

Delcom DLL Manual

Delcom Engineering
200 William Street
Suite 302
Port Chester, NY 10573
(914) 934-5170
(914) 934-5171 Fax
www.delcom-eng.com

August 4, 2003 Ver 0.3

Contents

1.0 Introduction

2.0 Requirements

2.1 Supports
2.2 Files

3.0 Using the DLL in your applications.
 3.1 C Applications
 3.2 VB Applications

4.0 Quick Start Example
 4.1 C Example
 4.2 VB Example

5.0 Functions
 4.1 Common Functions
 4.2 Visual Indicator Functions
 4.3 USB I/O Functions

6.0 Release Notes

7.0 Errata

8.0 Sample Code

1.0 Introduction

This document describes the function of the Delcom USB DLL. The
Delcom USB DLL, herein referred to as the DLL, allows a user’s
application to interface with the Delcom USB peripheral products.
The goal of the DLL is to provide the user with a simple method of
communicating to the USB devices.

2.0 Requirements

2.1 Supports
The DLL supports Windows 98, ME, 2000 & XP.

2.2 Files

 To use the DLL you will need the following files.

DelcomDLL.dll – This is the actual DLL file and must located in the
directory your application is running from or the
windows default DLL directory. The windows default
DLL directory is usually C:\WINDOWS\SYSTEM.

DelcomDLL.lib – This is the library file, which your C linker will use

to probably link your application to the DLL. This file
must be located in the directory of your source code.
This file is only required for C applications.

DelcomDLL.h – This is the C header file, which has the function

prototyping in and useful constants that will be used
when communicating with the DLL. This file must be
located in the directory of your C source code. This file
is only required for C applications.

DelcomDLL.bas – This is the VB header file, which has the function

prototyping in and useful constants that will be used
when communicating with the DLL. This file must be
located in the directory of your VB project and added
to the project as a module. This file is only required for
VB applications.

3.0 Using the DLL in your applications.
 3.1 C Applications

There are two ways to use the DLL in C applications, they are Link
Implicitly and Link Explicitly.

Implicitly link is the easiest to use. In Implicitly linking the DLL is
loaded when your application loads. To implicitly link to the DLL add
the DLL library file to your project and include the DLL header file in
your source code. Then simply call the DLL functions. All example C
code in this manual uses the implicit method.

Explicitly linking allows your application to load the DLL at a defer
time. For your application to Explicitly link to the DLL you will have
to load the DLL with LoadLibrary() function. LoadLibrary loads the
DLL, if not already loaded, and returns a handle to the DLL. Then
using the DLL handle and the DLL function name of interest, call
GetProcAddress() to obtain the address of the DLL function.
GetProcAddress returns the function address, which you can use to
call the DLL functions. When your done using the DLL you should
call FreeLibrary() to release the DLL resources.

 3.2 VB Applications

When using the DLL in a VB application you must declare the DLL
functions. To declare DLL procedures use the Declare statement to
prototype each function.

Declare Function publicname Lib "libname" [Alias "alias"] [([[ByVal] variable
[As type] [,[ByVal] variable [As type]]...])] As Type

 Example

Declare Function DelcomGetDeviceCount Lib “DelcomDLL.dll” Alias
“DelcomGetDeviceCount” (ByVal Count As Long) As Long

All the DLL functions have been declared in the DelcomDLL.bas file.
Simply add this file to your VB project and then call the DLL
function from your code as you would any other function.

4.0 Quick Start Example

This sections illustrates a simply example using the DLL. In both
examples the code simply scans for the devices, open’s the first
device found if any, places the LED on P1.1 into flash mode and then
closes the connection.

