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The Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state has received renewed interest recently due to the ex-
perimental indication of its presence in CeCoIn5, a quasi-two-dimensional �2D� d-wave superconductor. How-
ever direct evidence of the spatial variation of the superconducting order parameter, which is the hallmark of
the FFLO state, does not yet exist. In this work we explore the possibility of detecting the phase structure of
the order parameter directly using conductance spectroscopy through microconstrictions, which probes the
phase sensitive surface Andreev bound states of d-wave superconductors. We employ the Blonder-Tinkham-
Klapwijk formalism to calculate the conductance characteristics between a normal metal �N� and a 2D s- or
dx2−y2-wave superconductor in the Fulde-Ferrell state, for all barrier parameter z from the point contact limit
�z=0� to the tunneling limit �z�1�. We find that the zero-bias conductance peak due to these surface Andreev
bound states observed in the uniform d-wave superconductor is split and shifted in the Fulde-Ferrell state. We
also clarify what weighted bulk density of states is measured by the conductance in the limit of large z.
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I. INTRODUCTION

In the early 1960s, Fulde and Ferrell1 and Larkin and
Ovchinnikov2 proposed the possibility that a superconduct-
ing state with a periodic spatial variation of the order param-
eter would become stable when a singlet superconductor is
subject to a large Zeeman splitting. The Zeeman splitting
could be due to either a strong magnetic field or an internal
exchange field. Under such a strong magnetic or exchange
field, there is a splitting of the Fermi surfaces of spin-up and
-down electrons, and condensed pairs of electrons with op-
posite spins across the Fermi surface may be formed to lower
the free energy from that of a normal spin-polarized state.
These pairs have a nonzero total momentum 2q, which
causes the phase of the superconducting order parameter to
vary spatially with the wave number 2q. This state is known
as the Fulde-Ferrell �FF� state. Larkin and Ovchinnikov
�LO�, on the other hand, proposed independently an alterna-
tive scenario, in which the order parameter is real, but varies
periodically in space, possibly in more than one directions.
Both types of states are now known �collectively� as the
Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state. It has not
yet been observed in conventional low-Tc s-wave supercon-
ductors, which are mostly three-dimensional, probably be-
cause the orbital effect of the magnetic field dominates the
Zeeman effect. The situation has been changed by experi-
mental results suggestive of the FFLO state in heavy-
fermion, quasi-1D �one-dimensional �1D�� organic, or high-
Tc superconductors;3–11 many of these compounds are quasi-
one or quasi-two dimensional �2D�, thus the orbital effect is
weak when the magnetic field is in the conducting plane or
along the chain. Recent experimental results in CeCoIn5, a
quasi-2D d-wave superconductor, are particularly
encouraging.12–18We note in passing that this subject is also
of interest to the nuclear and particle physics communities
because of the possible realization of the FFLO state in high

density quark matter and nuclear matter,19 as well as in cold
fermionic atom systems.20

The most unambiguous evidence of the FFLO states
should be based on phase-sensitive experiments that can di-
rectly reveal the spatial variation of the phase or sign of the
order parameter. One possibility is the Josephson effect.21 To
the best of our knowledge there has been no report on this or
other phase sensitive measurements thus far. In this paper,
we consider an alternative phase sensitive probe, i.e., the
conductance spectroscopy through a microconstriction. A
powerful method to calculate the differential conductance
�G�V��dI�V� /dV� characteristics of a normal metal/
superconductor junction �NSJ� was developed by Blonder,
Tinkham, and Klapwijk,22 which unified quasiparticle tun-
neling and Andreev reflection.23,24 Only s-wave supercon-
ductors were considered in that work, but the method has
since been generalized to the d-wave case.25,26 When the sign
of the order parameter experienced by the electronlike and
holelike quasiparticles �QPs� before and after specular reflec-
tion at the junction interface changes, zero-energy Andreev
bound states �ABSs� �also called the midgap states25� are
formed at the S side of the N /S interface �for z�0�. These
ABSs will give rise to a zero-bias conductance peak �ZBCP�
in the tunneling spectrum of the NSJ. A well-known example
of such NSJ is when the junction interface along the nodal
line of the dx2−y2-wave superconductor ��110� contact�.25–30

