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We use direct numerical simulation to study electrically-driven convection in an annular thin film.
The simulation models a laboratory experiment that consists of a weakly conducting, submicron
thick liquid crystal film suspended between two concentric electrodes. The film is driven to convect
by imposing a sufficiently large voltage across it. The flow is driven by a surface charge density
inversion which is unstable to the imposed electrical force. This mechanism is closely analogous
to the mass density inversion which is unstable to the buoyancy force in conventional, thermally-
driven Rayleigh-Bénard convection. The simulation uses a pseudo-spectral method with Chebyshev
polynomials in the radial direction and Fourier modes in the azimuthal direction. The numerical
results, which are in good agreement with previous experimental data and theoretical predictions,
reveal several new insights. The mode competition near a codimension-two point exhibits hysteresis.
The primary bifurcation is supercritical for all geometries and for a broad range of fluid parameters.

I. INTRODUCTION

Convection has long been a playground for investiga-
tors of nonlinear dynamics and pattern formation [1].
Highly controlled experiments, accurate simulations, and
analytic theoretical analyses can be combined to give an
unusually complete picture of the dynamics, particularly
in the weakly nonlinear regime [2]. The accumulation
of complexity as the driving forces are increased also
presents an important route to chaotic and, eventually,
fully turbulent flows [3]. Here, we present the first di-
rect numerical study of annular electroconvection in a
thin film, a model problem that has previously attracted
detailed experimental [4–10] and theoretical [11–13] at-
tention. This study is the first step toward the develop-
ment of a numerical code capable of reaching the fully
turbulent regime that was recently accessed experimen-
tally [9, 10].

Classic convection experiments include Rayleigh-
Bénard convection (RBC), the buoyancy-driven instabil-
ity of a fluid layer heated from below [1], and electrohy-
drodynamic convection in nematic liquid crystals (EHC).
In the latter, an applied electric field drives a charge den-
sity that develops in certain nematic fluids [14].

In the present study, we exploit the unusual properties
of smectic liquid crystals which form extremely robust,
submicron thick, and freely suspended films. When a
constant voltage is applied between the inner and outer
edges of an annular film, it convects due to an unstable
surface charge distribution that develops near the free
surfaces. The film geometry and the experimental setup
are shown schematically in Fig. 1. Unlike EHC, this elec-
trical driving mechanism does not rely on the dielectric
anisotropy of the liquid crystal. The experiment uses
smectic A phase materials which are isotropic for flows
in the plane of the film.

Electroconvection in smectic films shares some of the
advantages that EHC has over conventional RBC: fast
time scales, independence from gravity, and all-electrical
transport measurements. However, flow visualization in

the thin film is difficult [4]. An important motivation
of the present direct numerical study is to enable the
visualization of the basic fields.

The linear theory of this instability is well estab-
lished [11], including for the case of an annular geom-
etry with a superposed shear [13]. The basic mechanism
of the instability turns out to be highly analogous to
that of RBC, albeit with radial driving forces [15]. The
annular geometry gives rise to numerous codimension-
two (CoD2) points and secondary bifurcations within the
weakly nonlinear regime [8, 13, 15]. Previous experimen-
tal work in this regime has shown that the amplitude of
convection just above onset is well modelled by a Landau
amplitude equation with a cubic nonlinearity [6]. Previ-
ous theoretical analyses, using amplitude equations de-
rived from first principles, showed good agreement be-
tween experiment and theory [8]. More recent experi-
ments [9] have pushed into the highly nonlinear, turbu-
lent regime where scaling behavior is observed [10]. Di-
rect numerical simulations offer complementary insights
into this system.

In this work, we develop a direct numerical simulation
using a pseudo-spectral method with realistic governing
equations. This code allows us to extend the range of pa-
rameters beyond what is achievable experimentally and
into the strongly nonlinear regime which is difficult to
treat with analytic theory. In addition, the simulation
allows us to visualize all the basic fields and gain new
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FIG. 1: Schematics of the annular electroconvection experi-
ment: (a) top view and (b) side view.
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insights into the complex flow dynamics in chaotic and
turbulent states that occur at higher electrical forcing.

In this paper, we focus on a detailed numerical study of
states near the primary bifurcation and at a CoD2 point,
covering a large parameter space in the weakly nonlinear
regime. We compare numerical data with experimental
and theoretical results. The paper is organized as follows.
First, in Sec. II A, we briefly introduce the 2D annu-
lar electroconvection experiment and its phenomenology.
Then, in Sec. II B, we describe the physics underlying the
mathematical model. In Sec. III, we present our numer-
ical method and set-up for direct numerical simulations.
In Sec. IV, we show some numerical data and compare
with previous theoretical and experimental results. We
highlight new results for small aspect ratios, small di-
mensionless number P , which is similar to the Prandtl
number in RBC, and on the bifurcation dynamics close
to a CoD2 point. Sec. V presents a brief conclusion and
outlines the implications of the numerical results. We
also discuss the prospect for future applications of the
numerical code.

II. 2D ANNULAR ELECTROCONVECTION

In this section, we introduce the experimental system
and briefly describe the basic equations we used to model
it. More details about the experiment can be found in
Refs. [4–10], while a complete discussion of the mathe-
matical model is given in Ref. [13].

A. Experiment

The convecting fluid consists of a thin annular film
of the liquid crystal material octylcyanobiphenyl (8CB),
which is freely suspended between two concentric metal
electrodes, as shown in Fig. 1. At the temperature of the
experiment, the 8CB is in the smectic A phase in which
the elongated liquid crystal molecules are aligned perpen-
dicular to the plane of film and arranged in layers. Flow
within the plane of the layers is isotropic and strongly
2D. The films consisted of an integer number of 20-100
smectic layers, each layer being 3.16 nm thick [16]. An
applied electric voltage between the inner and outer elec-
trodes drives an electric current through the film, which
is doped to have a small ionic conductivity.