 4.1 C Example
Source Code:

 // DelcomDLLExampleC
#include "stdafx.h"
#include "DelcomDLL.h"

int main(int argc, char* argv[])
{
 DeviceNameStruct Names[10]; // array to hold the device names found

 printf("Delcom DLL Test Example C\n");

 int found = DelcomScanDevices(USBDELVI, Names, 10) ;
 if(found) {
 for(int i=0; i<found; i++)

 printf("%s SN:%u\n", (char*)&Names[i],
 DelcomReadDeviceSerialNum((char*)&Names[i], NULL));

 }
 else
 printf("No USBDELVI devices found!\n");

 if(found) { // open the device
 HANDLE hUsb = DelcomOpenDevice((char*)&Names[0],0);
 DelcomLEDControl(hUsb, REDLED, FLASH);
 DelcomCloseDevice(hUsb); // close the device
 }
 return(0);
}

 Output:

Delcom DLL Test Example C
\\.\0000000000000029#{59bd73a6-822e-4684-9530-0754fe897113} SN:521

 4.2 VB Example
Source Code:

Sub Form_Load()

 Dim DeviceName As String * MAXDEVICENAMELEN ' Must predeclare size
 Dim Result As Long
 Dim DeviceHandle As Long
 Dim Packet As PacketStructure
 Dim DataExt As DataExtStructure

 Text1.Text = "Delcom DLL VB Sample" & Chr(13) & Chr(10)

 Result = DelcomGetNthDevice(USBIODS, 0, DeviceName)

 If (Result) Then
 Text1.Text = Text1.Text & "Device Found" & Chr(13) + Chr(10)
 Text1.Text = Text1.Text & DeviceName
 Text1.Text = Text1.Text & Chr(13) & Chr(10)

 DeviceHandle = DelcomOpenDevice(DeviceName, 0)
 Text1.Text = Text1.Text + "Flash Green LED" + Chr(13) + Chr(10)
 Result = DelcomLEDControl(DeviceHandle, GREENLED, LEDFLASH)
 Result = DelcomCloseDevice(DeviceHandle)

 Else
 Text1.Text = Text1.Text + "Device Not Found" + Chr(13) + Chr(10)
 End If

End Sub

5.0 Functions
The DLL supports all of Delcom’s USB products that use the Delcom
USB driver. The DLL functions are divided into three groups, they
are Common, Visual Indicator and USB I/O functions. Common
functions are use with all of Delcom’s USB products, while Visual
Indicator (USBDELVI) and USB I/O (USBIODS) functions are
device specific.

Prototyping for C and VB are shown under each function. All
functions have _stdcall calling conventations.

NOTE. All data parameters must be pre-allocated in the users code.

 5.1 Common Functions

DelcomGetDLLHandle - This function returns HANDLE to the
DLL module.

C: HANDLE DelcomGetDLLHandle(void);
VB: Public Declare Function DelcomGetDLLHandle Lib "DelcomDLL.dll" _

() As Long

DelcomGetDLLVersion - This function returns the DLL version, see
section 6.0 for release notes.

C: double DelcomGetDLLVersion(void);
VB: Public Declare Function DelcomGetDLLVersion Lib "DelcomDLL.dll" _
 () As Double

DelcomGetDLLDate – This function returns the DLL release date.
The returns 1 on error. The passing char string pointer must be pre-
allocated and must be at least 16 bytes long.

C: DWORD DelcomGetDLLDate(LPSTR DllDate);
VB: Public Declare Function DelcomGetDLLDate Lib "DelcomDLL.dll" _

 (ByVal datestring As String) As Long

DelcomVerboseControl – This function enables or disables the DLL
warning and/or error messages. The warning/error messages are off
by default. The function takes to two parameters an integer Mode and
a character string called Header. A Mode value of nonzero turns this

function on and a zero value will turn this function off. The second
parameter is the Header parameter and is optional. The Header string
is printed out in the title of the warning/error message. This can be
useful in identifying which application caused the warning/error when
multiple applications are using the DLL. If the optional Header
parameter is not used set the Header value to NULL or zero. Users
should enable this feature when developing/debugging there code.