This feature has since been widely used to identify the order-
parameter symmetry of unconventional superconductors.31–37

We would like to emphasize here that the ABSs are conse-
quences of the phase change of the d-wave order
parameter,38,39 and thus their spectra should also be sensitive
to the spatial variation of the order parameter. In this paper,
we will show this sensitivity by explicit calculations, and
from their spectra detected via conductance spectroscopy
through a microconstriction, one can extract the momentum
of the superconducting order parameter. In the present work,
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we will focus on the FF state; the more general LO cases are
currently being investigated and will be presented
elsewhere.40 As we will show below, for a dx2−y2-wave super-
conductor in the FF state, the ZBCP observed in a �110�
contact is split and shifted by both the Zeeman field and pair
momentum; the latter can be determined from the splitting.

This paper is organized as follows. In Sec. II we introduce
the model and present the self-consistent mean-field solu-
tions for both s- and dx2−y2-wave superconductors in the FF
phases. The electron density of states �DOS� of the FF states
is also obtained. The scheme to calculate the conductance
characteristics is presented in Sec. III, with numerical results
for both s-wave and dx2−y2-wave cases, and their relation
with the corresponding bulk electron DOS is discussed. The
features associated with the ABSs in the FF phase are ex-
plored in Sec. IV, where we solve their spectra in the FF
state. We present further discussion on our results and a sum-
mary in Sec. V. In this work, we consider zero temperature
only, and calculations on d-wave superconductors are simply
referred to dx2−y2-wave.

II. THE FULDE-FERRELL STATE AND BULK DENSITY
OF STATES

We begin with the mean field Hamiltonian for a 2D su-
perconductor in the BCS state �q=0� or the FF state �q
�0�:

HMF = �
k�

��k + ��0B�ck�
† ck�

− �
k

��kqck+q↑
† c−k+q↓

† + �kq
* c−k+q↓ck+q↑� , �1�

where �k is the single-particle kinetic energy relative to the
Fermi energy �F, B is the Zeeman magnetic field, �0 is the
magnetic moment of the electron, �kq is the pairing potential
and satisfies the self-consistent condition,

�kq = − �
k�

Vkk��c−k�+q↓ck�+q↑� . �2�

For s-wave, we have Vkk�=−V0, while for d-wave, we have
Vkk�=−V0 cos�2�k�cos�2�k�� �here, 	�k 	 , 	�k� 	 � 	
c��F,

c is the cutoff, �k is the azimuthal angle of k�. The orbital
coupling between the magnetic field and electron motion is
absent when the field is in the plane. The mean field Hamil-
tonian could be rewritten as

HMF = �
k

�ck+q↑
† ,c−k+q↓�Ĥk
 ck+q↑

c−k+q↓
† � + const, �3�

where

Ĥk = 
�k+q + �0B − �kq

− �kq
* − �k−q + �0B

� .

To diagonalize it, we perform the Bogoliubov-Valatin trans-
formation


 ck+q↑

c−k+q↓
† � = 
 uk

* vk

− vk
* uk

�
�k

�k
† � , �4�

and choose

uk

vk
=

�k
�s� + Ek

�kq
,

	uk	2 =
1

2

1 +

�k
�s�

Ek
� = 1 − 	vk	2,

where Ek=��kq
2 +�k

�s�2, �k
�s�= ��k+q+�k−q� /2, and �k

�a�= ��k+q
−�k−q� /2, from which we get the diagonalized Hamiltonian

HMF = �
k

�Ek+�k
†�k + Ek−�k

†�k� + const �5�

with eigenenergies ��= ±1�

Ek� = Ek + ���0B + �k
�a�� . �6�

There are regions in the k-space where the Cooper pairs are
destroyed and occupied by electrons of one spin species;
these are states with Ek��0. In these cases the Bogoliubov-
Valatin transformation �Eq. �4�� should be replaced by