The electrical boundary conditions on the two free sur-
faces which separate the conducting film from charge-free
space require that charges accumulate near these sur-
faces. The surface charge configuration is such that pos-
itive charges accumulate near the high electric potential
at the inner electrode, while negative charges accumulate
close to the grounded outer electrode. This inverted sur-
face charge density is unstable to electric forcing in much
the same way as the inverted mass density distribution of
RBC is unstable to buoyancy forces. When the applied
voltage V exceeds the critical voltage Vc, convection sets

in and the fluid is organized into cells in the form of vor-
tices. A typical experimental procedure involves vary-
ing V , the main experimental control parameter, slowly
from 0 beyond Vc in a sequence of small incremental
steps past Vc and then with decremental steps back to 0
volts. The quantitative measurements consist of current-
voltage data; the total current I flowing through the film
under an imposed voltage V . The flow pattern is typ-
ically not visualized because suspending small particles
in the film is difficult and tends to strongly perturb the
conductivity, and because particles aggregate due to their
size being larger than the film thickness. In some exper-
iments, an azimuthal flow could also be independently
imposed by rotating the inner electrode. We do not con-
sider this second control parameter in this paper.

The annular geometry of the film has a Z(2) reflection
symmetry and is O(2) symmetric under continuous az-
imuthual rotations [17]. Below the onset of convection,
the electrical forces are unable to overcome dissipation
and the electric current is transported by a pure con-
duction mechanism that respects these underlying sym-
metries. At the primary bifurcation to convection at
V = Vc, the film breaks the continuous symmetry un-
der azimuthal rotations. The fluid is organized into lam-
inar counter-rotating vortex pairs with a discrete mode
number m, giving the flow a Dm symmetry [17].

Without flow visualization, all that is experimentally
observed is the total current I, which is equal to the
conduction current I0 only below the onset of convec-
tion. The dimensionless Nusselt number Nu = I/I0,
characterizes the overall amplitude of convection. The
reduced Nusselt number Nu− 1 is a measure of the rela-
tive strength of the convective current to conducted cur-
rent. The direct numerical simulation complements the
experiment by allowing us to calculate Nu−1, while also
visualizing the dynamics of the complete velocity, electric
potential and charge density fields.

B. Mathematical Model

In the experiment, the physical thickness of the film
s ≈ 0.1µm is much smaller than the width of the annulus
d ≈ 1 mm. This, and the layered structure of the smectic,
allows us to accurately model the film as a 2D, Newto-
nian fluid confined to an annular space between infinitely
thin electrodes which lie in the xy plane. The rest of the
three-dimensional computational space is empty and free
of charges. It can be shown [11] that the film is essen-
tially surface dominated, as the ratio of bulk to surface
forces on the film is O(s/d). The constant thickness also
means that the fluid is effectively incompressible. The
fluid has 2D mass density ρ, shear viscosity η, and elec-
trical conductivity σ.

The governing equations for 2D annular electroconvec-
tion are comprised of the mass, momentum and charge
conservation equations, with one additional Maxwell
equation connecting the charge density q and the elec-
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tric potential ψ. Magnetic effects are negligible.
The governing equations are, in full [13]:

∇ · ~u = 0, (1)

ρ

[
∂~u

∂t
+ (~u · ∇)~u

]
= −∇P + η∇2~u + q~E, (2)

∂q

∂t
= −∇ · (σ~E + q~u), (3)

q = −2ǫ0∂zψ3|z=0+ (4)

∇2
3ψ3 = ∇2

2ψ3 +
∂2ψ3

∂z2
= 0, (5)

ψ2 = ψ3(z = 0), (6)

where ~u is the fluid velocity, P is the pressure, q is the

surface charge density, and ~E = −∇2ψ2 is the electric
field. Subscripts denote two and three dimensional po-
tentials and gradients, and ǫ0 is the permittivity of free
space. We use cylindrical coordinates (r, θ, z).

The equation of mass conservation and the incom-
pressibility condition yield a solenoidal velocity field ~u =
(ur r̂ + uθθ̂), by Eqn. 1. The flow velocity is determined
from the conservation of momentum using Eqn. 2, which
is the 2D Navier-Stokes equations with an electrical body

force q~E. The conservation of charge is expressed by a
continuity equation, Eqn. 3, containing an ohmic conduc-

tive current density σ~E and a convective current density
q~u. Finally, the 2D charge density q obeys Eqn. 4, a
Maxwell equation that describes the nonlocal relation-
ship between the surface charge q and the electric po-
tential on the film ψ2. The factor of 2 arises because
the film has two free surfaces. Outside the film, there
are no free charges, so the 3D electric potential ψ3 obeys
the Laplace equation, Eqn. 4. Eqn. 6 expresses the fact
that the electric potential is everywhere continuous; its
value ψ2 on the film acts as a boundary condition on the
potential ψ3 which fills the space outside the film.

The fluid velocity is subject to a non-slip boundary
condition ur = uθ = 0 at the inner and outer radii of the
annulus, r = ri and r = ro, respectively. The potential
ψ2 is required to be V on the inner electrode, r ≤ ri, and
zero on the outer electrode r ≥ ro. ψ3 = 0 at infinity.
The potential on the film itself can be found by speci-
fying q for ri < r < ro and solving the mixed boundary
value Laplace problem given by Eqns. 4 and 5 for ψ3. Al-
ternatively, ψ2 can be specified on the film, and ψ3 found
self-consistently by solving the Dirichlet Laplace problem
given by Eqn. 5. The charge density q then follows from
Eqn. 4. This nonlocal relationship between q and ψ is
discussed in detail in the Appendix.

