disordered dielectrics the localization
length g|OC diverges due to Rayleigh scattering in the low
frequency limit, behaving as £loc ~ / in one dimension and
giot. ~ / exp{(ol/c) in two dimensions.

It is likewise instructive to consider the opposite limit,
one in which the wavelength of light is small compared to
the scale of the scattering structures. It is well known that
for scattering from a single sphere, the cross section
saturates at a value of 2ira2 when A -4a. This is a result of
geometric optics; the factor of two arises because of rays
that are weakly diffracted out of the forward direction
near the surface of the sphere. When discussing a dense
random collection of scatterers, it is useful to introduce the
notion of a correlation length a. On scales shorter than a,
the dielectric constant does not vary appreciably except
for the occasional interface where the physics of refraction
and diffraction apply. The essential point is that the
elastic mean-free path never becomes smaller than the
correlation length. This classical elastic mean-free path I
plays a central role in the physics of localization. Wave in-
terference effects lead to large spatial fluctuations in the
light intensity in the disordered medium. If 1^>A, however,
these fluctuations tend to average out to give a physical
picture of essentially noninterfering, multiple scattering
paths for electromagnetic transport. But when l-*A/2tr,
interference between multiply scattered paths drastically
modifies the average transport properties and a transition
from extended to localized normal modes takes place. If
one adopts the most naive version of the Ioffe-Regel5
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Condition for localization is that the
classical transport mean free path / must
approximately equal A/2ir (black curve),
where A is the wavelength of light. In a

medium with small variations in the index of
refraction (green curve), the photon states are

extended. In media with large variations in
the refractive index (blue curve), weak

scattering still dominates when A<i27ra or
A^-2ira, where a is the characteristic length

scale of the medium. A window of
localization opens at intermediate

frequencies. Figure 3

condition, 2vl/A~l for localization, with A being the
vacuum wavelength of light or the wavelength in an
effective-medium theory for scattering, it follows that
extended states are expected at both high and low
frequencies. For strong scattering, however, there arises
the distinct possibility, depicted in figure 3, of localization
within a narrow frequency window when A Tin —a. It is
this intermediate frequency regime that we wish to
analyze in greater detail.

I will refer to the aforementioned criterion for
localization as the free-photon Ioffe-Regel condition. The
criterion is based on perturbation theory for multiple
scattering of free photon states from point-like objects and
on averaging over all possible positions of the scatterers.
The latter assumes that all possible configurations of the
scatterers are equally likely, or that the medium has an es-
sentially flat structure factor on average.

A first correction to the above simple picture arises
when one associates some nontrivial structure to the
individual scatterers. For example, the scattering cross
section can become quite large when the size of the
scatterer is close to a multiple of A, due to what are called
Mie resonances in the scattering from dielectric spheres.
These resonances have profound consequences for the
elastic mean-free path. For spheres of dielectric constant
ea and radius a embedded in a background of dielectric con-
stant efr such that ea fet, ~ 4, the first Mie resonance occurs
at a frequency given by co/c{2a)~l and yields a scattering
cross section a~6ira2. For a relatively dilute collection of
spheres of number density n, the classical elastic mean-free
path is l~l/na= 2a/9/*, where f is the volume filling
fraction of the spheres. Extrapolating this dilute scatter-
ing result to higher density, it should be apparent that for a
filling fraction f~l/9, the free-photon Ioffe-Regel condi-
tion is satisfied on resonance. One might think that
increasing the density of scatterers would further decrease
the mean-free path and localize light. The existence of the
resonance requires, however, that the "spheres of influ-
ence" of the scatterers do not overlap, whereas the fact that
the cross section on resonance is six times the geometrical
cross section indicates that a given sphere disturbs the
wavefield over distances considerably larger than the
actual sphere radius. Indeed, as the density increases
beyond the value for the resonance, the spheres become
optically connected and the mean-free path begins to
increase rather than decrease. From the single-scattering
or microscopic-resonance point of view, the free-photon
criterion for localization is a very delicate one to achieve, a
conclusion that Azriel Genack and Michael Drake" have
shown in recent experiments on light scattering from
randomly arranged dielectric spheres.