 ck+q↑

c−k+q↓
† � = 
 uk

* vk

− vk
* uk

�
�k
†

�k
† � �7�

when Ek+�0, or


 ck+q↑

c−k+q↓
† � = 
 uk

* vk

− vk
* uk

�
�k

�k
� �8�

when Ek−�0.41 Then, the diagonalized Hamiltonian is

HMF = �
k

�	Ek+	�k
†�k + 	Ek−	�k

†�k� + const �9�

with positive quasiparticle energies.
In the weak coupling limit, the total energy of the system

is given by

�H − �N� = �
k 
2�k

�s�	vk	2, Ek,±1 
 0

�k+q + �0B , Ek+ � 0

�k−q − �0B , Ek− � 0
� −

�q
2

V0
.

�10�

Here, for an s-wave superconductor, we have �kq=�q, and
for a d-wave superconductor, we have �kq=�q cos 2�k. For a
given Zeeman field B, we calculate the energy of the pairing
state numerically using Eq. �10� with Q=qvF /�0 varied, and
compare it with that of the normal spin polarized state, in
order to find the ground state. In our numerical calculation
presented below, we take 	
c=10�0 �here �0 is the gap of
the usual BCS state at T=0 without a Zeeman field, and for
d-wave it is the gap along antinodal direction or maximum
gap�, and H=�0B /�0. The calculation of the self-consistent
pairing potential shows that the superconducting state is de-
stroyed at H
1 for s-wave42 and at H
1.06 for d-wave.43,44

In the superconducting regime, for s-wave case, at Hp1
�0.704, a transition occurs and the FF state becomes the
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ground state. For d-wave case, the critical Zeeman field is
Hp1�0.544 where an FF phase occurs with q along the
nodal direction. At a higher Hp1� �0.78, the FF state with q
along the antinodal direction dominates.44 The critical fields
Hp1 are slightly smaller than the Clogston-Chandrasekhar
fields which is Hp1=1/�2 for s-wave,45 and �0.56 for
d-wave44 �see also Ref. 46�. The qualitative illustrations of
the phase diagrams are presented in Figs. 1 and 2.

The finite momentum of the order parameter leads to a
nonzero supercurrent in the ground state. However, the su-
percurrent is expected to be compensated by the backflow of
the quasiparticle current, and therefore, we have a zero total
current.1 Here we demonstrate that the total current is indeed
zero for the self-consistent mean-field ground state. The total
current operator can be written as

J =
e

m
�
k

�„k + q…ck+q↑
† ck+q↑ − �k − q�c−k+q↓

† c−k+q↓�

�11�

and in the superconducting state, its expectation value is

�J� = −
e

m
�
k 
2q	vk	2, Ek,±1 
 0,

q + k , Ek+ � 0,

q − k , Ek− � 0.

�12�

By differentiation of Eq. �10� at fixed � we can verify that

�J� = − e
�

�q
�H − �N� .

Since �H−�N� is minimized in the q ,� space, the current
must be zero.

The electron DOS can be evaluated using

��E� = �
k,Ek±
0

	uk	2���E − Ek+� + ��E − Ek−��

+ �
k,Ek+�0

�	vk	2��E + Ek+� + 	uk	2��E − Ek−��

+ �
k,Ek−�0

�	uk	2��E − Ek+� + 	vk	2��E + Ek−�� .