We employed the streamfunction-vorticity formulation
for the primitive variables in the simulation. The stream-
function φ is given by ~u = ∇φ × ẑ. In two dimensions,
the vorticity ω is a scalar obeying ∇× ~u = ωẑ. In terms
of the streamfunction φ,

~u = urr̂ + uθθ̂ =
1

r

∂φ

∂θ
r̂ −

∂φ

∂r
θ̂. (7)

The advantages of using the stream-vorticity formula-
tion are the elimination of the pressure P and the re-
placement of the vector velocity by two simpler scalar
fields, φ and ω.

Starting from the stream-vorticity formulation, we
rescaled length with the film width d, time with the
charge relaxation time τc = ǫ0d/σ, and electric poten-
tial by the applied voltage V at ri. The dimensionless
streamfunction φ and charge density q are then scaled
by σd/ǫ0 and ǫ0V/d, respectively. We obtain the follow-
ing dimensionless governing equations;

∇2φ = −ω, (8)

∂ω

∂t
+ (~u · ∇)ω = P∇2ω + P R (∇ψ2 ×∇q), (9)

∂q

∂t
+ (~u · ∇)q = ∇2ψ2, (10)

∇2
3ψ3 = 0, q = −2∂zψ3|z=0+ , (11)

where the important dimensionless parameters are

R ≡
ǫ20V

2

ση
and P ≡

ǫ0η

ρσd
. (12)

The main control parameter, the Rayleigh-like number
R, is a measure of the relative strength of applied electric
forcing to viscous dissipation. The Prandtl-like number
P is a fluid parameter which characterizes the ratio of
charge relaxation time to the viscous relaxation time. In
addition, the geometry of the annulus is characterized by
the the radius ratio α ≡ ri/ro. In dimensionless terms,
the inner and outer radii are

ri =
α

1 − α
and ro =

1

1 − α
. (13)

The computational domain is the annulus ri ≤ r ≤ ro
and 0 ≤ θ < 2π. We must also solve a Laplace equation
for ψ3 in the space z ≥ 0. We decompose the solutions
into an axisymmetric base state component (denoted by
superscript zero) and a nonaxisymmetric component (de-
noted by superscript one) as follows:

φ(r, θ) = φ(0)(r) + φ(1)(r, θ),

ω(r, θ) = ω(0)(r) + ω(1)(r, θ),

q(r, θ) = q(0)(r) + q(1)(r, θ),

ψ2(r, θ) = ψ
(0)
2 (r) + ψ

(1)
2 (r, θ),

ψ3(r, θ, z) = ψ
(0)
3 (r, z) + ψ

(1)
3 (r, θ, z).

The charge and potential distributions in the base state,
in which the fluid is quiescent, can be solved for analyt-

ically. Although the base state potential ψ
(0)
2 (given by

Eqn. 3.5 of Ref. [13]) is everywhere single valued and con-
tinuous, its r derivatives are discontinuous at the edges of
the film, where the potential on the film changes over to
the constant imposed potential on the electrodes. This
causes the base state charge density q(0), given analyt-
ically in terms of hypergeometric functions [13], to be
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divergent at the edges of the film. These divergences are
integrable, however, and the overall base state is linearly
unstable to the imposed electric force.

With the above decompositions, the unknowns to be
computed are the nonaxisymmetric parts, which are so-
lutions of the the following set of equations:

∇2φ(1) = −ω(1), (14)

∂q(1)

∂t
+ Jq,φ −∇2ψ

(1)
2 = 0, (15)

∂ω(1)

∂t
+ Jφ,ω = P∇2ω(1) + PR Jψ,q, (16)

∇2
3ψ

(1)
3 = 0, q(1) = −2∂zψ

(1)
3 |z=0, (17)

where Jq,φ, Jφ,ω, and Jψ,q are the nonlinear Jacobian
terms:

Jq,φ =
1

r

[
∂q(0)

∂r

∂φ(1)

∂θ
+

∂q(1)

∂r

∂φ(1)

∂θ
(18)

−
∂φ(0)

∂r

∂q(1)

∂θ
−
∂φ(1)

∂r

∂q(1)

∂θ

]
,

Jφ,ω =
1

r

[
∂ω(0)

∂r

∂φ(1)

∂θ
+

∂ω(1)

∂r

∂φ(1)

∂θ
(19)

−
∂φ(0)

∂r

∂ω(1)

∂θ
−
∂φ(1)

∂r

∂ω(1)

∂θ

]
,

Jψ,q =
1

r

[
∂ψ

(0)
2

∂r

∂q(1)

∂θ
−

∂q(0)

∂r

∂ψ
(1)
2

∂θ
(20)

+
∂ψ

(1)
2

∂r

∂q(1)

∂θ
−
∂q(1)

∂r

∂ψ
(1)
2

∂θ

]
.

The variables φ(1), ψ
(1)
2 and ψ

(1)
3 satisfy the following

boundary conditions for r = ro and ri:

φ(1)(θ) = ∂rφ
(1)(θ) = ψ

(1)
2 (θ) = 0, (21)

ψ
(1)
3 (r, θ, z = 0) =






0 0 ≤ r ≤ ri

ψ
(1)
2 (r, θ) ri ≤ r ≤ ro

0 r ≥ ro.

(22)

The Jacobians Jq,φ and Jψ,q each contain terms propor-

tional to ∂q(0)/∂r, which diverges at the edges of the film.
Fortunately, in each case these terms multiply quantities
that go to zero at the edges of the film and the overall
expressions remain finite. Similarly, the piecewise contin-

uous nature of the boundary conditions on ψ
(1)
3 , given by

Eqn. 22, imply that ∂q(1)/∂r diverges at the edges of the
film, but in Eqns. 18 and 20, these divergences multiply
quantities that go to zero.

We now turn to the numerical solution of these equa-
tions.