Coherent scatterers
The familiar example of Bragg scattering of an electron in
a perfectly periodic crystal tells us that the approach

<
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WAVELENGTH (A/2*)

WAVEVECTOR (k)

Dispersion relation for photons scattered
coherently by a face-centered cubic lattice of
dielectric spheres shows gaps for some values
of k. The gap may persist over the entire
Brillouin zone for a material composed of
highly contrasting dielectrics. The two values
of the gap shown (blue and black) stem from
the two possible polarization states of the
photon. Figure 4

based on independent, uncorrelated scatterers outlined
above overlooks an important aspect of the problem. The
example underlies what may be regarded as a fundamen-
tal theorem of solid state physics, namely, that certain
geometrical arrangements of identical scatterers can give
rise to large-scale or macroscopic resonances. The statisti-
cal average over all possible positions of the scatterers
overlooks the consequences of this theorem. As we shall
see, the theorem also has important consequences for light
scattering in disordered systems in the limit of a high
density of scatterers exhibiting short-range spatial order.

Consider a medium with dielectric constant whose
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fluctuating part eHuct(x) = e,(x) + V(x) is a sum of two
terms, one e,(x) = e,iG UGe'G" that arises from a perfect-
ly periodic Bravais superlattice of reciprocal vectors G,
and a small perturbation V{x) arising from disorder. Here
the dominant Fourier component UG in the sum over the
reciprocal lattice vectors is chosen so that the Bragg
condition k-G = (1/2)G may be satisfied for a photon of
wavevector k. Such a structure is attainable, albeit for low
dielectric contrast between the scatterer and the back-
ground, using a suspension of charged polystyrene balls in
water. The suspensions exhibit charge-induced face-
centered cubic and body-centered cubic superlattice ar-
rangements as well as a number of disordered phases.
Setting V(x) = 0 for the time being, the modulation of the
photon spectrum by the periodic arrangement of scat-
terers may be estimated within a nearly free-photon
approximation. Unlike electrons, which are described by
a scalar wavefunction, the photon field has two polariza-
tion states and they are degenerate. If the electric field
vector is perpendicular to the plane defined by the vectors
k and k — G (optical s wave), the resulting photon
dispersion is the same as for scalar wave scattering. If, on
the other hand, the polarization vector lies in the plane of
Bragg scattering, the scattering amplitude is diminished
by a factor of cos#, where 9 is the angle between k and
k — G (optical p wave). The associated photon dispersion
relations are shown in figure 4.

The existence or near existence of a gap in the photon
density of states is of paramount importance in determin-
ing the transport properties and localization of light.2 The
free-photon Ioffe-Regel condition discussed above assumes
an essentially free-photon density of states and completely
overlooks the possibility of this gap and the concomitant
modification in the character of propagating states. The
electric field amplitude of a propagating wave of energy
just below the edge of the forbidden gap is to a good
approximation a linear superposition of the free-photon
field of wavevector k and its Bragg-reflected partner at
k — G. As co moves into the allowed band, this standing
wave is modulated by an envelope function whose
wavelength is given by 2n/q, where q is the magnitude of
the deviation of k from the Bragg plane. Under these
circumstances the wavelength that must enter the local-
ization criterion is that of the envelope. In the presence of
even very weak disorder, the criterion 2irl/Aenvelope ~ 1 is
easily satisfied as the photon frequency approaches the
band-edge frequency. In fact, near a band edge a>c,
^envelope

In the presence of a complete photonic band gap, the
phase space (or allowed momentum values) available for
photon propagation is restricted to a set of narrow,
symmetry-related cones in the k space, analogous to the
pockets of allowed electron states near a conduction band
edge well known in semiconductor physics. Randomness
in the positions of the dielectric scatterers leads to a
mixing of all nearly degenerate photon branches, even
when the disorder V(x) is weak and treated perturbatively.
In complete analogy with semiconductors, the band gap is
replaced by a pseudogap consisting of localized states. (See
figure 5.)

I have discussed in detail the two extreme limits: a
structureless random medium for which the criterion
2-rrl/A ~ 1 applies and a medium with nearly sharp Bragg
peaks and a band gap for which 2nl/Aenvelope ~ 1 yields
localization. Ivariably a continuous crossover occurs
between these conditions as the structure factor of a high-
dielectric material evolves from one limit to the other.