�13�

Within the approximation of �k
�s���k and �k

�a��qvF cos��k
−�q�, it can be seen that for an arbitrary state k, there is
always another state k� with �k�=−�k, so that both states
have the same energy, and their weighting factors in Eq. �13�
add up to unity. Thus, Eq. �13� can be simplified to

��E� =
�n�0�
4�

�
0

2�

d��
0

	
c

d����E − 	Ek+	� + ��E − 	Ek−	�� ,

where �n�0� is the DOS of the normal state at the Fermi
level. Finally, we obtain

�e�E�
�n�0�

=
1

2�
�

0

2�

d� �̃e�E,�� , �14�

where

�̃e�E,�� =
1

2
 	�+	
��+

2 − 	��kF�	2
+

	�−	
��−

2 − 	��kF�	2
� ,

with ��=E−���0B+qvF cos��k−�q��. The result is pre-
sented in Fig. 3.

III. THE CONDUCTANCE CHARACTERISTICS

In the presence of a normal metal/superconductor inter-
face, to study the QPs, one needs to solve the Bogoliubov-de
Gennes �BdG� equations.47 From the mean field Hamiltonian
�1�, we obtain

Eu��x� = �ĥ0 + ��0B�u��x� +� dx���s,r�v��x�� ,

�15a�

FIG. 1. Qualitative sketch of the phase diagram of an s-wave
superconductor under a Zeeman field, including the possibility of
Fulde-Ferrell state. Solid line shows the phase transition between
the superconducting state and the normal spin polarized state;
dashed-dotted line indicates the phase transition between the usual
BCS state and the FF state; dotted line gives the Clogston-
Chandrasekhar critical field.

FIG. 2. Qualitative sketch of the phase diagram of a d-wave
superconductor under a Zeeman field, including the possibility of
Fulde-Ferrell state. The curves have the same meaning as in Fig. 1,
except that the dashed line is the phase boundary separating FF
states with q along the antinodal direction and the nodal direction.
Here, � is the angle between q and the antinodal direction.
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Ev��x� = − �ĥ0 + ��0B�v��x� +� dx��*�s,r�u��x�� ,

�15b�

where s=x−x�, r= �x+x�� /2, ĥ0=−�2 /2m+U��x�−�, and

��s ,r�=�dkeik·s�̃�k ,r�ei2q·r. Here, q is determined by mini-
mizing the ground-state energy �Eq. �10��. To avoid accom-
modating super and/or normal current conversion at the N /S
interface, which may require a nontrivial modification of the
order parameter structure near the interface, we assume that
q is parallel to the N /S interface at x=0; this choice makes
theoretical analysis simpler and comparison to experiments
easier. Neglecting the proximity effect at the N /S interface,

we have �̃�k ,r�=��k���x�, where ��x� is the step function,
and ��k� is the pairing potential in the bulk superconductor.
In the WKB approximation, the BdG equations have the spe-
cial solutions of the form,


u�

v�
� = eikF·x
 eiq·xũ�

e−iq·xũ�

� , �16�

where ũ� and ṽ� obey the Andreev equations

�ũ� = −
i�kF + q�

m
� ũ� + ��kF���x�ṽ�, �17a�

�ṽ� =
i�kF − q�

m
� ṽ� + �*�kF���x�ũ�, �17b�

where �=E−��0B−q ·kF /m. The eigenenergy E is symmet-
ric about E=��0B+q ·kF /m instead of zero as in Ref. 22.
These equations are similar to those of Ref. 48, where the
authors studied conductance characteristics in the presence
of a supercurrent along the junction �note that the q /�0 in
Ref. 48 is equal to Q /2 of this work�. Following the method
of Blonder-Tinkham-Klapwijk,22,26,48 the normalized tunnel-
ing conductance at zero temperature is given by G
=Gns /Gnn, where Gns and Gnn are the tunneling conduc-
tances in the superconducting and normal states, respec-
tively. Since the QPs of the two spin species are uncoupled,
the conductance will simply be the average over the two spin
components:

Gns = 1
2 �Gns

+ + Gns
− � ,

and the same for Gnn. For simplicity, we will drop the spin
index when there is no ambiguity. The conductances of each
spin species are given by