C: DWORD DelcomVerboseControl(DWORD Mode, LPSTR Header);
VB: Public Declare Function DelcomVerboseControl Lib "DelcomDLL.dll" _
 (ByVal Mode As Long, ByVal caption As String) As Long

DelcomGetNthDevice – This function returns a string of the Nth
device found. The first parameter tells the DLL what type of device to
search for. . A value of zero will search for all the USBIODS devices
and a value of 1 will search for all the USBDELVI devices. The
functions returns a true if the device was found otherwise false.
The second parameter is a zero based index of the device you want to
open. Setting this parameter to zero will try to open the matching
device on the device list. A value of one will try and open the second
matching device on the list and so on. The third parameter is a
pointer to a string of characters of which must be pre-allocated and
must be at least 512 bytes long. On success the device name is return
to the user to use in the DelcomOpenDevice() command.

C: DWORD DelcomGetNthDevice(DWORD Type, DWORD Nth, LPSTR Name);
VB: Public Declare Function DelcomGetNthDevice Lib "DelcomDLL.dll" _

(ByVal ProductType As Long, ByVal NthDevice As Long, ByVal DeviceName As
String) As Long

DelcomScanDevices – This function returns an array of device names
as character strings and is only available for C applications. The first
parameter tells the DLL what type of device to search for. A value of
zero will search for all the USBIODS devices and a value of 1 will
search for all the USBDELVI devices. The functions returns an
integer representing the number of matching devices found. If no
devices are found zero is returned. The second parameter is a pointer
to an array of character strings. The functions returns the device
names found in this array. This array must be declared in the calling
applications. The character strings must be 512 bytes long. The third
parameter tells the function how big the array is. This value must be

at least 1. The function will only fill the array with up to this value.
You can arbitrarily set the size of the array and this value or you can
use the DelcomGetDeviceCount() function to find the number of
devices present before declaring the array size and this value. The
application will use the device names returned to open
communications with the USB device.

C: DWORD DelcomScanDevices(DWORD type, DeviceNameStruct[], DWORD Max);

DelcomGetDeviceCount – This function returns the number of USB
devices that match the product type given. The function returns only
the number of currently available USB matching devices available at
the time the function is called. The integer parameter tells the DLL
what type of devices to count. A value of zero will search for all the
USBIODS devices and a value of 1 will search for all the USBDELVI
devices. The functions returns zero if no matching device are found.
This function can be used to determine how big the character string
array passed to DelcomScanDevices() needs to be.

C: DWORD DelcomGetDeviceCount(DWORD Type);
VB: Public Declare Function DelcomGetDeviceCount Lib "DelcomDLL.dll" _
 (ByVal ProductType As Long) As Long

DelcomOpenDevice – This function opens the USB device and
returns a handle to the device. The first parameter passed is a
character string containing a valid USB device name returned from
the DelcomScanDevices() function. On success the function will
return a handle to the USB device. This handle is then used for all
communications to the USB device. The second parameter is for
future use and should be sent to zero for future compatibility. If the
function fails a zero value is returned.

C: HANDLE DelcomOpenDevice(LPSTR Name , DWORD Mode);
VB: Public Declare Function DelcomOpenDevice Lib "DelcomDLL.dll" _
 (ByVal DeviceName As String, ByVal Mode As Long) As Long

DelcomCloseDevice – This function closes the USB device
communications and release all resource used by the USB device.
USB devices should be closed after the application is finished
communicating with the device. If the USB device is not closed when

the user’s application terminates, the device will not be able to be
open again. To recover from this condition reset the USB device.

C: DWORD DelcomCloseDevice(HANDLE hUsb);
VB: Public Declare Function DelcomCloseDevice Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long) As Long

DelcomReadDeviceVersion – This function returns the firmware
version of the USB device. The USB device must have been already
opened. A valid USB handle form DelcomOpenDevice() must be
passed to the function. If unsuccessful zero is returned.

C: DWORD DelcomReadDeviceVersion(HANDLE hUsb);
Public Declare Function DelcomReadDeviceVersion Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long) As Long

DelcomReadDeviceSerialNum – This function returns the serial
number for a USB device. The function has two modes. It can read
the serial number of the USB device given the handle to the device or
it can use the device name of the USB device. The first parameter is a
character string containing a device name and the second parameter is
a USB device handle. The parameter not used should be set to NULL
or zero. On success the device returns the serial number of the USB
device.