In the strong scattering regime required to produce a
significant depression of the photon density of states,
important corrections to the nearly free-photon picture of
band structure emerge. Recent experimental studies7 by
Eli Yablonovitch on the propagation of microwaves in a
dielectric material with refractive index 3.6 containing an
fee lattice of spherical air cavities show an almost
complete photonic band gap when the solid volume
fraction f~0.15. (See figure 1.) For a frequency range
spanning about 6% of the gap center frequency, propagat-
ing electromagnetic modes are absent in all but a few
directions. When the solid volume fraction is either
increased or decreased from 0.15, the magnitude of the gap
drops sharply. The existence of such an optimum value of
sphere density illustrates a very fundamental principle
concerning the origin of photonic band structures that is
absent for electronic band structures. Bands of allowed
electronic states arise in an ordinary semiconductor from
coalescence of individual atomic orbitals. But there is no
analog of the atomic orbital in the propagation of light
through a periodic dielectric: A photon cannot be bound to
a dielectric sphere. Instead, there are Mie scattering
resonances, which occur when the diameter of the sphere
is an integral multiple of the wavelength of light. A large
photonic band gap arises when the density of dielectric
spheres is chosen such that the Mie-resonances in the
scattering by individual scatterers occur at the same
wavelength as the macroscopic Bragg resonance of an
array of the same scatterers. This principle may be

Density of states for photons in a disordered
lattice of dielectric scatterers is dominated by
Rayleigh scattering at low frequencies and by

classical ray optics at high frequencies. The
photonic gap of the perfect lattice of scatterers

is now replaced by a pseudogap. The states
in the pseudogap are strongly localized, in

analogy with pseudogaps in amorphous
semiconductors. The existence of a

localization window (shaded region) is highly
sensitive to the static structure factor of the

dielectric material. Figure 5

Pseudogap, strong localization

Rayleigh

FREQUENCY
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Dielectric half space

X / v - 1

BACKSCATTERED INTENSITY

Coherent backscattering from a disordered dielectric, a precursor to localization, arises
because a path (red) and its time-reversed partner (green) interfere coherently, giving rise to a
backscattered intensity larger (at small angles between the incident and backscattered wave)
than the diffuse reflected background one expects in the absence of interference (left panel).
The origin of the intensity is set at the level of the background here. The intensity scale is in
fractions of the background level. The higher of the two peaks shown (blue) describes
backscattering in which the incident photon helicity is preserved; the smaller peak (gray)
describes backscattered intensity when multiple scattering has flipped the helicity. Figure 6

illustrated by a simple example of one-dimensional wave
propagation through a periodic array of square wells of
width a and spacing L. Suppose the refractive index is n
inside each well and is unity outside. Then the Bragg
scattering condition is given by A = 2L, where A is the
vacuum wavelength of light. The analog of a Mie-
resonance in one dimension is a maximum in the
reflection coefficient from a single well, and this occurs
when a quarter wavelength fits into the well: A/(4n) = a.
Combining these two conditions yields the optimum
volume-filling fraction f=a/L= l/(2n). In analogy with
the formation of an electronic band, the photonic band
arises from the coalescence of Mie-scattering resonances of
individual spheres.

Some very recent studies have suggested that the use
of nonspherical scatterers or lattices with a nontrivial
basis might be even more effective in producing a complete
photonic band gap rather than a pseudogap.8 Band
structure calculations have shown that a complete gap
may be produced with refractive index n 2; 2.0 using a
diamond lattice structure. Furthermore, Yablonovitch
and his collaborators have found a complete microwave
bandgap of width about 20% of the gap-center frequency
using cylindrical rather than spherical dielectric micro-
structures.8

Coherent backscattering
The analogy between electrons and photons suggests the
fabrication of a new class of dielectrics that are the
photonic analogs of semiconductors. In one such class—
the periodic array of dielectric scatterers—a photonic
band gap arises. Positional disorder of these scatterers
alters this picture. As in a semiconductor, the band gap is
replaced by a pseudogap of localized states. In this section,
I will describe the process by which a propagating photon
becomes localized and discuss experimental manifesta-
tions of this phenomenon from the standpoint of classical