Gns = −
e2

�
�

−�/2

�/2

d��1 + 	a�− E,��	2 − 	b�E,��	2� , �18�

Gnn = −
e2

�
�

−�/2

�/2

d��1 − 	b�+ � ,��	2� , �19�

where

a�E,�� =
cos2 �

�+�cos2 � + z2� − �−z2 , �20a�

b�E,�� = −
z�z + i cos ����+ − �−�
�+�cos2 � + z2� − �−z2 , �20b�

�± =
� ± ��2 − 	���±�	2

�*��±�
, �20c�

� = E − ��0B −
qkFy

m
. �20d�

Here, a�E ,�� and b�E ,�� are the Andreev and normal reflec-
tion coefficients, respectively; �±=�±�, � is the angle be-
tween kF and the +x axis, � is the angle between the antin-
odal direction and the +x axis for d-wave, and zero for
s-wave, z=mU /kF is a dimensionless barrier-strength param-
eter. We give the normalized tunneling conductance of the
FF states in both s- and d-wave superconductors with the
arrangement of q parallel to the N /S interface in Figs. 4–6,

FIG. 3. �Color online� Representative electron density of states
for various Zeeman fields and both s- and d-wave superconductors.
�a� s-wave: solid line, H=0.704, Q=0.804; dashed line, H=0.8, Q
=0.892; dotted line, H=0.9, Q=0.952. �b� d-wave with q along the
antinodal direction: solid line, H=0.78, Q=0.808; dashed line, H
=0.88, Q=0.9. �c� d-wave with q along the nodal direction: solid
line, H=0.544, Q=0.608; dashed line, H=0.68, Q=0.816; dotted
line, H=0.776, Q=0.94.

CUI et al. PHYSICAL REVIEW B 73, 214514 �2006�

214514-4



and also show the spin splitting effect of the tunneling con-
ductance at a large z=5.0 in Fig. 7. In Fig. 8, we give the
conductance of the competing uniform BCS states at the
critical fields for both pair types of superconductors. Note
that the Zeeman splitting for the s-wave case shown in Fig.
8�a� reproduces the well-known results reviewed in Ref. 49
and the z=0 results given in Ref. 50.

We start our discussion with an s-wave superconductor or
a d-wave superconductor with �100� contact, where there are
no ABSs; thus the conductances are determined by the bulk
quasiparticles. We note that, in the arrangement considered
here, due to the effect of pair momentum, the conductance
curves at large z seem to no longer coincide with the corre-
sponding electron DOS for either case. �Compare Figs. 4�c�,
5�c�, and 6�c� with Figs. 3�a�–3�c�.� At first sight, this ap-
pears to be against our intuitive understanding of what the
NSJ conductance at high-barrier limit �tunneling limit� is
supposed to be measuring; we now resolve this issue below.

In the arrangement of NSJs considered here, the applied
voltage and the measured current are both along a fixed di-
rection in the conducting plane that is normal to the N /S

interface. Thus we realize that the junction conductance in
the high-barrier-strength limit is actually measuring a
cos2 �-weighted DOS. That is, the QPs of various momenta
k on the 2D Fermi surface �i.e., circle� do not all make equal
contributions to the junction conductance, but should be
weighted by cos2 � where � is the angle between k and the
current direction x. The weighted DOS ��w�E�� measured in
the high-z-limit junction conductance is therefore

�w�E�
�n�0�

=
1

�
�

0

2�

d� �̃e�E,��	cos �	2. �21�

In the uniform BCS state �without involving ABSs�, such
weighted average simply returns to the original DOS, i.e.,
Eq. �21� is the same as Eq. �14� in the cases studied here.
This is because the order parameter is isotropic over the mo-
mentum space for an s-wave superconductor, while for an
N/�d-wave superconductor� junction with �100� contact, the
order parameter is symmetric about �= ±� /4 so that the par-
tial DOS of a fixed direction is also symmetric about the
same line. Because the cos2 � weighting factor adds up to be
1 for two angles that are symmetric about this line, we thus

FIG. 4. �Color online� The normalized conductance vs voltage
for normal-metal/s-wave FF superconductor junction: �a� z=0, �b�
z=0.5, �c� z=5.0. Solid line, H=0.704, Q=0.804; dashed line, H
=0.8, Q=0.892; dotted line, H=0.9, Q=0.952.