C: DWORD DelcomReadDeviceSerialNum(LPSTR Name, HANDLE hUsb);
VB: Public Declare Function DelcomReadDeviceSerialNum Lib"DelcomDLL.dll"_
 (ByVal DeviceName As String, ByVal DeviceHandle As Long) As Long

DelcomSendPacket – This function sends and receives a data packet
from the USB device. The USB device must be already opened. The
first parameter passed is the handle to the USB device. The second
parameter is the data packet to send to the USB device and the last
parameter is the data packet to receive from the USB device. The
receive data packet is only required when the commands is of a read
type. When not passing a receive packet set the last parameter to
NULL or zero. On success the functions return zero and nonzero on
error. The send packet can be 8 to 16 bytes long. The receive packet is
always 8 bytes long. See the USB device manual for more
information on the data packet format and structure.

C: DWORD DelcomSendPacket(HANDLE, pPacketStruct, pPacketStruct);
VB: Public Declare Function DelcomSendPacket Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByRef PacketOut As PacketStructure, ByRef
PacketIn As PacketStructure) As Long

 5.2 Visual Indicator Functions

These commands refer to the Visual Indicator product, USBDELVI.
Many of these functions are also supported in the USBIODS device,
see the USB device manual for more information.

DelcomLEDControl – This function controls the state of the LED’s.
The first parameter passed is a valid USB handle. The second
parameter is the LED color to control. 0=Green, 1=Red, 2=Blue,
3=Yellow and 4=Orange. The last parameter specifies the LED
operating mode. They are 0=OFF, 1=ON and 2=FLASH. The
functions returns zero on success and nonzero on error.

C: DWORD DelcomLEDControl(HANDLE hUsb, DWORD Color, DWORD Mode);
VB: Public Declare Function DelcomLEDControl Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal Color As Long, ByVal Mode As Long) As
Long

DelcomLoadLedFreqDuty – This function loads the flash rate of the
LED. The first parameter is the USB device handle. The second
parameter is the LED color, 0=Green, 1=Red, 2=Blue, 3=Yellow and
4=Orange. The third parameter is a byte value representing the on
time of the LED and the last parameter is a byte value representing
the off time of the LED. The on and off parameters are in units of the
prescalar see DelcomLoadPreScalar function. The functions returns
zero on success and nonzero on error.

C: DWORD DelcomLoadLedFreqDuty(HANDLE hUsb, BYTE Color, BYTE Low, BYTE
High);

VB: Public Declare Function DelcomLoadLedFreqDuty Lib "DelcomDLL.dll" _
(ByVal DeviceHandle As Long, ByVal Color As Byte, ByVal Low As Byte, ByVal
High As Byte) As Long

DelcomLoadPreScalar – This function loads the LED flash prescalar
value. The first parameter is the USB device handle. The second
parameter is the prescalar value. The units of the prescalar are
mseconds. The default value is 10 mseconds. This prescalar value is

global to all the LED flash rates. The functions returns zero on
success and nonzero on error.

C: DWORD DelcomLoadPreScalar(HANDLE hUsb, BYTE PreScalar);
VB: Public Declare Function DelcomLoadPreScalar Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long, ByVal PreScalar As Byte) As Long

DelcomSyncLeds – This function synchronies all the LED flash
rates. This function can be used with the
DelcomLoadInitialPhaseDelay function to offset flash rates. The only
parameter is the USB device handle. The functions returns zero on
success and nonzero on error.

C: DWORD DelcomSyncLeds(HANDLE hUsb);
VB: Public Declare Function DelcomSyncLeds Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long) As Long

DelcomLoadInitialPhaseDelay – This function loads the LED flash
rate offset. The first parameter is the USB device handle. The second
parameter is the LED color, 0=Green, 1=Red, 2=Blue, 3=Yellow and
4=Orange. The last parameter is the offset value. The offset value is a
byte with units of the prescalar. The functions returns zero on success
and nonzero on error.

