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We describe a local-power law scaling theory for the mean dimensionless electric current Nu in
turbulent electroconvection. The experimental system consists of a weakly conducting, submicron
thick liquid crystal film supported in the annulus between concentric circular electrodes. It is driven
into electroconvection by an applied voltage between its inner and outer edges. At sufficiently large
voltage differences, the flow is unsteady and electric charge is turbulently transported between the
electrodes. Our theoretical development, which closely parallels the Grossmann-Lohse model for
turbulent thermal convection, predicts the local-power law Nu ∼ F (Γ)RγPδ. R and P are di-
mensionless numbers that are similar to the Rayleigh and Prandtl numbers of thermal convection,
respectively. The dimensionless function F (Γ), which is specified by the model, describes the de-
pendence of Nu on the aspect ratio Γ. We find that measurements of Nu are consistent with the
theoretical model.

INTRODUCTION

Turbulent Rayleigh-Bénard convection (RBC), the
paradigm for studies in convective turbulence, remains
a fascinating unresolved puzzle [2]. For a century, the-
ories of turbulent RBC have focused on understanding
the globally averaged heat transport through a layer of
fluid. The development of models has been largely driven
by improved experimental measurements of the heat cur-
rent, which have time and again revealed unexplained dis-
crepancies between experiment and theory. In response,
mathematical models have become increasingly sophisti-
cated during the last five decades [3]. In recent years,
ambitious experimental, theoretical and computational
projects have been undertaken and the study of turbu-
lent RBC has been considerably reinvigorated [4–17].
All this activity suggests some clear directions for future
work. Two recent experiments highlighted the crucial
role of the system shape and lateral extent [10, 17]. In
this paper, we exploit the unique features of a system
closely analogous to RBC, electrically driven convection
in a thin annular film, to shed light on these features of
turbulent convection.

Turbulent RBC is described phenomenologically in
terms of several organizing structures which are exper-
imentally observed. The convecting fluid has sharp ther-
mal boundary layers at its top and bottom surfaces.
Plumes grow erratically from these surfaces and spon-
taneously organize into a noisy but coherent wind. This
large scale circulation (LSC), or turbulent wind, advects
the plumes so that hot thermals rise along a laterally
bounding wall while cold plumes sink along the diamet-
rically opposite wall. The interior of the cell away from
the LSC is typically assumed to be well-mixed, isotropic
and homogeneous. This picture is partially corroborated
by measurements using containers with approximately
equal height and breadth. The extent to which this phe-
nomenological picture, particularly of the LSC, is geom-
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FIG. 1: Schematics of the experiment: (a) top and (b) side.

etry and shape dependent is currently the most pressing
question in the study of turbulent RBC.

The aspect ratio Γ, which is the ratio of the horizon-
tal span to the vertical separation of an RBC apparatus,
quantifies the geometry. It is important to perform ex-
perimental studies with a wide range of Γ. These have
been difficult to accomplish however, due to practical
considerations. The requirement of strong forcing, which
favors large vertical separation, is opposed by the con-
straint that the apparatus remain a manageable labora-
tory size, limiting its horizontal span. Consequently the
majority of experiments have Γ ≈ 1. Turbulent elec-
troconvection, which is largely unencumbered by scale
considerations, has emerged as a complementary exper-
imental system for the study of convective turbulence
[18].

Electroconvection driven by DC potentials in thin
smectic liquid crystal films has been extensively studied,
mostly in the weakly driven, laminar regime [18–26, 28–
30]. The system consists of a smectic A liquid crystal film
suspended in the annulus between the edges of concen-
tric circular metallic electrodes as shown schematically in
Fig. 1. An applied electric potential difference between
the inner and outer electrodes drives an electric current
through the film. Surface charges accumulate on the two
free surfaces that separate the electrically conducting film
from charge-free space. This inverted surface charge den-
sity is unstable to electric forcing in much the same man-
ner as the inverted mass density distribution of RBC is
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unstable to buoyancy forces. When the applied voltage
V exceeds the critical voltage Vc, the fluid is organized
into convection vortices as shown in Fig. 2a. The flow ad-
vects electric charge between the electrodes constituting
a convection electric current. At higher driving, the flow
becomes unsteady while retaining the large scale struc-
ture of convecting vortices, as shown in Fig. 2b. The
turbulent electric charge transport is analogous to the
heat flux in turbulent RBC.

Other AC driven forms of electroconvection have been
studied in bulk, three-dimensional liquid crystals [31–
35]. In this paper, we concern ourselves only with two-
dimensional, surface charge driven convection under DC
potentials. However, it seems clear that the turbulent
regime in these other systems might be amenable to a
similar sort of scaling analysis [35].