FIG. 5. �Color online� Same as Fig. 4 except it is now for
normal-metal/d-wave FF superconductor junction with �100� con-
tact. Solid line, H=0.78, Q=0.808; dashed line, H=0.88, Q=0.9.
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have the weighted DOS by high-z junction conductance to be
again the same as the unweighted DOS.26 However, the situ-
ation is very different in the FF state, because this kind of
symmetry is broken by the pair momentum which causes a
�-dependent energy shift, thus the two kinds of DOS are no
longer the same. This is illustrated in Fig. 9. It is clear from
this figure that the high-z junction conductance measures the
cos2 �-weighted DOS, and not the unweighted DOS in gen-
eral. �The slight discrepancy between the tunneling conduc-
tance and the weighted DOS is because z=5.0 is still not
high enough.�

The most prominent features of the high-z junction con-
ductance of an N/�d-wave FF superconductor� with �110�
contact are due to the ABSs, which are the main focus of the
present work. To interpret these features we need to under-
stand how the pair momentum affects the spectra of the
ABSs, which is the subject of the next section.

IV. ANDREEV BOUND STATES IN THE d-WAVE FULDE-
FERRELL SUPERCONDUCTOR WITH (110)

JUNCTION

As has been reviewed in the introduction, for an
N/�d-wave superconductor� junction with �110� contact, a

ZBCP is expected due to the formation of the “zero energy
Andreev bound states” �or “midgap states”� at the junction
interface. Thus for an N/�d-wave superconductor in a FF

state� junction with �110� contact and q along �11̄0�, we need
to understand the effects of �0B and q on the spectra of
ABSs before we can understand the conductance character-
istics for this junction.

In the limit of z→� we can consider a simple model with
a FF superconductor in the region x�0, and vacuum or an
insulator in the region x�0, with q parallel to the N /S in-
terface. In the superconductor region, from Eq. �17�, we can
find the solutions of bound states �which decays to zero as
x→ +�� to be of the form


ũ�±

ṽ�±
� = e−�x
û�±

v̂�±
� ,

where

� = m�	�	2 − �2/	kFx	 ,

FIG. 6. �Color online� Same as Fig. 4 except it is now for
normal-metal/d-wave FF superconductor junction with �110� con-
tact. Solid line, H=0.544, Q=0.608; dashed line, H=0.68, Q
=0.816; dotted line, H=0.776, Q=0.94.

FIG. 7. �Color online� The normalized conductance G �solid
line� and its two spin components G± �dashed line for spin-up,
dashed-dotted line for spin-down� at a large z=5.0. �a� s-wave with
H=0.704; �b� d-wave with q along antinodal direction and H
=0.78; �c� d-wave with q along nodal direction and H=0.544.
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û�±/v̂�± = �/�� � i�	�	2 − �2� ,

and �=E−��0B−qkFy /m �kFx=kF cos �, kFy =kF sin ��. In
order to satisfy the vanishing wave-function boundary con-
dition at x=0, we need to first superpose the above solutions
of opposite kx,

���x� = Aei	kx	x−�x
 eiqyû�+

e−iqyv̂�+
�

+ Be−i	kx	x−�x
 eiqyû�−

e−iqyv̂�−
�;

imposing the vanishing boundary condition at x=0 then
yields

û�+

v̂�+

=
û�−

v̂�−

. �22�

For an s-wave superconductor, and for a d-wave super-
conductor with �100� contact, Eq. �22� yields no ABSs solu-
tions. For a d-wave superconductor with �110� contact, we
obtain one solution for each −kF�kFy �kF at �=0 or