III. DIRECT NUMERICAL SIMULATION

We constructed a time-stepping, pseudospectral code
to calculate the solutions for the nonaxisymmetric per-
turbations governed by Eqns. 14 - 17. We compared two
different time discretization schemes in order to check the
accuracy of the solutions. We then used the solutions to
calculate some integrated physical quantities which could
be related directly to experiment.

A. Time discretization methods

The first time discretization method we used
was the Adams-Bashforth and Backward-Differentiation
(AB/BDI2) scheme [18]. In this method, the time deriva-
tive was modeled by ∂tU ≈ (3Uk+1−4Uk+Uk−1)/(2∆t),
where the superscript k denotes the time-stepping index
and ∆t was a properly chosen discrete time step size.
The diffusion term f was approximated by fk+1, using a
backward scheme. The nonlinear Jacobian terms and the
external forcing terms F were estimated with the first or-
der Adams-Bashforth scheme: AB1{F} = 2F k − F k−1.
The combination of these two first-order approximation
schemes, Adams-Bashforth and backward differentiation,
gives the discretized equations to second order accuracy.

We also used the semi-implicit first order Euler differ-
entiation scheme [19] as a second method of time dis-
cretization. In this method, the time derivative is ap-
proximated by ∂tU ≈ (Uk+1 − Uk)/(∆t). The nonlinear
terms and external forcing terms were estimated by the
forward Euler scheme, i.e. using the values F k at current
time step k, while the diffusion term was approximated
by fk+1, using a backward Euler scheme.

B. Numerical solution of the time-discretized

equations

We solved the time-discretized equations using a
pseudo-spectral method. The streamfunction φ, the
vorticity ω, the 2D electric potential ψ2 and the sur-
face charge density q were approximated by a truncated

Fourier series in the θ̂ direction and by Chebyshev poly-
nomials in the r̂ direction,

φ(1)(r, θ, t) =

K∑

m=−K

φ̂m(r, t)eimθ, (23)

ω(1)(r, θ, t) =

K∑

m=−K

ŵm(r, t)eimθ, (24)

ψ
(1)
2 (r, θ, t) =

K∑

m=−K

ψ̂2m(r, t)eimθ , (25)

q(1)(r, θ, t) =

K∑

m=−K

q̂m(r, t)eimθ. (26)
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The variables φ, ω, ψ2, and q are all real so in practice we
solve for m = 0, 1, ...,K and use the complex conjugate

relationship φ̂−m = φ̂∗m for m < 0.
The 2D electric potential ψ2 and the surface charge

density q are not freely evolving, independent variables.
In fact, they evolve simultaneously so that at each time
step they are linked by the nonlocal coupling described in
Sec. II B. In the Appendix, we describe how we numeri-

cally calculated the nonlocal relationship between ψ̂2m(r)
and q̂m(r) by solving Eqns. 4 and 5. This instantaneous
relationship can be computed in a separate calculation
and then applied at each time step, which greatly sim-
plifies the time stepping procedure.

The PDEs given by Eqns. 14 - 17 were converted into
ODEs in r by substituting Eqns. 23 - 26 and using the
orthogonality of the Fourier modes. We then employed
the Chebyshev collocation method [20, 21] to solve the
ODEs with the Fourier coefficients as unknowns. There
were Nc +1 grid points in the radial direction, where Nc
is the order of highest Chebyshev polynomial included.
The radial range from ri to ro is linearly mapped onto a
new variable x using

x = 2r −

[
1 + α

1 − α

]
, (27)

such that −1 ≤ x ≤ 1 spans the film. The collocation
method approximates the solution as a truncated Cheby-
shev polynomial series and makes the residuals at colloca-
tion points xj = cos(πj/Nc), j = 0, 1, 2, ..., Nc equal to
zero. The unknowns are then the Fourier spectral values
of the variables of interest at theNc+1 collocation points,

i.e. φ̂k(xj), ω̂
k(xj) and ψ̂k2 (xj), for j = 0, 1, ..., Nc,

and at each time step k.
The nonlinear terms in Eqns. 14 - 17 were calculated

using the pseudo-spectral technique [20] which consists of
performing the differentiations in the spectral space and
the products in the physical space. The spectral space
and physical space are connected computationally by a
Fast Fourier Transform (FFT).

We investigated the primary bifurcation to convection
as a function of the Rayleigh-like control parameter R,
the radius-ratio α and the Prandtl-like number P . We
ran the time stepping simulation by gradually increas-
ing R in small increments separated by many time steps,
starting from the conduction state, passing through the
onset of convection at Rc. For R < Rc, we used initial
conditions such that φ = 0, so that the fluid was qui-
escent. The electric potential ψ2 was given by random
white noise with amplitude in the range 10−5 − 10−4 .
For R > Rc, we used the converged, steady-state numer-
ical solution at the previously calculated R as the initial
condition for the next R. The radial boundary condi-
tions applied to the Fourier coefficients for all modes m
were

φ̂m =
d

dr
φ̂m = ψ̂2m = 0, for r = ro, ri (28)

To enforce the rigid boundary condition on the stream

function φ in Eqn. 28, we used the influence matrix
method [19, 20] to calculate the corresponding Dirich-
let boundary condition on the vorticity ω. The Jacobian
terms in Eqn. 15 and 16 were computed in the Fourier
space with a “3/2-rule” anti-aliasing technique [20].

Overall, the method described above is extremely con-
servative and stable, yet is still efficient enough that we
can reach R ∼ 1000 with only modest computational
effort.