electrodynamics.
A photon in a disordered dielectric propagates by

means of a random-walk process in which the length of each
random step is given by the classical transport mean-free
path I. On length scales that are long compared to I, it is
convenient to regard this as diffusion of light, with the
diffusion coefficient given by D = '4 c/. Here c is some
effective speed of light in the dielectric medium. Unlike a
classical random walker, however, light is a wave, and this
diffusion process must be described by an amplitude rather
than a probability, so that interference between all possible
classical diffusion paths must be considered in evaluating
the transport of electromagnetic energy. In the case of
optical waves propagating through a disordered dielectric
medium, this interference effect has been vividly demon-
strated by a beautiful series of experiments initiated by Y.
Kuga and A. Ishimaru, by Meint P. van Albada and Ad La-
gendijk and by Georg Maret and Pierre Etienne Wolf.9 In
these experiments, popularly known as observation of
coherent backscattering, incident laser light of frequency co
enters a disordered dielectric half-space or slab and the
angular dependence of the backscattered intensity is
measured. For circularly polarized incident light, the
intensity of the backscattered peak for the helicity
preserving channel is a factor of two larger than the
incoherent background intensity. Coherent backscatter-
ing into the reversed helicity channel, however, yields a
considerably reduced backscattering intensity. The angu-
lar width of the peak in either case is roughly S8~A/{2TTI).

Figure 6 shows a scattering process in which incident
light with wavevector k, = k(l is scattered at points
x,,x2,... xN into intermediate (virtual) states with wave-
vectors k,,k2,.. . kjv_ i and finally into the state kw = k^,
which is detected. For scalar waves undergoing an
identical set of wavevector transfers, the scattering
amplitudes at the points x,. .. xN are the same for the
path (red) and the time-reversed path (dashed, green).
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The nature of the interference between the two paths is
determined entirely by their relative optical path lengths.
The result ing relative phase is given by
exp[i(k, + ]£.r)-(xN - x,)]. In the exact backscattering
direction q = k, + k/ = 0, there is constructive interfer-
ence and a consequent doubling of the intensity over the
incoherent background. If the angle between — k, and
k^ is 0, then the coherence condition for small 9 becomes
q-(xw — x,) = 2v0\xn — x, \A < 1. In the diffusion approxi-
mation |x,, — x,|2~D(tN — <,)~/L/3, where D is the
photon diffusion coefficient and L is the total length of the
path. Thus paths of length L contribute to the coherent
intensity for angles less than 9m = A/[2ir(lL/3)1/2].

At larger angles few paths contribute and the
backscattered intensity decreases rapidly. E. Akkermans,
Wolf and Roger Maynard have given a detailed derivation
of the backscattered lineshape for scalar waves; Michael
Stephen and Gabriele Cwilich have extended the deriva-
tion to electromagnetic waves."' Fred Mackintosh has
shown that the discussion of lineshapes becomes most
transparent in the helicity representation."' In addition
to time-reversal invariance, there is the parity symmetry
between the right- and left-handed circular polarization
states. The symmetries may be broken by the Faraday
effect and by natural optical activity, respectively. The
calculated excess relative intensities with respect to the
incoherent background, based on detailed calculations for
the lineshapes, are also shown in figure 6. In the figure
the intensity level is plotted relative to the diffuse
background level: A level of 1.0 corresponds to a precise
doubling of the light intensity in a particular direction
relative to the background. The angle 9 (measured in
radians) is the angle that the wavevector of the back-
scattered light makes with respect to the vector — k,,
where k, is the incident direction.

The incorporation of coherent backscattering into the
theory of diffusion of wave energy leads to a simple
renormalization group picture of transport (see figure 7).
When wave interference plays an important role in
determining transport, as it does in coherent backscatter-
ing, the transport of wave energy is not diffusive in the
simple sense that a photon performs a classical random
walk. Fortunately, there is a way of applying the concept
of classical diffusion even to this significantly more
complicated situation, provided we make one major
concession in our classical way of thinking: We must no
longer think of the diffusion coefficient as a local quantity
determined by a classical mean-free path and a speed of
propagation; rather, we must consider the macroscopic
coherence properties of the entire illuminated sample. In
a random medium it is reasonable to expect that scatterers
that are very far apart do not on average cause large
interference corrections to the classical diffusion picture.
(The word average here is very important. Changes in
distant scatterers can give rise to significant fluctuations
about the average.) Thus there exists a coherence length
£coh 5; / that represents a scale on which we must very
carefully incorporate interference effects in order to
determine the effective diffusion coefficient at any point
within the coherence volume. As a specific example,
consider a finite size sample of linear size L. By changing
the scale of the sample, the number of diffusion paths that
can interfere changes, giving rise to an effective diffusion
coefficient D(L) at any point within the sample that
depends on the macroscopic scale L of the sample. In the
vicinity of a mobility edge, on length scales L in the range
l<L<gcoh, the transport of energy is subdiffusive in
nature as a result of coherent backscattering, which gives
a significant wave interference correction to classical
diffusion. In this range, the spread of wave energy may be

interpreted in terms of a scale-dependent diffusion coeffi-
cient that behaves roughly as D (L) ~ (e//3) (IIL). On length
scales that are long compared to groh , the photon resumes
its diffusive motion except with a lower or renormalized
value (c//3) (//§,.„>,) of the diffusion coefficient.