C: DWORD DelcomLoadInitialPhaseDelay(HANDLE hUsb, BYTE Color, BYTE Delay);
VB Public Declare Function DelcomLoadInitialPhaseDelay Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal Color As Byte, ByVal Delay As Byte) As
Long

DelcomGetButtonStatus – This function returns the current state of
the device button. Returns one when the button is pressed and zero if
not pressed.

C: DWORD DelcomGetButtonStatus(HANDLE hUsb);
VB: Public Declare Function DelcomGetButtonStatus Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long) As Long

DelcomEnableAutoConfirm – This function enables or disables the
auto confirm mode. The first parameter is the handle to the device.
The second parameter is the mode. 0=OFF and 1=ON. When the auto

confirm mode is enabled the buzzer will sound when the button is
pressed. The functions returns zero on success and nonzero on error.

C: DWORD DelcomEnableAutoConfirm(HANDLE hUsb, DWORD Mode);
VB: Public Declare Function DelcomEnableAutoConfirm Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long, ByVal Mode As Long) As Long

DelcomEnableAutoClear – This function enables or disables the
auto clear mode. The first parameter is the handle to the device. The
second parameter is the mode. 0=OFF and 1=ON. When the auto
clear mode is enabled all LED’s will be turned off when button is
pressed. The functions returns zero on success and nonzero on error.

C: DWORD DelcomEnableAutoClear(HANDLE hUsb, DWORD Mode);
VB: Public Declare Function DelcomEnableAutoClear Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long, ByVal Mode As Long) As Long

DelcomBuzzer – This function sets up the buzzer routine. The first
parameter is the USB device handle. The second parameter is the
mode, a value of zero will turn off the buzzer and a value of 1 will
turn on the buzzer with the following parameters. The third parameter
is the frequency of the buzzer. It is a byte and has units of 256us. The
fourth parameter is the repeat value. The repeat value is a byte, a
value of 0 zero places the buzzer in a continuous mode and a non zero
value places the buzzer is a repeat mode. In repeat mode the buzzer
will repeat for the number of times given in the repeat value. The
fifth value is the buzzer on time and the last parameter is the buzzer
off time. Both parameters are of type bytes. The functions returns zero
on success and nonzero on error.

C: DWORD DelcomBuzzer(HANDLE hUsb, BYTE Mode, BYTE Freq, BYTE Repeat,
BYTE OnTime, BYTE OffTime);

Public Declare Function DelcomBuzzer Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal Mode As Byte, ByVal Freq As Byte, ByVal
Repeat As Byte, ByVal OnTime As Byte, ByVal OffTime As Byte) As Long

 5.3 USB I/O Functions

These commands refer to the USB IO chips. The first parameter is a
handle to an opened USB device. Functions returns zero on success
and nonzero on error unless otherwise stated.

DelcomWritePorts – This function writes the second data parameter
byte to port 0 and the third data byte parameter to Port 1.

C: DWORD DelcomWritePorts(HANDLE hUsb, BYTE Port0, BYTE Port1);
VB: Public Declare Function DelcomWritePorts Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal Port0 As Byte, ByVal Port1 As Byte) As
Long

DelcomReadPorts – This function reads the current port values and
places port0 value in the second data parameter and port 1 in the third
data parameters. Note that the byte data parameters are passed as a
pointer and must be allocated by the user.

C: DWORD DelcomReadPorts(HANDLE hUsb, BYTE* Port0, BYTE* Port1);
VB: Public Declare Function DelcomReadPorts Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByRef Port0 As Byte, ByRef Port1 As Byte) As
Long

DelcomWrite64Bit – This function writes 8 bytes of data, passed in
the second data parameter to the 8 write latches. This command
requires external hardware, see website for schematic. The data size
is fixed to 8 bytes and the LSB is written to the write address zero.

C: DWORD DelcomWrite64Bit(HANDLE hUsb, LPSTR DataExt);
VB: Public Declare Function DelcomWrite64Bit Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long, ByRef DataExt As DataExtStructure) As Long

DelcomRead64 – This function reads the 8 bytes from the 8 input
latches. This command requires external hardware, see website for
schematic. The data size is fixed at 8 bytes and the LSB is read from
read address zero.