C. Integrated physical quantities of interest

The electric Nusselt number Nu is a dimensionless
measure of the fraction of the total current transported
by convection. It is the electrical analog of the thermal
Nusselt number which characterizes the total heat trans-
port in Rayleigh-Bénard convection [1].
Nu is defined to be the ratio of the total current to

the conductive current. The azimuthal components of
the current density average to zero around the annulus,
leaving only the radial contribution, which can be inte-
grated to give

Nu =

∫ 2π

0 (urq − ∂rψ2) rdθ
∫ 2π

0
(−∂rψ

(0)
2 ) rdθ

. (29)

Taking advantage of the zero radial velocity at the bound-
aries to simplify Eqn. 29, Nu can be computed numeri-
cally from

Nu = 1 +

[
r log(α)

d

dr
ψ̂

(1)
2m=0(r)

]

r=ri

. (30)

The term in the square brackets can be taken at either ri
or ro. Nu is directly related to the physical currents that
can be measured experimentally [5–10]. It is also a direct
measure of the amplitude of the convective velocity.

We also calculated the mean area density of the kinetic
energy

Ekin =
1

2a

∫ ro

ri

∫ 2π

0

~u · ~u rdrdθ, (31)

where a is the dimensionless area of the annulus. Ekin is
a useful diagnostic of the strength of convection.

To test the convergence of the time stepping code onto
a steady state solution, we calculated the changes in Nu
and Ekin, as well as the norm of the change in Fourier
coefficients between one time step and the previous one.
The solutions were considered converged not only when
the norm was less than 10−5 but also the changes in Nu
and Ekin were ≤ 0.05%.

IV. RESULTS AND DISCUSSION

We first validated the code by simulating weakly forced
conditions near the onset of convection. The quantitative
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numerical results for the critical Rayleigh-like number
Rc at onset were benchmarked and found to be in better
than 2% agreement with the predictions of linear stability
theory [13].

The annular geometry, described by the radius ratio
α, has various interesting effects on Rc and the critical
number of vortex pairs mc at the onset of convection,
both of which are predicted by linear theory [13] and
measured experimentally [6]. For R > Rc, nonlinear ef-
fects make themselves felt. The annulus has a reflection
symmetry and a continuous symmetry under azimuthal
rotations. We can deduce something about the nonlinear
state from these symmetries alone. We expect, on the ba-
sis of these symmetries, that a generic Landau amplitude
equation will describe the neighborhood of the primary
bifurcation in the weakly nonlinear regime [2, 6]. For a
steady convective state, the time independent amplitude
equation is [6]

ǫA− gA3 − hA5 + f = 0, , (32)

where A is the amplitude of convection and ǫ = (R/Rc)−
1 is the reduced control parameter. The coefficient g of
the cubic nonlinear term determines whether the bifurca-
tion to electroconvection is continuous (supercritical) for
g > 0, discontinuous (subcritical) for g < 0, or tricritical
for g = 0. The field term f allows for some imperfection
in the bifurcation and was found to be necessary to re-
alistically model small symmetry-breaking imperfections
in the real laboratory experiment [6]. The amplitude A
can be scaled to the reduced Nusselt number [12] so that
A2 = Nu−1. Mimicking the analysis used previously on
real experimental data [6], we determined Rc, g, h and f
by fitting the numerical data for Nu−R to Eqn. 32 using
a nonlinear least squares method. We could then numer-
ically investigate the dependence of Rc, mc, and g over a
broad parameter space of radius ratio α and Prandtl-like
number P . We are able to reach a wider range of these
parameters than was possible in previous theoretical and
experimental work.

A. Dependence on the Rayleigh-like number R

Using the numerical model, we follow the experimental
protocol of ramping R slowly up and down through onset.
Experimentally, this is done by increasing and decreasing
the applied voltage.

Fig. 2a shows the dimensionless current carried by con-
vection, Nu− 1, as the control parameter R varies. Zero
convective current indicates the conduction regime in
which dissipation effects dominate and prevent convec-
tion even under the electric forcing. Slowly increasing
R, we observed a critical threshold showing the onset
of convection at Rc. Near this bifurcation, we observed
critical slowing down, indicated by extremely long con-
vergence times. We sometimes observed a slight hys-
teresis due to dynamical effects. It is well known both
analytically and experimentally that a bifurcation point

is shifted when a control parameter is swept through a
bifurcation at a finite rate [22]. We allow for critical slow-
ing down by greatly increasing the computational time
allotted to reach the convergence criterion. However, a
small residual delay in the bifurcation with increasing R
is still observable in Fig. 2b, which shows the amplitude
of convection A vs. R.
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FIG. 2: (Color online) Representative numerical data for the
dimensionless convective current, Nu − 1, as the Rayleigh-
like number R changes. Here the other parameters are α =
0.56 and P = 10. Data obtained for increasing (decreasing)
R are shown as △ (▽). (b): The corresponding amplitude
of convection A =

√
Nu− 1 as a function of R. The solid

line is a nonlinear least-squares fit of the data to the Landau
equation given by Eqn. 32.

Above Rc, a pattern of stationary convective vortices
is formed that carries extra current and breaks the con-
tinuous symmetry under azimuthal rotation. Convec-
tion remains steady in the weakly nonlinear regime up
to R ∼ 5Rc. Fig. 3 shows the surface charge distribu-
tion and the corresponding velocity field for steady con-
vection in which the laminar flow provides a constant
contribution to the electric current. The correspond-
ing streamfunction and perturbed electric potential are
shown in Fig. 4. From these figures, we see narrow pos-
itively charged regions which are being carried by the
flow towards the grounded outer electrode, separated by
broader negatively charged regions returning. These lo-
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FIG. 3: (Color online) The basic fields for steady convection
at R = 199.8, α = 0.56, P = 10: the total electric charge
density q (color) and the velocity field (black). Only the up-
per half of the annular cell is shown. Positive charge moves
away from the high potential electrode at the inner radius,
while negative charge moves away from the grounded outer
electrode.

cal convective currents add to the total current and act
to reduce the applied potential gradient. The simulation
provides insightful visualizations of the local fields that
nicely complement the physical experiments which could
not be visualized. This new insight will play an impor-
tant role in understanding more complicated bifurcations
at higher R, eventually into the turbulent regime [9, 10],
and the complex rotating states that occur under an ap-
plied shear [6–8].