The scaling theory of electron localization, formulated
by Elihu Abrahams, Anderson, Don Licciardello and T. V.
Ramakrishnan" and based on the ideas of David Thouless,
also summarizes the physical picture outlined above. The
theory predicts that when the laser frequency co is close to
a mobility edge co*, the scale-dependent diffusion coeffi-
cient may be written in three dimensions as

(4)

The theory also predicts that £c.oh ~ \co — co*| ' diverges as
co approaches co*.

The relevance of this result to an optical transmission
experiment in the absence of dissipation or absorption is
depicted in figure 7. Consider first the case in which the
coherence length is short compared to the slab thickness.
The time required for an incident photon to traverse the
thickness L is given by T(L) = L'A/D(L). For l$£coh <L,
the average displacement R of the photon as a function of
time is that of classical diffusion R~tw2. In the case of in-
cipient localization, described by l<tL4gcoh, the diffusion
coefficient has the value D(L) = (cl/3)(l/L). The transit
time from one face of the slab to the other now scales as
T{L)~L3. In other words a photon near the mobility edge
suffers a "critical slowing down" and in time t traverses a
distance R~-t'/:i rather than the longer distance t1'2
traveled by a classical random walker.

Anomalies associated with incipient localization may
appear in the total intensity transmitted through a slab of
a disordered dielectric illuminated by a steady monochro-
matic plane-wave source. For the case of classical
diffusion, the transmission coefficient T, defined as the
ratio of the total transmitted intensity to the total incident
intensity, is given by the relation T = IIL, where I is the
classical elastic mean-free path. This may also be written
as T = 3D/cL, from which one may infer a transmission
coefficient T~P/(^c^hL) for Z5£coh 4L, but a new scale
dependence T~ P/L2 appears in the incipient localization
regime /<<L<g<fcoh. Genack and Narciso Garcia have
observed scale-dependent diffusion of precisely this nature
in microwave scattering from a disordered collection of
teflon and aluminum spheres (see cover).

In the case of electrons, a conservation law prevents
their total number from changing. Photons, however,
can be absorbed. The discussion of photon localization is
therefore not complete without the analysis of wave
propagation in a weakly dissipative disordered medium.
By weak dissipation I mean that the inelastic mean-free
path, or the typical distance between absorption events,
is large compared to I but nevertheless smaller than the
sample size L. This may be modeled by adding a small,
constant imaginary part e2 to the dielectric constant, so
that eix) = eo + efluct(x) + ie2. The optical absorption co-
efficient a is defined as the constant for the decay with
distance of the intensity Io from a source: / = Ioe ~~ax.
The absorption coefficient describes the average absorp-
tion on scales long compared to the transport mean-free
path /. It should not be confused with the scattering
length of the incident beam, which may in fact be much
shorter than /. Classical electromagnetic theory yields
a = (coe2/D)1/2 for radiation of frequency co. The effects of
coherent wave interference may be incorporated into this
picture using the scaling theory of localization. For an
infinite medium (L = oo), the diffusion coefficient vanish-
es when the coherence length diverges. If Zinel > £coh, it
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Optical transport near a photon mobility
edge: For length scales L short compared to
the coherence length £ t l l h , the transport of
electromagnetic energy is subdiffusive due to
coherent backscattering and must be
described in terms of a length-dependent
diffusion coefficient D~(c//3)(//Z.). On scales
longer than £l ( )h, the photon resumes its
diffusive behavior on average, but the
diffusion coefficient has the renormalized
value C~(c//3)(//g\oh). Figure 7

follows that the increase in the absorption coefficient as
the mobility edge frequency co* is approached from the
extended-state side can be obtained from the change in
the diffusion coefficient: Because D(w)~ \<o — w*\, a(o>)
varies as (e.2/\oj — CJ*\)112 . On the other hand, if the
coherence length exceeds the inelastic length, then Zinei
acts as a long-distance cutoff for coherent wave interfer-
ence. In this case, there is a residual diffusivity given by
Z>(^*) = (cZ/3)(Z/Zinel). Since Zinel = (Z)r,ntl )1/2 and
rinei ~\/(e^fo), it follows that the residual diffusivity
Z)(<y*)~e2