The globally averaged heat transport in RBC is quan-
tified in dimensionless form by dividing out the contri-
bution due to molecular conduction. It is then referred
to as the Nusselt number Nu. Almost every theoretical
model over the last 5 decades has attempted as its cen-
tral goal to describe the functional dependencies of Nu.
It is generally accepted that Nu = Nu(Ra, Pr,Γ). Here
Ra is the Rayleigh number which quantifies the thermal
forcing, Pr is the Prandtl number which is the ratio of
the fluid’s kinematic viscosity to thermal diffusivity and
Γ is the aspect ratio of the system.

Early models for Nu used the laterally extended limit,
Γ → ∞, while some recent theories assume the confined
case of Γ ≈ 1 [3]. A few years ago Grossmann and Lohse
(GL) proposed a unifying theory for the Ra and Pr scal-
ing of global variables like Nu [7]. Although the theory
does not account for the aspect ratio dependence explic-
itly, it does contain adjustable parameters which have
been fit to Γ ≈ 1 experimental data.

The GL scheme begins by decomposing thermal tur-
bulence into two constituents: a kinetic component and
a thermal component. Then, using a second phenomeno-
logical distinction between the boundary layer and the
bulk, the GL theory estimates the kinetic and thermal
dissipations in each region using dimensional arguments.
Finally, GL theory derives the dependence of Nu on Ra
and Pr by balancing the exact formulations for the total
dissipations versus the dominant contributions from the
bulk and/or boundary layer. The various combinations
of bulk/boundary layer, kinetic/thermal, and other con-
siderations lead to the fragmentation of the Ra−Pr pa-
rameter space into ten regimes [9]. Within each regime,
GL theory predicts the local-power law scalings Nu ∼
RaγPrδ with regime-dependent exponents γ and δ. Near
regime boundaries, we expect crossover effects. Unlike
previous scaling theories, GL theory predicts no purely
power law scaling for Nu. Rather, Nu = f(Ra, Pr) can
be approximated by regime-dependent combinations of
local power laws for Γ ≈ 1 systems. Recent precision ex-
periments are better modeled by the GL cross-over scal-

(a)

(b)

FIG. 2: (Color online) Qualitative visualization of electrocon-
vective flow, characterized by a film of uneven thickness: At
(a) V = 100 volts and (b) V = 250 volts. Data, however, were
acquired only from uniformly thick films in which no flow is
visible.

ing theory than by simple power laws [4, 8, 13].

Deep similarities between the phenomenologies and
mathematical descriptions of turbulent electroconvection
and RBC make possible the development of a GL the-
ory for electroconvection. In this paper, we exploit these
parallels to describe the nondimensional electric current
(also denoted Nu, the electric Nusselt number) in turbu-
lent electroconvection. We find that Nu = F (Γ)f(R,P)
where R and P are the electrical analogs of the Rayleigh
and Prandtl numbers of conventional RBC. The func-
tion f(R,P) can be approximated by local-power laws
with the same regime dependent exponents as in the GL
theory. We find that the theoretical predictions are con-
sistent with electric current measurements. Unlike the
GL model, where it is assumed that Γ ≈ 1, the naturally
periodic annular geometry of electroconvection permits
the explicit calculation of the aspect ratio dependence
F (Γ). The aspect ratio dependence of Nu is not a power
law as is the case in the theory of Shraiman and Siggia
[41], but instead approaches a constant for large Γ. We
find surprisingly broad agreement between the function
F and measurements from both turbulent electroconvec-
tion and RBC [18].
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This paper is organized as follows. We start by describ-
ing the physical model for annular electroconvection in
thin freely suspended liquid crystal films. We then de-
rive rigorous results for the globally averaged kinetic and
electric dissipations. Using two examples that are di-
rectly relevant to the current experiments, we show the
derivation of local power law scaling for Nu and for the
Reynolds number Re of the large scale circulation. Im-
portant features of the experimental system are then re-
counted and we describe direct comparison between the
scaling theory and experimental data. We finish with
a brief conclusion where we discuss the complementary
relationship between our work on turbulent electrocon-
vection and conventional RBC.

SCALING THEORY

Background

The basic equations for annular electroconvection are
introduced in this section; for full details see Ref. [25].
A close parallel with RBC is evident, which allows us
the develop a scaling theory, analogous to GL theory, in
subsequent sections.