B. Dependence on Geometry

The radius ratio α = ri/ro, strongly influences the
critical Rayleigh-like number Rc, the critical mode num-
ber mc and, to a lesser extent, the nonlinear saturation
coefficient g.

Fig. 5a shows the α dependence of Rc from numerical
computations and from linear stability theory [13]. The
trend of Rc in the numerical data is increasing overall as
a function of the radius ratio and quantitatively agrees
with a fully nonlocal theory calculation shown by the
solid line [13].

We used several values of Nc and K, ranging between
29 and 45 and between 32 and 64, respectively. Numeri-
cal data with different values ofNc andK agree with each
other to within a small scatter. The error bars in Fig. 5a
were obtained from the spread of numerical data and
were calculated using different time step sizes, random
initial conditions, grid sizes, and time discretization ap-
proximations. Each data point consists of at least three
complete sets of numerical runs, sweeping the voltage up
and down.

The calculation becomes more difficult for small α, due
the increasing asymmetry between the inner and outer
electrodes. We were able to numerically explore with
reasonable accuracy down to α = 0.1. This is well be-
low the minimum radius reached experimentally, which
corresponded to α = 0.33. Various truncations also limit

FIG. 4: (Color online) (a) The streamfunction and (b) the

perturbed 2D electric potential ψ
(1)
2 , for the same control pa-

rameters are as in Fig. 3. For this specific α, the state is
dominated by the m = 7 Fourier mode and there are seven
counter-rotating vortex pairs.

the range of the nonlocal linear stability theory [13] to
0.33 ≤ α ≤ 0.8. Although its accuracy is somewhat com-
promised, the numerical code remains very stable and
can be thus used to broaden the range of α accessible.
At the smallest α, mc = 2 and there are just four vor-
tices around the annulus.

In general, the main effect of varying α is to select
the overall azimuthal mode, which is quantized to fit an
integer number of vortices around the perimeter of the
annular cell. Fig. 5b shows critical mode number mc

from the simulation, linear theory, and experiment [13].
For special values of α, two adjacent values of azimuthal
mode number are simultaneously unstable at onset and
Rc(α) exhibits a cusp, giving it a scalloped structure.
These are the special CoD2 points which we discuss in
detail in section IV D below.

The cubic nonlinearity g in the Landau amplitude
equation characterizes the primary bifurcation from con-
duction to convection. The bifurcation is continuous and
supercritical, discontinuous and subcritical, or tricritical
for g > 0, g < 0, and g = 0, respectively. Numerical sim-
ulations reveal that the primary bifurcation is continuous
and supercritical for P = 10 and across a broad range of
α, as shown in Fig. 6. Values of g are found between 2.0
and 2.6. These values are in excellent agreement with
calculations of g for 0.60 ≤ α ≤ 0.80 from a local, weakly
nonlinear theory [8]. Both numerical and theoretical data
therefore suggest only a weak dependence of g on α.

These results can be compared to experimental mea-
surements in which g was extracted by fitting current-
voltage data [6]. The experimental results, which show
considerable scatter, are also shown in Fig. 6. The exper-
iment generally shows supercritical bifurcations for vari-
ous P > 1. For the larger α, these agree with simulation
and weakly nonlinear theory.
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FIG. 5: (Color online) (a) The radius ratio dependence of
the critical Rayleigh number Rc. The solid circles (•) are the
results of the numerical simulation. Open and filled boxes
(2) are the theoretical predictions of nonlocal linear stabil-
ity analysis, using third order and sixth order expansions in
the radial direction, respectively. (b) The critical number of
counter-rotating vortex pairs mc. All the simulation data (•)
are for a fixed P = 10. The solid lines are the predictions of
fully nonlocal linear stability theory and ♦ are experimental
results from Ref. [6].

For small α, and particularly for the smallest α = 0.33,
a systematic disagreement is observed. At α = 0.33,
the experimentally measured g actually becomes nega-
tive, indicating a subcritical bifurcation which is in clear
disagreement with the simulation and weakly nonlinear
theory. The most likely explanation for this disagreement
is that the geometry of the electrodes in the experimental
cell deviates more from the idealizations of the model as
α becomes smaller. The support structure for the centre
electrode may become significant. We observe that the
field term f in the fitting function Eqn. 32, which de-
scribes the imperfection of the bifurcation, increases for
small α. Also, the result for g at α = 0.33 was obtained
by averaging over data taken over a range of P , which
may have introduced some bias since the experimental
values of P tend to be closer to one, and therefore frac-
tionally more uncertain, for small α. More experiments
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2.1 < P < 4.4

FIG. 6: (Color online) The radius ratio dependence of the
coefficient of the cubic nonlinearity, g. Numerical data (•)
for P = 10 with various radius ratios α show a continuous
and supercritical bifurcation (g > 0). They agree well with
a nonlocal theory prediction for P = 123 shown by red filled
squares (2). Black filled diamonds (♦) are experimental re-
sults, from Ref. [6], for various P > 1.

will be required to sort out this discrepancy.

C. Dependence on the Prandtl-like number P

The Prandtl-like number P measures the dimensionless
ratio of the charge and viscous relaxation times. Large P
limits the influence of the nonlinear advection and time
derivative terms compared to the viscous and external
driving force terms. Linear stability analysis predicts
that Rc should be independent of P for all α. This result
follows from the fact that the base state is quiescent. In
particular, linear theory predicts Rc ≈ 82 at α = 0.33.
In agreement with this, the simulation data at α = 0.33
consistently shows values of Rc spread between 80 and
82 for a wide range of P between 0.01 and 1000.