1/3- Substituting the value of the residual
diffusivity into the expression for a reveals that the
absorption coefficient exhibits an anomalous scaling
behavior with e2 a(co*)~e2^/J. The nontrivial critical
exponent value of V3 arises because of the critical slowing
down of the photon as it approaches localization, which
leads to a greater probability of absorption.

The anomalies in absorption associated with localiza-
tion are a general indication of enhanced coupling of the
electromagnetic field to matter. This leads to some
profound new phenomena in atomic physics, which I will
describe in the framework of quantum electrodynamics.

Quantum electrodynamics of localized light
When an impurity atom or molecule is placed in a
dielectric exhibiting photon localization, the usual laws
governing absorption and emission of light from the
impurity must be reexamined. This is most easily seen in
the strong localization limit, that is, in a dielectric
exhibiting a complete photonic band gap. For a single
excited atom with a transition energy to the ground state
given by fuol} which lies within the band gap, there is no
true spontanteous emission of light. The photon such an
atom emits will find itself within the classically forbidden
energy gap of the dielectric. If the nearest band edge
occurs at frequency coc, this photon will tunnel a distance
£[oc ~c/(w,. \eu0 — o)c ])"2 before being Bragg reflected back,
to the emitting atom. The result is a coupled eigenstate of
the electronic degrees of freedom of the atom and the
electromagnetic modes of the dielectric. (See figure 8.)
This photon-atom bound state is the optical analog of an
electron-impurity level bound state in the gap of a
semiconductor." The atomic polarizability, which is
normally limited by the vacuum natural linewidth of the
transition, can in the absence of spontaneous emission
grow sufficiently large near resonance to produce a
localized electromagnetic mode from the nearby propagat-
ing band states of the dielectric.

The fundamental weakness of the vacuum photon-
atom interaction, as expressed by the fine structure
constant a = V137, is completely offset by this nearly
unrestricted resonance. The alteration of the quantum
electrodynamic vacuum by the dielectric host also appears

in the spectroscopy of atomic levels. The ordinary Lamb
shift of atomic levels is dominated by the emission and
reabsorption of high-energy virtual photons. In a photonic
band gap, this self dressing is dominated instead by the
real, bound photon. In general, this will lead to some
anomalous Lamb shift. If this level lies near a photonic
band edge, a more striking effect is predicted to occur. In
this case the atom is resonantly coupled to photons of
vanishing group velocity. The resultant self-dressing of
the atom is sufficiently strong to split the atomic level into
a doublet. The atomic level is essentially repelled by its
electromagnetic coupling to the photonic band edge. One
member of the doublet is pulled into the gap and retains a
photon bound state, whereas the other member is pushed
into the continuum and exhibits resonance fluorescence.
In the nearly free-photon approximation to electromag-
netic band structure, the splitting of a hydrogenic 2p]/2
level is predicted to be as large as 10~6 fc0. This is
analogous to the observed atomic level splittings, usually
called Mollow splittings, which occur when an atom is
subjected to an intense external laser field. For a
dielectric exhibiting photon localization, the same effect
may be achieved without any external field.

Further new phenomena are expected when a collec-
tion of impurity atoms is placed into the dielectric. A
single excited atom can transfer its bound photon to a
neighboring atom by a resonance dipole-dipole interac-
tion. For a frequency ratio A<u/«u0 = 0.05 between the band
gap and the band center, the photon tunneling distance f ]oc
is on the scale of 10a, where the lattice constant a of the di-
electric is itself on the scale of the photon wavelength. For
impurity-atom spacings R = 10-1000 A, the suppression of
dipole-dipole interaction suggested by Gershon Kurizki
and Genack can be neglected.13 The matrix element M
describing the hopping of a bound photon from one atom to
another is given roughly by M~/J'2/R\ where the atomic
dipole fi~ea,t is given by the product of the electronic
charge and the atomic Bohr radius an. This can be
approximately related to the transition energy fuott~e21'a0
by writing M as (e2/al,)(a,)/i?)3. When impurity atoms
separated by R S 10 A have a finite density, it follows that
photonic hopping conduction will occur through a narrow
photonic impurity band of width ~ (ikon){anlRf within the
larger band gap.