The annular film is a two dimensional (2D) sheet
that in a cylindrical coordinate system spans the region
ri ≤ r ≤ ro at z = 0. Here ri (ro) are the radii of the
inner (outer) electrodes. On the plane z = 0, the in-
ner (outer) electrodes occupy the region 0 ≤ r ≤ ri (ro ≤
r ≤ ∞). The film is a Newtonian, incompressible, elec-
trically conducting fluid with 2D density ρ, molecular
viscosity η, and electric conductivity σ. We write the
equations governing the fluid and charge in the annular
film using 2D differential operators, field variables and
material parameters. The fluid flow is described by the
Navier-Stokes equation with an electric body force:

ρ(∂tu + u · ∇u) = −∇P + η∇2
u + qE . (1)

Here the fluid velocity u = (u, v), P is the pressure, q the
surface charge density, E is the electric field and qE is
the electric body force. The conservation of charge leads
to a continuity equation:

∂tq + ∇ · J = 0 , J = σE + qu . (2)

The current density J is composed of the usual Ohmic or
conduction density σE and the convective current density
qu. The electric field and charge density are not indepen-
dent variables and have to satisfy Maxwell’s equations.
Magnetic effects are negligible. In the region |z| 6= 0 i.e.

above and below the film and electrodes, space is free of
charges and so Laplace’s equation for the electric poten-
tial holds:

∇3
2ψ3 = 0 , ∇3

2 = ∇2 + ∂z
2 . (3)

In the above, the subscript 3 identifies the potential and
gradient operator are defined in three dimensions. The
potential ψ3 can determined in the upper half space by
solving Eqn. 3 subject to boundary conditions at z = 0
and at infinity. The surface charge density q on the film
due to the discontinuity in the electric field normal to the
film is given by

q = −ǫ0∂zψ3|z=0+ + ǫ0∂zψ3|z=0−

= −2ǫ0∂zψ3|z=0+ , ri ≤ r ≤ ro . (4)

In the above ǫ0 is the permittivity of free space. Equa-
tions 1-4 model the electroconvection system. The equa-
tions are subject to rigid boundary conditions on the fluid
velocity: u = 0 at r = ri and r = ro and to Dirichlet
boundary conditions for the electric potential at z = 0
and at infinity. The applied potential is V volts for r ≤ ri
and 0 volts for r ≥ ro and at infinity. On the film, the
electric potential is determined by satisfying the current
density J and the boundary conditions at r = ri, ro.
Using the Dirichlet Green function G(r, θ, z; r′, θ′, z′), we
can formally solve Eqns. 3 and 4 for the surface charge
density:

q(r, θ) =
ǫ0
2π

[
∮

da′ ψ3(r
′, θ′, z′ = 0)

∂2G

∂z∂z′

∣

∣

∣

∣

z′=0

]

z=0+

,

≡ g[ψ] , ψ = ψ3(r, θ, z = 0) . (5)

The integral is over the bounding surface, in this case
the z = 0 plane and surface at infinity. Eqn. 5 essentially
defines q in terms of a functional g whose argument is
the electric potential in the plane z = 0. On this plane
the electric field E and potential ψ are related though
E = −∇ψ. Using this relation, the definition of g, de-
noting the kinematic pressure field p = P/ρ and kine-
matic viscosity ν = η/ρ, the four Eqns. 1-4 reduce to the
following pair:

∂tu + u · ∇u = −∇p+ ν∇2
u−

g[ψ]

ρ
∇ψ , (6)

∂tψ + u · ∇ψ =
σ∇2ψ

∂ψg
. (7)

Written in this way, the Eqns. 6 and 7 bear striking
similarity to the Boussinesq equations for turbulent RBC
with the scalar temperature and electric potential fields
assuming similar roles. However, the rather complex and
nonlocal functional relationship g[ψ] between q and ψ
given in Eqn. 5 makes it difficult to carry out the analo-
gous GL argument for electoconvection. Fortunately, by



4

splitting the integrand in Eqn. 5 into local and nonlocal
parts, g can be expanded as

g[ψ] =
ǫ0

ro − ri
ψ + nonlocal terms . (8)

To a first (order) approximation, the functional g[ψ] can
be approximated as a linear function g(ψ) so that the
surface charge density and the electric potential on the
film are related locally. Then ∂ψg is constant and Eqn. 7
is identical to the heat equation in RBC, with electric
potential in place of temperature. Nevertheless, in Eqn. 6
the approximated driving body force ∼ ψ∇ψ does not
identically correspond to the buoyancy force ∼ ∇T in
RBC, with the replacement of electric potential ψ with
temperature field T .