The Prandtl-like number P has an effect on the non-
linear behavior, and in particular on the coefficient of
the cubic nonlinearity g. Fig. 7 shows g for a range of
P between 0.01 and 1000. This is a much wider range
than that achievable experimentally. The smallest value
achieved in experiments was P ∼ 2. The simulation
data for α = 0.33 show very little dependence on P for
0.1 ≤ P ≤ 1000. However, for small P < 0.01, g increases
by a factor of ? 2. This is a dramatic change compared
to the near independence of g on P for 0.1 ≤ P ≤ 1000.
The simulation data agree with previous theoretical cal-
culations [8]. Experimental results also show the P-
independence of g for large P . For example, g ≈ 2 for
25 < P < 65 and α = 0.64 [6].
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FIG. 7: Simulation data of the cubic nonlinearity coefficient
g over a wide range of P for a fixed α = 0.33. The numerical
data show supercritical bifurcations g > 0 for various P and
the P-independence of g for P > 0.1.

D. Codimension-two points

Numerous codimension-two (CoD2) points exist in the
parameter space of the Rayleigh-like number R and the
radius ratio α. At such CoD2 points, two adjacent az-
imuthal modes, m and m + 1, become simultaneously
unstable at onset. This allows for unusual mode interac-
tions near such points, which may lead to complex dy-
namics close to onset. The location of CoD2 points can
be predicted by linear stability analysis. They appear in
Fig. 5b at the intersection points of the scallop-shaped
curves which map the onset values of R for each m. The
dynamics of mode competition close to these CoD2 point
has not previously been studied experimentally, or by
weakly nonlinear analysis. The present numerical simu-
lation gives us the tools to investigate the dynamics near
onset, close to a CoD2 point.

Langford and Rusu previously studied patterns in an-
nular electroconvection using equivariant bifurcation the-
ory [17]. They enumerated the possible bifurcations near
CoD2 points. Under the assumption of a supercritical
primary bifurcation, they predicted only two possible sce-
narios for the low lying secondary bifurcations. In one
case, there is a smooth transition from the m to the m+1
mode via a stable mixed-mode branch of Z2 symmetry.
This preserves reflection symmetry of the annulus while
breaking the azimuthal rotational symmetry. Under the
other scenario, there is a hysteretic jump between the
stable branches for modes m and m+ 1.

We selected α = 0.452, which is predicted by linear
theory [13] to be close to the CoD2 point for m = 5 and
m = 6. Close to this α, for R slightly larger than Rc,
the numerical simulation shows that the amplitudes of
the m = 5 and m = 6 Fourier modes both show positive
growth for a long period of time, up to ≈ 150τc. How-
ever, the competition between the two modes is such that
one mode eventually decays while the other saturates to
a steady state after a long time. Fig. 8 shows the com-
plete evolution. Fig. 9 shows the end result of the mode

competition at α = 0.452, for two slightly different values
of R and different random white noise initial conditions.
The final state is very sensitive to the initial condition,
and it is found to latch into either m = 5 or m = 6.

The numerical simulation thus shows that, at least for
this case, the secondary bifurcation is of the hysteretic
type, corresponding to Fig. 3a in Ref. [17]. It is never-
theless possible to observe a mixed-mode. Fig. 8a shows
the streamfunction of the co-existing m = 5 and m = 6
state, which does have the expected Z2 symmetry. How-
ever, this mixed-mode state is transient, unstable, and
eventually relaxes to a single-mode state. At present, we
know of no CoD2 points which show stable mixed modes,
although not all values of α, R and P have been explored.

V. CONCLUSION

In this paper, we have employed direct numerical sim-
ulation to analyze electrically-driven convection in an an-
nular thin film. We computed the critical Rayleigh-like
number Rc, critical mode number mc, and the coeffi-
cient g of the cubic term in the Landau amplitude equa-
tion as a function of the radius ratio α, a parameter
that completely characterizes the bounded annular ge-
ometry. We also found the variation of the coefficient g
with the Prandtl-like number P for one fixed value of α.
The numerical results are generally in good agreement
with experimental data and previous theoretical studies
based on linear stability [13] and weakly nonlinear anal-
ysis. We have established that the primary bifurcation
at onset is supercritical for a wide range of α and P .
The only disagreement with experimental results, which
is so far unexplained, comes for small α, for which fits to
experimental data indicated a weakly backward primary
bifurcation.

These calculations nicely complement previous exper-
imental studies, for which no visualization was possible,
by allowing us to image the various fields in space and
time, as well as to extend significantly the range of α
and P that can be reached. The visualization and de-
tailed numerical studies revealed the dynamics near a
codimension-two point for the first time. The competi-
tion between critical modes m and m + 1 proceeds via
an unstable mixed state that possesses Z2 reflection sym-
metry, as first suggested by equivariant bifurcation the-
ory [17].

This work may be extended in several interesting di-
rections. In future work, we hope to simulate the effect of
superposing an azimuthal shear flow on the convection.
Experiments and linear theory [13] of this situation have
shown that the shear suppresses convection and leads to
a rich variety of new bifurcation scenarios. In addition,
we plan to push the simulation to the high Rayleigh-like
number regime, in which scaling has been observed ex-
perimentally [9, 10].
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FIG. 8: Mode competition close to the CoD2 point at α =
0.452 and R = 87. (a) The stream function of a transient
mixed-mode state with m = 5 and m = 6 components. This
state corresponds to the Z2 symmetric solution predicted in
Ref. [17]. (b) The early time growth of the Fourier amplitudes
of modes m = 5 and m = 6, starting from an initial condition
of equally large amplitudes for both modes. The growth rates

of bψ2m are both ≈ 0.05, for early times > 90 τc. (c) The full
time evolution of the amplitudes of the two modes, showing
that mode competition eventually results in one mode sup-
pressing the other.
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APPENDIX: THE RELATIONSHIP BETWEEN