The occurrence of a photonic impurity band suggests
new frontiers in nonlinear optics and laser physics. The
strong coupling of light to matter may enhance nonlinear
effects and cause them to be sensitive to the impurity-
atom spacing. For example, when neighboring impurity
atoms A and B are both excited, second harmonic
generation may occur by the transfer of the bound state
from atom A to atom B. Since atom B is already excited,
the transferred photon creates a virtual state, and it may
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then be emitted as a single photon of energy 2fuo() outside
of the photon band gap. The transfer can take place by di-
pole emission from atom A followed by a quadrupole Q
virtual absorption by atom B. This process has an
amplitude fiQ/R4. The resulting virtual excitation on
atom B has odd parity, and it may then decay by a dipole
emission process. The rate of spontaneous second harmon-
ic generation is given by the square of the corresponding
amplitude and depends sensitively, as a>0a3(an/Rf, on the
impurity-atom spacing.

Another significant question is that of laser activity
within the impurity band when many photons are present.
The impurity band defines a novel quantum many-body
system in which the processes of spontaneous and stimu-
lated emission of light are completely confined to and
mediated by photonic hopping conduction between atoms.
All photons are therefore more likely to contribute to the
coherent, cooperative response of the many-body system.
This must of course be balanced against non-electromag-
netic relaxation events. For example, if the atom is
embedded in the solid fraction of the dielectric, phonon-
assisted emission of light as well as other homogeneous
line-broadening effects will reduce the lifetime of a single
photon-atom bound state. For an atom in the vacuum
part of the dielectric, the dominant contribution to this
lifetime is due to the finite absorption length Zabs of the or-
biting photon. For a midgap atomic level the fraction of
time that the system spends as an orbiting photon is about
10 " 7 . This corresponds to a lifetime on the scale of one
minute for each kilometer of absorption length Zabs. The
integrity of the photonic impurity band requires that all
such homogeneous line-broadenings for a single atom be
small compared to the overall frequency bandwidth of the
impurity band. Inhomogeneous line broadening effects
such as random strain fields in the solid will also affect the
nature of electromagnetic transport within the photonic
impurity band.

The implications of photon localization in quantum
optics appear numerous and are only beginning to be
explored. The fundamental challenge at present is one of
materials science, namely the fabrication of three-dimen-
sional arrays of lossless, high-refractive index scatterers of
size comparable to the wavelength of light in which some
degree of ordering can be induced. A possible solution to

Photon-atom bound state (blue) is predicted
when an impurity atom is placed in a
dielectric such that the atom's transition
frequency coo lies in the localization gap A<y of
the dielectric. For A.CL>/OJO = 0.05, the bound
photon may tunnel a distance £,ot ~10a,
where a is the dielectric lattice spacing, before
being Bragg reflected and reabsorbed by the
atom. When several atoms are placed a
distance R<£|nc apart in the dielectric, the
photons exhibit hopping conduction by means
of the atomic resonance dipole-dipole
interaction, which leads to the formation of a
narrow photonic impurity band in the (larger)
photonic band gap (bottom panel). Figure 8

this fabrication challenge lies in the development of
charged colloidal suspensions of high-index semiconduc-
tors, such as TiO2. Even in the case of charged polystyrene
spheres in water, which have a refractive index ratio of
1.5:1.3, significant changes in the rate of spontaneous
emission from atoms placed in solution has been ob-
served.14 The charge-induced ordering of spheres leads to
significant changes in the photon density of states even in
this weak scattering case. Another possible solution to the
materials problem is the refinement of etching techniques
to drill cylindrical holes with diameters comparable to the
wavelenth of visible light in bulk semiconductors. These
possibilities suggest that the microwave experiments of
Genack and his collaborators, demonstrating mobility
edge behavior in a strongly disordered medium, as well as
the result from Yablonovitch's group, demonstrating a
complete microwave band gap in an ordered structure,
may soon be extended to the optical wavelength regime. A
clear demonstration of light localization and a complete
elucidation of its consequences appear imminent.
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