The solutions of Eqns. 6 and 7 are subject to the usual
no-slip boundary conditions on u and the applied elec-
tric potential boundary conditions on ψ. Three dimen-
sionless parameters describe the state of the system. R,
the analog of the Rayleigh number in RBC, is the control
or external driving parameter, and is proportional to the
square of the applied voltage. It is given by

R =
ǫ20V

2

ση
. (9)

P , the analog of the Prandtl number in RBC, is the ratio
of the charge to viscous relaxation time scales in the film:

P =
ǫ0η

ρσ(ro − ri)
. (10)

The geometry is uniquely characterized by the radius ra-
tio α = ri/ro. However, in order to make comparison
to RBC, it is more appropriate to describe the geom-
etry in terms of the aspect ratio Γ, which is the ratio
of the horizontal or lateral dimension to the vertical or
transverse dimension. Since the lateral dimension is am-
biguous in the annular geometry, Γ is not uniquely deter-
mined. However, Γ can be consistently taken to be the
ratio of the circumference of the film measured at the
inner electrode to the film width, so that

Γ =
2πri
ro − ri

=
2πα

1 − α
. (11)

Two possible alternative definitions of the aspect ratio
use the mid-radius circumference or the outer electrode
circumference as the lateral dimension, leading to Γm and
Γo, respectively. The two aspect ratios so defined are re-
lated to Γ defined in Eqn. 11 as Γ = Γm − π = Γo − 2π.
Since the various definitions of the aspect ratio are very
similar, we have chosen to use the form in Eqn. 11 be-
cause in that case 0 ≤ Γ ≤ ∞, as is true for conventional
RBC systems. The alternative definitions Γm and Γo
have π and 2π as their lower bounds. In any case, direct
comparisons between rectangular and annular systems
converge in the α→ 1 or Γ → ∞ limits.

The critical parameters and the critical mode numbers
at the onset of electroconvection have been successfully
captured using the exact base state and the aformen-
tioned local approximation for the perturbations, as is
described in detail in Ref. [25]. The critical R in elec-
troconvection has been found both theoretically and ex-
perimentally to be ∼ 100, smaller than the correspond-
ing Rac = 1708 in RBC. The reasons for the difference
are, first, the two convection systems have different base
states [25] and, secondly, their driving body forces do not
identically correspond to each other, even under the lo-
cal approximation. However, one would expect the same
critical Rayleigh number in the case of identical driv-
ing forces and similar geometry. Indeed, a study of 2D
columnar RBC [27] showed a critical Rayleigh number
∼ 2000.

In the following, we assume that g ∝ ψ holds at much
higher forcing and develop the GL theory for turbulent
electroconvection within the local approximation, which
makes Eqns. 6 and 7 very similar to the Boussinesq equa-
tions for thermal convection.

Global averages

In this section we derive exact expressions for various
globally averaged quantities, which, according to the GL
procedure, will be balanced against scaling estimates, as
discussed in the following section.

The convective contribution to the electric current is
determined by dividing out the conduction current from
the total current. This dimensionless ratio is the Nusselt
number Nu. The net electric current is radial between
the inner and outer electrodes with a net zero contribu-
tion from azimuthal currents. Thus at any radial position
ri ≤ r ≤ ro, the integral over the azimuth of the radial
component of the current density is equal to the total
electric current. Hence, we find

Nu ≡

∮

J · r̂ dl
∮

Jcond · r̂ dl
=

∮

uq − σ∂rψ dl
∮

−σ∂rψcond dl
. (12)

In the above, we have used the definition of J given in
Eqn. 2. The contour dl is a circle at radius r, and r̂ is
a radially outward unit vector. Note that u is the radial
component of the fluid velocity u and ψcond is the electric
potential for the conductive state. On the inner electrode
(r ≤ ri) ψcond = V while on the outer electrode (r ≥ ro)
ψcond = 0. On the film where ri ≤ r ≤ ro, ψcond is given
by

ψcond =
V

lnα
ln

r

ro
. (13)

Evaluating the terms in Eqn. 12 using Eqn. 13, we find
the relation

Nu =

∫ 2π

0
(uq − σ∂rψ) rdθ

2πσV/ ln(1/α)
. (14)
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We use the angular brackets 〈· · ·〉 to denote averages
over the fluid volume (actually its area), we write

〈· · · 〉 =

∫

· · · rdrdθ
∫

rdrdθ
=

∫ 2π

0

∫ ro
ri

· · · rdrdθ

π(r2o − r2i )
. (15)

As in the GL theory for RBC, our charge transport scal-
ing theory begins with the kinetic and electric dissipation
rates

ǫu(r, θ, t) = ν(∇u)2

ǫψ(r, θ, t) = σ(∇ψ)2 . (16)

We denote the averages of the above dissipations over the
fluid volume as

ǫu = 〈ǫu(r, θ, t)〉 = 〈ν(∇u)2〉

ǫψ = 〈ǫψ(r, θ, t)〉 = 〈σ(∇ψ)2〉 . (17)

The velocity and electric potential fields share the az-
imuthal periodicity of the annulus and thus permit the
calculation of the globally-averaged kinetic and electric
dissipations of Eqn. 17. Assuming time-stationarity for
the spatial averaging and the local assumption g ∝ ψ,
we find from Eqns. 6 and 7 the following relations for the
kinetic dissipation ǫu ≡ 〈ν(∇u)2〉 and electric dissipation
ǫψ ≡ 〈σ(∇ψ)2〉:

ǫu =
ν3RP−2(Nu − 1)

ln(1/α)(r2o − r2i )(ro − ri)2
, (18)

ǫψ =
2σV 2Nu

ln(1/α)(r2o − r2i )
. (19)

The above relations have interesting similarities and
differences to those for the corresponding quantities in
RBC, which are given in Refs. [7, 9, 41]. The differences
are entirely due to the annular geometry of the electro-
convection system. In the narrow gap limit, in which the
radius ratio α → 1 while film width d = ro − ri remains
constant, Eqns. 14, 18 and 19 recover the familiar forms
for RBC between parallel plates.

Grossmann-Lohse scalings

In this section, we make several assumptions about the
spatial organization of the turbulent flow, in the same
manner as in the scaling theory of Grossmann and Lohse
(GL), as they explain in Section 2 of Ref. [7]. In particu-
lar, GL assumed that a turbulent wind, or LSC, compris-
ing a single cell occupies the entire Γ ∼ 1 RBC container.
The wind is driven by plumes from the boundary layers
and it in turn drives the interior or bulk. With the bound-
ary layers and bulk conceptually distinguished, GL esti-
mate the relative boundary and bulk dissipations. Here,

we make analogous assumptions about turbulent electro-
convection. As shown in Fig. 2b, the turbulent flow con-
sists of counter-rotating convection vortices around the
annulus. The vortices, which are unsteady, have fluctu-
ating boundaries that are defined by the averaged turbu-
lent LSC. Each vortex is assumed to be roughly square
with dimension ro − ri. Near the electrodes, well devel-
oped viscous and electric boundary layers with respec-
tive thicknesses λu and λψ are assumed. Away from
the electrodes, the vortex interior, or bulk, is taken to
be well mixed. We do not account for the slight differ-
ences between the boundary layer dimensions at the inner
and outer electrodes due to the annular geometry. This
asymmetry diminishes with increasing aspect ratio and
is assumed to be always small.

The total dissipations calculated in Eqns. 18 and 19
are decomposed into contributions from the boundary
and bulk regions of the convection cells as follows

ǫu = ǫbl
u

+ ǫbulk
u

,

ǫψ = ǫblψ + ǫbulkψ . (20)

The contribution ǫbl
u

of the boundary layer kinetic dissi-
pation is defined as

ǫblu = 〈ǫu(r, θ, t)〉bl = 〈ν(∇u)2〉bl ,

〈· · · 〉bl =

∫ 2π

0

∫ ri+λu

ri
· · · rdrdθ

π((ri + λu)2 − r2i )

+

∫ 2π

0

∫ ro
ro−λu

· · · rdrdθ

π(r2o − (ro − λu)2)
. (21)

The electric dissipation in the bulk ǫbulkψ is defined as

ǫbulkψ = 〈ǫψ(r, θ, t)〉bulk = 〈σ(∇ψ)2〉bulk ,

〈· · · 〉bulk =

∫ 2π

0

∫ ro−λψ
ri+λψ

· · · rdrdθ

π((ro − λψ)2 − (ri + λψ)2)
. (22)

The other two boundary and bulk dissipations are simi-
larly defined. We assume that

Nu = F(Γ)f(R,P) . (23)

It is our purpose to determine the as yet unspecified func-
tions F and f. We begin by estimating the bulk and
boundary layer dissipations. In the following we ignore
numerical factors of O(1).

Kinetic dissipations

The turbulent wind or LSC sets the velocity scale U
for both the boundary and bulk regions. A viscous or
kinetic boundary layer, assumed to be laminar, scales as
λu ∼ (ro − ri)Re

−1/2. Here Re is the Reynolds number
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based on velocity U and film width ro − ri. Finally we
assume that λu ≪ ri, λu ≪ ro and λu ≪ ro − ri which
greatly simplifies the averaging in Eqns. 21 and 22. For
the boundary layer, we estimate the kinetic dissipation
by

ǫbl
u

= 〈ν(∇u)2〉bl ∼ ν

(

U

λu

)2
λu

ro − ri
,

∼
ν3

(ro − ri)4
Re5/2 . (24)

We estimate the bulk (areal) kinetic dissipation rate
using the main assumption of the GL theory, that the
LSC stirs the interior. In 3D RBC, GL theory estimates
the bulk kinetic dissipation rate with the convective term
of the LSC. The LSC is assumed to be dissipated at small
scales via a turbulent energy cascade in the bulk [7].
However, 2D turbulent electroconvection is expected to
exhibit an inverse energy cascade [1]. Turbulent kinetic
energy will upward cascade toward larger scale circula-
tions from smaller scale circulations, and be dissipated
at the largest scales corresponding to the LSC. Thus, we
may directly use the convective term of the LSC to es-
timate the dissipation rate, without invoking a forward
cascade. This leads to the following expression;

ǫbulk
u

= 〈ν(∇u)2〉bulk ∼ u · (u · ∇)u ∼
U3

ro − ri
,

∼
ν3

(ro − ri)4
Re3 . (25)

The relations 24 and 25 are identical to their counterparts
for turbulent RBC, given in Section 2.3 of Ref. [7].