SURFACE CHARGE AND 2D ELECTRIC

POTENTIAL

The surface charge density q and the 2D electric po-
tential on the film ψ2 are nonlocally related. Either of
these two quantities, plus the 2D potential on the elec-
trodes, form the boundary conditions for the 3D Laplace
equation that determines the potential outside the film.
The remaining 2D quantity must be determined self-
consistently from the solution of the 3D Laplace prob-
lem. This nonlocal relationship makes the simulation of
electroconvection more complicated than that of ther-
mally driven RBC. This additional complication is evi-
dent by the coupling of four unknown quantities in the
governing equations, instead of the usual three for RBC.
Fortunately, the additional potential and charge fields
are coupled instantaneously by a Maxwell equation, so
that the nonlocal calculation involves no additional time
derivatives, and can thus be solved once and for all before
time stepping the other fields. This calculation must ulti-
mately be done numerically, but the Laplace problem can
first be solved implicitly in integral form. The calcula-
tion is made more straightforward by the decomposition
of the fields into Fourier modes in the pseudo-spectral
technique.

Since no free charge exists outside of the film, the 3D
potential satisfies the Laplace Equation ∇2ψ3 = 0 with
appropriate boundary conditions (BCs) on the film and
electrodes, which fill the xy plane. The surface charge
density q is determined by the discontinuity in ψ3 in the ẑ

direction on the surface of the film. The BCs require that
ψ3 in charge-free space is finite for z ≥ 0 and vanishes
for z → ∞. General solutions for z ≥ 0 are

ψ3(r, θ, z) =

∞∑

m=−∞

∫
∞

0

e−kzJm(kr) Am(k)eimθ dk,

(A.1)
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q(r, θ) = −2∂zψ3|z=0+

= 2

∞∑

m=−∞

∫
∞

0

k e−kzJm(kr) Am(k)eimθ dk

∣∣∣∣
z=0+

,

=
∞∑

m=−∞

q̂m(r)eimθ ≈
K∑

m=−K

q̂m(r)eimθ , (A.2)

where Jm is the Bessel function of the first kind. In the
above, we have used the pseudo-spectral expansion in
the azimuthal modes to numerically estimate the surface
charge using modes m in the finite range −K ≤ m ≤
K. K is selected to be sufficiently large that spectral
contribution of modes with m > K is negligible.

The BC for the electric potential on the surface of the
film is ψ2(r, θ) = ψ3(r, θ, z = 0), and

ψ2(r, θ) =
∞∑

m=−∞

∫
∞

0

Jm(kr) Am(k)eimθ dk, (A.3)

=

∞∑

m=−∞

ψ̂2m(r)eimθ ≈

K∑

m=−K

ψ̂2m(r)eimθ .

The coefficients Am(k) can be calculated with the aid of
the Hankel transform,

∫
∞

0

xJm(kx)Jm(k′x) dx =
1

k
δ(k′ − k). (A.4)

Using Eqn. A.4, one can solve for the coefficient

Am(k) = k

∫
∞

0

ρ ψ̂2m(ρ) Jm(kρ) dρ. (A.5)

Using the above formulation, the nonlocal relationship
between the Fourier coefficients of the surface charge q
and the 2D electric potential ψ2 is given by the following
integral equation:

q̂m(r) = 2

∫
∞

0

k2 Jm(kr)

∫
∞

0

ρ ψ̂2m(ρ) Jm(kρ) dρ dk.

(A.6)

This expression is simplified by the fact that ψ̂2m(ρ) = 0
for ρ < ri and ρ > ro, so the range of the ρ integration
can be restricted to ri ≤ ρ ≤ ro.

Looking back to Eqn. A.1, we see that the wave number
k describes how rapidly the integrand of ψ3 exponentially
decreases in the z direction. We can therefore approxi-
mate the k integration in Eqn. A.6 with a large but finite
upper limit kmax. To carry out the k integral numeri-
cally, we approximate it as a Riemann sum using a small
step δk, with kn = nδk and 0 ≤ n ≤ Nk = kmax/δk.

In the pseudo-spectral method, we only need to evalu-
ate Eqn. A.6 at the Nc + 1 Chebyshev collocation points
in the radial direction. As described previously, Nc + 1
radial positions r are mapped onto x positions using
Eqn. 27, with xj = cos(πj/Nc), j = 0, 1, 2, ..., Nc. The
ρ integration in Eqn. A.6 can be similarly approximated
by a sum so that

q̂m(xi) ≈ 2

Nk∑

n=0

k2
n Jm(knxi)

Nc∑

j=0

rj ψ̂2m(xj) Jm(knxj) δrj δk,

(A.7)
where δrj is an appropriately chosen variable interval.
Carrying out the sum over n, this can be expressed as
a nonlocal, linear transformation between the Fourier-

Chebyshev coefficients of q̂m and ψ̂2m,

q̂m(xi) =

Nc∑

j=0

Tmij ψ̂2m(xj). (A.8)

We used a k step size of δk = 10−3. It remains to select
an appropriate cutoff kmax. The best value of kmax was
found to be related to the choice of maximum Fourier
mode m = K. We found that kmax ∼ (1.5 − 2) × K
was sufficient. Varying kmax introduces only very small
errors. The integrated charge transport Nu differs by ≤
0.3% at R = 160 for simulations with kmax = 40, 50, 58
and 70. We typically used kmax = 50 to calculate the ma-
trices Tmij for each Fourier mode m. The matrix elements
depend only on α, Nc and kmax, and were calculated once
at the beginning of the time stepping loop. Eqn. A.8 was

used thereafter to convert ψ̂2m to q̂m.
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