C: DWORD DelcomRead64Bit(HANDLE hUsb, LPSTR DataExt);
VB: Public Declare Function DelcomRead64Bit Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long, ByRef DataExt As DataExtStructure) As Long

DelcomWriteI2C – This function writes to the I2C port. The second
data parameter is the address/command byte. This byte is sent
first over the I2C port. The third data parameter is the length
of the optional data to be sent via the I2C port. If there is no
data segment then set the length to zero. A maximum of 8 data
bytes following the address/command byte may be sent. The
optional data is placed in the fourth parameter. The LSB is
first byte sent out after the address/command byte.

C: DWORD DelcomWriteI2C(HANDLE hUsb, BYTE CmdAdd, BYTE Length, LPSTR

DataExt);
VB: Public Declare Function DelcomWriteI2C Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal CmdAdd As Byte, ByVal Length As Byte,
ByRef DataExt As DataExtStructure) As Long

DelcomReadI2C – This function reads N bytes from the I2C port.
The second data parameter is the address/command byte and is the
first byte written to the I2C port. The bytes to be read follow this
address/command byte. The third data parameter is the length of the
bytes to read. Valid length range is 1 to 8. The data read is returned in
the last parameter. Note, in most EEPROM type devices, reading the
device with this command cause the internal address of the device to
auto increment proportionally. See command below.

C: DWORD DelcomReadI2C(HANDLE hUsb, BYTE CmdAdd, BYTE Length, LPSTR

DataExt);
VB: Public Declare Function DelcomReadI2C Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal CmdAdd As Byte, ByVal Length As Byte,
ByRef DataExt As DataExtStructure) As Long

DelcomSelReadI2C – This function read N bytes of data from the
I2C port at a selected address. This function is similar to the above
function but allows the user to set the address in EEPROM type
device. The second data parameter byte is the set selective address
command. The third data parameter byte is the selected address. The
fourth data parameter byte is the address/command to read the device.
The fifth data parameter byte is the length of bytes to read from the
I2C port. Valid length range is 1 to 8. The data read is returned in the
last parameter.

C: DWORD DelcomSelReadI2C(HANDLE hUsb, BYTE SetAddCmd, BYTE Address,

BYTE ReadCmd, BYTE Length, LPSTR DataExt);

VB: Public Declare Function DelcomSelReadI2C Lib "DelcomDLL.dll" _
(ByVal DeviceHandle As Long, ByVal SetAddCmd As Byte, ByVal Address As
Byte, ByVal ReadCmd As Byte, ByVal Length As Byte, ByRef DataExt As
DataExtStructure) As Long

DelcomRS232Ctrl – This function enables or disables the RS232
port. A non-zero value passed in the second parameter will turn the
serial port on, and a zero value will turn it off. The third byte is the
serial baud rate, ei 2400.

C: DWORD DelcomRS232Ctrl(HANDLE hUsb, DWORD Mode, DWORD Value);
VB: Public Declare Function DelcomRS232Ctrl Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal Mode As Long, ByVal Value As Long) As
Long

DelcomWriteRS232 – This function writes N bytes to the RS232
port. The second data parameter is the length of data bytes to write.
Valid lengths are 1 to 8. The third data parameter is the data to write
to the RS232 port. The LSB is the first byte written.

C: DWORD DelcomWriteRS232(HANDLE hUsb, DWORD Length, LPSTR DataExt);
VB: Public Declare Function DelcomWriteRS232 Lib "DelcomDLL.dll" _

(ByVal DeviceHandle As Long, ByVal Length As Long, ByRef DataExt As
DataExtStructure) As Long

DelcomReadRS232 – This function reads the RS232 port. The
function returns the length of the received data in the RS232 buffer. If
the receive buffer overflows the returned value is greater than 7. A
zero value means there is no new received data in the RS232 buffer.
The receive buffer has a maximum size of 7 bytes. The RS232 read
data is returned in the second data parameter.