Electric dissipations

The applied potential V drops over the electric poten-
tial boundary length λψ, which we assume is small such
that λψ ≪ ri, λψ ≪ ro and λψ ≪ ro − ri. As with the
kinetic dissipations, these requirements greatly simplify
the averaging prescribed by Eqns. 21 and 22. Since most
of the applied potential drops over λψ at the inner and
outer electrodes, there is effectively an electrical short i.e.

a constant potential, in the bulk. Invoking the standard
arguments of RBC, where the thermal short determines
a relation between the thermal boundary layer and the
heat transport, we find that

λψ ∼
(ri + ro) ln (1/α)

Nu
. (26)

Here, we have assumed that half the applied potential
drops over the potential boundary layer at the inner elec-
trode and half at the outer electrode. We assume that
the electric potential boundary layer thicknesses are the
same at the inner and outer electrodes. This symmetry

is exact for radius ratio α → 1 or aspect ratio Γ → ∞.
Our derivation implicitly assumes that the role of the
asymmetry is not crucial at smaller Γ.

In the boundary layer, the electric dissipation is given
by

ǫblψ = 〈σ(∇ψ)2〉bl ∼ σ

(

V

λψ

)2
λψ

ro − ri
. (27)

By balancing the latter two terms in Eqn. 7

u · ∇ψ ≈
σ∇2ψ

∂ψg
, (28)

we find, up to a linear expansion of g(ψ), that

V

λψ
∼
σ(ro − ri)V

ǫ0Uλ2
ψ

. (29)

By using U as the velocity scale, we have implicitly as-
sumed that λψ ≤ λu. Substituting in Eqn. 27 for V/λψ
from Eqn. 29 and for λψ from Eqn. 26 we get

ǫblψ ∼

(

1 + α

1 − α

)

ln(1/α) Re PσV 2

Nu (ro − ri)2
. (30)

The dissipations estimated in Eqns. 24, 25 and 30 are
sufficient to define the two relevant regimes for turbulent
electroconvection. In one scenario, we assume that both
the electrical and kinetic dissipations occur primarily in
the boundary. Then Eqn. 20 will be written as

ǫu ≈ ǫbl
u
,

ǫψ ≈ ǫblψ . (31)

This corresponds to the Il regime of Ref. [9]. For the
left-hand-sides in the above equations, we use the glob-
ally averaged dissipations derived from the equations of
motion given in Eqns. 18 and 19. For the right-hand-sides
we use the boundary layer estimates given in Eqns 24 and
25. After some algebraic manipulation, we find

Nu ∝ F (Γ)R1/4P1/8 (regime Il of Ref. [8]). (32)

Repeating the above procedure for

ǫu ≈ ǫbulku ,

ǫψ ≈ ǫblψ , (33)

which corresponds to regime IIl of Ref. [9], we find that

Nu ∝ F (Γ)R1/5P1/5 (regime IIl of Ref. [8]). (34)

In general, this procedure gives a power law depen-
dence for f in Eqn. 23 of the form

f ∼ RγPδ . (35)
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It also follows that the Reynolds number Re of the vor-
tices, based on the radial velocity of the fluid and the
separation between the electrodes ro − ri, scales as

Re ∼ Rγ∗Pδ∗ . (36)

We find the same set of exponents γ, δ, γ∗, δ∗ as the GL
theory for turbulent RBC. The Il and IIl regimes are
relevant to the low R and broad P range that can be
accessed by smectic electroconvection.

aspect ratio dependence F(Γ)

After balancing the dominant contributions, as in
Eqns. 31 and 33, we find that the power law RγPδ has a
common algebraic prefactor F that is only a function of
the aspect ratio Γ. Unlike in previous studies of RBC in
Cartesian geometry [41], F(Γ) is not itself a power law.
Instead, it is given by

F(Γ) =
Γ + π

π
ln

(

Γ + 2π

Γ

)

. (37)

F(Γ) specifies the aspect ratio dependence of the global
charge or heat transport, as contained in the Nusselt
number Nu. The Reynolds number Re of the large scale
circulation, however, is local to each vortex and is inde-
pendent of Γ.