E = ��0B + qkFy/m . �23�

We see that the energies of the ABSs are first split by the
Zeeman energy to ��0B and then shifted by an amount pro-
portional to both the pair momentum q and the sine of the
incident angle � �which ranges between −90° and +90°�; the
combined results of them will lead to a splitting, shifting,
and broadening of the ZBCP, which we now analyze. With
�110� contact, the order parameter is proportional to sin 2�,
which vanishes at �=0 and ±90°, implying that near these
special values there are either no ABSs, or their contributions
to conductance will be very weak because these are very
loosely bound states; the dominant contributions come from
ABSs with � around ±� /4 �or around gap maxima�; the
energy shift of these states due to pair momenta are in oppo-
site direction when the sign of � is different. Thus for suffi-
ciently large q, which is the case here, the junction conduc-
tance at positive bias should exhibit two peaks, one on each
side of �0B, and a dip at the Zeeman field energy E=�0B.
�The conductance has a symmetry about zero bias in the
approximation adopted here, so we do not need to consider
negative bias.� For the two peaks, the one on the right-hand

side �Ep+� arises from 0���� /2, whereas the one on the
left-hand side �Ep−� arises from −� /2���0. If only
spin-up QPs are considered, the two peaks are of equal
strength and equal distance from the dip as illustrated in the
dashed line of Fig. 7�c�. When the contributions from the
QPs of both spin species are summed up, the two peaks will
not be symmetric about the dip �Ep− will be shifted slightly
to the right, but the influence on Ep+ and the dip is negli-
gible�, and a weak peak at zero bias emerges �see Fig. 7�c���.
To locate the position of the peak Ep+, we first notice from
Eqs. �18�–�20� that the bias voltage difference between the
peak and the dip, �Ep= 	Ep+−�0B	, should be a function of
qvF in the high-z limit and vanishes when the pair momen-
tum is zero. Numerically, therefore we can consider a sim-
plified situation where there exists the pair momentum with-
out Zeeman field �such in Ref. 48� and calculate this
difference as a function of the pair momentum. The result is
shown in Fig. 10. By fitting the data to a straight line through
the origin, we obtain

Ep+ � �0B + 2
3qvF. �24�

Thus, by measuring the bias voltages of the peak and the dip
in the high-z junction conductance with �110� contact, and in
particular the difference between them, we can obtain a good
estimate of q. We note that without this pair momentum, we
would have all ABSs at energies E=��0B, which would
have given rise to one sharp peak only at eV=�0B in the
same conductance plot, as shown in Fig. 8�b�. Therefore we
conclude that the signature of the FF state is clearly revealed
in the junction conductance characteristics, especially at high
z, but the conductance behaviors at low z for all three cases
studied here are also quite novel, since they are quite differ-
ent from the corresponding results for uniform s- or d-wave
superconductors.

V. SUMMARY AND DISCUSSION

In this paper we have studied the conductance character-
istics of a junction between a normal metal and a supercon-
ductor in the Fulde-Ferrell �FF� state, using the Blonder-
Tinkham-Klapwijk formalism. We have studied both s- and
d-wave cases, and for the latter case, we considered junctions
along both the nodal ��110�� and antinodal ��100�� directions.