C: DWORD DelcomReadRS232(HANDLE hUsb, LPSTR DataExt);
VB: Public Declare Function DelcomReadRS232 Lib "DelcomDLL.dll" _
 (ByVal DeviceHandle As Long, ByRef DataExt As DataExtStructure) As Long

6.0 Release Notes
 Version Date
 0.1 02/13/2003

Initial Release

 0.2 04/09/2003
 Added prototyping for VB support all functions are now _stdcall.

Added USBIODS function support.
 Added DelcomGetNthDevice() command.
 Changed the prototyping of DelcomGetDLLData().

 0.3 08/04/2003
 Fixed memory leak error with DelcomGetNthDevice() function.

7.0 Errata

Currently the DLL will only allow one application to open a unique
device at the same time. The next release of this DLL will allow
multiple applications to open the same unique device at the same
time.

If you would like to see a DLL function added to the DLL please
email your request to techsupport@delcom-eng.com. If the request is
merited we will add your requested function to the DLL.

8.0 Sample Code

 8.1 Send and Read Data Packet

// DelcomDLLExampleC
#include "stdafx.h"
#include "DelcomDLL.h"
int main(int argc, char* argv[])
{
 PacketStruct Packet;
 char DeviceName[MaxDeviceLen];
 if(!DelcomGetNthDevice(USBIODS, 0, DeviceName)) return(0);

 HANDLE hUsb = DelcomOpenDevice((char*)DeviceName,0);
 // Write Packet
 Packet.Recipient = 8; // always 8
 Packet.DeviceModel = 18; // always 18
 Packet.MajorCmd = 10;
 Packet.MinorCmd = 10; // write port0 & port1
 Packet.DataLSB = 0xFF; // set port0 to all high
 Packet.DataMSB = 0x00; // set port1 to all low
 Packet.Length = 0; // DataExt not used
 DelcomSendPacket(hUsb,&Packet,NULL);

 // Write Packet with Data Ext
 Packet.Recipient = 8; // always 8
 Packet.DeviceModel = 18; // always 18
 Packet.MajorCmd = 10;
 Packet.MinorCmd = 60; // write port0 & port1
 Packet.DataLSB = 0xFF; // set port0 to all high
 Packet.DataMSB = 0x00; // set port1 to all low
 Packet.Length = 3; // DataExt used, sending 3 bytes
 Packet.ExtData[0] = 1;
 Packet.ExtData[1] = 2;
 Packet.ExtData[2] = 3;
 DelcomSendPacket(hUsb,&Packet,NULL);

 // Read Packet
 Packet.Recipient = 8; // always 8
 Packet.DeviceModel = 18; // always 18
 Packet.MajorCmd = 11;
 Packet.MinorCmd = 0; // read port0 & port1
 Packet.Length = 0; // DataExt not used
 DelcomSendPacket(hUsb,&Packet,&Packet);
 printf("Port0=%X Port1=%X\n",((char*)&Packet)[0],((char*)&Packet)[1]);

 DelcomCloseDevice(hUsb); // close the device

 return(0);
}

 8.2 I2C Example

// DelcomDLLExampleC
#include "stdafx.h"
#include "DelcomDLL.h"
int main(int argc, char* argv[])
{

char DataExt[8];

 char DeviceName[MaxDeviceLen];
 if(!DelcomGetNthDevice(USBIODS, 0, DeviceName)) return(0);

 HANDLE hUsb = DelcomOpenDevice((char*)DeviceName,0);
 // writes two bytes (0xFE & 0x34) to I2C at address/command 0x5E
 DataExt[0] = (char)0xFE;
 DataExt[1] = (char)0x34;
 DelcomWriteI2C(hUsb, 0x5E, 2, DataExt);

 // reads 8 bytes from I2C at the current address
 DelcomReadI2C(hUsb, 0x9A, 8, DataExt);
 // LSB = DataExt[0];

 // reads 2 bytes from I2C at address 0x00
 DelcomSelReadI2C(hUsb, 0x1E, 0x00, 0x9A, 2, DataExt);
 // LSB = DataExt[0];

 DelcomCloseDevice(hUsb); // close the device

 return 0;
}