EXPERIMENT AND RESULTS

In this section, we describe the main features of the
experimental apparatus and procedure, the data analysis
and the results. Our apparatus is similar to one used
previously for studies of thin film electroconvection in the
weakly nonlinear regime [19–26, 28–30], which has more
recently been adapted to the turbulent regime [18]. Other
forms of electroconvection in bulk liquid crystals have
similarly been extended to study scaling in the turbulent
regime [34, 35].

The experiment consists of an annular liquid crystal
film of octylcyanobiphenyl (8CB) freely suspended be-
tween two concentric stainless steel electrodes as shown
in Fig. 1. The annular film was about 2 cm in diameter.
The liquid crystal is held by the sharpened edges of the
electrodes and the excess material at the edges of the film
is kept to a minimum. The meniscus of smectic liquids
has been shown experimentally to be very small, of order
10 − 100 µm [36], and is thus much smaller than the
boundary layer thicknesses defined earlier.

The experiment is enclosed by an aluminum box which
serves both as a faraday cage and as a rough vacuum
chamber. For the experiments discussed here, the film
was at atmospheric pressure and was temperature con-
trolled to 24 ± 2◦C. At this temperature, 8CB is in the

smectic A phase. In this phase, the elongated molecules
align normal to the plane of the film, which consists of an
integer number of layers. In 8CB, each layer is 3.16 nm
thick [37]. In all experiments, we used films that were
uniformly thick to within ±3 layers, and which had thick-
nesses between 30 and 85 layers. Within the plane of the
layers, the film closely approximates an ideal 2D Newto-
nian fluid. The layered structure strongly restricts fluid
motion perpendicular to the layers. The film thickness
is comparable to the wavelength of visible light. We de-
termined the thickness of a film by its interference color
under reflected white light, using standard colorimetric
functions [38, 39]. During the experiments we observed
and recorded the reflected film color with a CCD camera.

Pure 8CB has a low, uncontrolled electrical conduc-
tivity due to residual ionic impurities. To control the
conductivity, we dope the 8CB with tetracyanoquin-
odimethane (TCNQ) [40], an electron acceptor. With
a concentration of TCNQ between 5×10−5 and 5×10−4

by mass, we find that the sample has a bulk conductivity
in the range 10−8 to 10−7 Ω−1m−1. We determine the
conductivity of each film from its ohmic response below
the onset of convection, as discussed below.

The experimental procedure consists of applying a DC
voltage V across the film and measuring the resulting
electrical current I. The inner (outer) electrode is elec-
trically high (grounded). The applied voltage is incre-
mented in small steps from 0 to 1000 V and then decre-
mented to zero. At each voltage, the current is mea-
sured with a computer-interfaced electrometer, which is
equipped with low noise triaxial cables. The film resis-
tance is in the TΩ range and typical currents are ∼ 1 pA.
To determine the dimensionless charge transport Nu, we
require an accurate value for the critical voltage Vc at
the onset of convection. To measure Vc, we use a small
voltage step, ∼ 1 volt in the voltage range between 0 and
50 V, which brackets the typical critical voltage for most
of our films. A larger voltage step of ∼ 10 V is used in the
range 60 to 1000 V. The larger step is necessary to limit
the drift in electrical conductivity due to electrochemical
reactions in the film. At each applied voltage, we make
100 current measurements spaced by 25 ms. The average
values of the current were used to calculate Nu, as de-
scribed below. In addition to the IV data, we measured
the film thickness s and aspect ratio Γ. Further details
of the material preparation and experimental procedure
can be found in Refs. [22, 25, 28].

From the slope of the IV curve in the conduction
regime where the film is quiescent, we determined the
film conductance C. The Nusselt number is the current
divided by the conduction current,Nu = I/Ic = I/CV .
The control parameter R defined in Eqn. 9, was calcu-
lated using the accepted values of the viscosity, the mea-
sured conductivity, film thickness and the applied volt-
age. It varies between 0 and ∼ 105. This is moderate
compared with the very high Rayleigh numbers achiev-
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able in RBC. However, the critical value Rc of R at the
onset of electroconvection is about a factor of 10 smaller
than that for RBC. The Prandtl number P defined in
Eqn. 10 was calculated from the material parameters
and film dimensions. In the experiments reported here,
5 < P < 250.

Electroconvecting annular smectic films have several
advantages for the study of turbulent scaling, relative to
conventional RBC. In RBC experiments, the heat losses
through the sidewalls must be taken into account and
corrected for [5], whereas the annular film has no side-
walls. The characteristic time scales of electroconvec-
tion are many orders of magnitude shorter than in RBC,
making data acquisition much faster. Also, the annu-
lar aspect ratio can be easily varied over a broad range
(0.3 ≤ Γ ≤ 17 for the experiments reported here). A
similar range of Γ in RBC is possible in principle, but
would be very cumbersome and time consuming in prac-
tice.