FIG. 8. �Color online� The
normalized conductance vs volt-
age for the competing uniform
BCS states at the critical fields
with different barrier intensities z.
�a� s-wave superconductor with
H=0.704; �b� d-wave supercon-
ductor with H=0.544 and �110�
contact.
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The conductance characteristics of a microconstriction is
presumably easiest to understand in the high tunneling-
barrier limit, when the conductance should give information
about DOS of the superconductor. In the FF phase, the Zee-
man field should split the contributions to the conductance
by the spin-up and -down QPs, i.e., shifting their contribu-
tions by the Zeeman energy in opposite directions. In addi-
tion, for QPs of either spin species, their contributions should
be shifted by an amount proportional to the pair momentum,
with a proportionality constant depending on the cosine of
the angle between its kinetic momentum and the pair mo-
mentum. This proportionality constant can range from a
negative maximum to a positive maximum. Thus we found
the effect of q to be a broadening rather than a shift. One
would expect similar effects to occur on the contributions by
the ABSs, resulting in the shift and broadening of the ZBCP.
Thus, in the high-barrier-limit, one might �naively� expect
the tunneling spectrum of d-wave superconductor with �110�
contact to be composed of broadened ZBCP’s centered
around ±�0B. In our numerical results, we find instead that

the high-barrier-limit tunneling conductance of d-wave su-
perconductors with �110� contact has a dip at the Zeeman
energy, with one round peak on each side of it, and also
another weak peak at exactly zero energy. This is quite dif-
ferent from the situation of the BCS state in the presence of
a Zeeman field, in which case one expects the sharp ZBCP to
be shifted to ±�0B, as well as the naive expectation above.
The dip and the two round peaks can be understood as due to
the fact that the q values appearing here are so large that they
are already beyond the critical value obtained in Ref. 48,
which studied directly the current effect on the conductance
characteristics in the absence of a Zeeman field. For such
large q values, their effect on the ZBCP in the high-barrier-
limit tunneling conductance is to split the ZBCP into two
round peaks with a center dip. It is worth noting that such
high values of q are not accessible through direct application
of a supercurrent. The weak peak at zero energy turns out to
be the result of summing up spin-up and -down contribu-
tions. Furthermore, numerical analysis shows that the bias
voltage difference between the dip and the round peak on its
right-hand side is proportional to the pair momentum and
thus gives us a simple way to estimate the pair momentum
for d-wave superconductor with �110� contact.

For s-wave superconductor and d-wave superconductor
with �100� contact, there is no ABS and the conductance is
due to contributions from bulk quasiparticles exclusively. In
these cases we have also found conductance features in the
FF superconductors that are very different from the BCS
superconductors. We found that because of the energy shift
due to the pair momentum �which breaks the spatial symme-
tries in the original system�, the conductance in the high
barrier limit is no longer the same as the electron DOS; in-
stead, it reflects a directionally weighted DOS. In principle,
by comparing the conductance and the bulk DOS46,51–53 that

FIG. 9. �Color online� Comparison of the high-z �=5.0� junction
conductance Gns �circles with a thin dotted line through them� with
the unweighted �dashed line� and cos2 �-weighted �solid line� DOS
for �a� an N/�d-wave BCS superconductor� junction with �100� con-
tact; �b� an N/�s-wave FF superconductor� junction, at H=704; and
�c� an N/�d-wave FF superconductor� junction with �100� contact
and q along �010�, at H=0.78.

FIG. 10. �Color online� The bias voltage difference of the tun-
neling conductance peak �E=Ep+� and the dip �E=�0B� at large
z�=20�, �Ep= 	Ep+−�0B	, as a function of qvF �both in units of �q�
for d-wave superconductor with �110� contact. The value range of
qvF /�q is extended to 0–20, while the physical range is about 1.5–
7.7. Solid line is the linear fit of the numerical data, and its slope is
0.667±0.001. The inset is an illustration of the voltage difference
measured in the experiment.
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are measured by other means �such as tunneling along the
c-direction instead of an in-plane direction discussed here�,
one can also distinguish between BCS and FF states.

The FF state studied here is the simplest version of the
general Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� supercon-
ductors. Its simplicity allows for a fairly straightforward
calculation of the conductance characteristics through
microconstriction,40 as well as an understanding of the re-
sults. Study of the conductance characteristics for general

FFLO states is currently under way and will be reported
elsewhere.
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