Electroconvecting smectic films also have some clear
disadvantages, relative to RBC. Degradation of the liq-
uid crystal under DC excitation results in significant con-
ductivity drifts over an experimental run. The drift can
be as large as 30% over the course of an experiment. The
drift can be partially compensated for by monitoring the
change in the critical voltage Vc before and after each
sweep of the voltage, as discussed further below. The
total DC charge flow is quite large; ∼ 0.4µC over a time
interval of ∼ 1h. The conductivity drift results in an
uncontrolled variation of both R and P , increasing the
uncertainty in these parameters. A second disadvantage
is the rather modest upper limit on R, relative to that
attainable in RBC. Higher R could be had by simply
increasing the applied voltage V . However, large elec-
tric fields will eventually lead to dielectric breakdown,
destroying the film. We estimate that with the present
material parameters, the maximum accessible R is about
106.

Fig. 3 shows a representative IV response. The critical
voltage Vc is identifiable by the upward kink in the IV
curve at V ∼ 40V, after which the film makes a transition
from conduction to convection. When V < Vc, the fluid
is motionless and charge is carried by ohmic conduction.
When V > Vc, the electrical driving force overcomes dis-
sipation and the film flows in a series of counter-rotating
vortices, which are laminar for small V > Vc. The fluid
circulation carries an additional current by convection, as
is apparent by the increase in the slope of the IV curve
above Vc. At higher voltages, the vortices become un-
steady. The transition to unsteady flow is identified by
a sudden jump in the current fluctuations at V ∼ 200V,
as shown in the inset of Fig. 3. With even higher driving
voltage V ? 600V, the flow becomes turbulent. It is in
this highest range that Nu−R power law scalings were
observed in the experiments.
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FIG. 3: A representative current-voltage curve for an annular
film showing the onset of electroconvection. Data obtained
for increasing (decreasing) voltages are shown in △(▽). The
inset shows the rms fluctuations of the current vs. the applied
voltage. Here Γ = 3.74 ± 0.02 and P = 23 ± 2.

Dependence on the Rayleigh number R

The electric Rayleigh number R, defined by Eqn. 9, is
a dimensionless measure of the external electric driving
force. Stated in terms of experimentally measurable pa-
rameters, R = ǫ0V

2/σ3η3s
2, where ǫ0 is the permittivity

of free space, V is the imposed voltage, σ3 is the bulk
conductivity, η3 is the bulk viscosity, and s is the film
thickness. We find the bulk conductivity σ3 by measuring
the ohmic conductance of the film C = 2πsσ3/ ln (1/α),
where α is the radius ratio ri/ro. C can be directly deter-
mined from the IV curve, C = I/V , in the conductive
regime for V < Vc. Previous experiments have deter-
mined the bulk viscosity to be η3 = 0.19± 0.05 kg/ms at
atmospheric pressure [26]. As previously mentioned, we
determine the film thickness s by matching the observed
reflection color of the film to a color chart.

The dimensionless Nusselt number Nu measures the
convective contribution to the charge transport. Nu can
be directly calculated from IV data; Nu is the total cur-
rent normalized by the conductive current. The error in
the scaling exponent γ in the relation Nu ∼ Rγ stems
from uncertainties in the film thickness s, the critical
voltage Vc, and the film conductance C. The main source
of error is the drift in the film conductance C. The drift
results in slightly different slopes for the IV curves in the
conductive regime between the increasing voltage and de-
creasing voltage sweeps in a single experiment. The cause
of the conductance drift is not well understood, but is
presumably due to electrochemical changes in the liquid
crystal material. A large drift in the film conductance can
lead to a significant uncertainty in the Nu − R scaling.
In principle, this drift could be completely compensated
for if C were known for every IV measurement. Unfortu-
nately, the conductance C cannot be independently de-
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termined from the data while the film is convecting. We
must use the IV data in the conduction regime, which
occurs before and after the convection regime during one
voltage sweep.

In order to bracket the drift, we have analyzed the
data using two methods. From a fit to the ohmic re-
sponse at the beginning and end of each sweep, we deter-
mine two conductances, Cup and Cdown. In method A,
we use Cup to reduce the data obtained when increment-
ing the voltage and Cdown to reduce the data obtained
when decrementing the voltage. This method concen-
trates the conductance error at the maximum voltage,
and thus overestimates the effect of drift at the highest
voltages. In the second method, which we refer to below
as method B, we instead assume that the conductance C
varies linearly between Cup and Cdown while the fluid is
convecting. This method can be thought of as a linear
approximation to the unknown evolution of C while the
film is convecting. It probably underestimates the true
drift. By comparing our results using methods A and
B, we can gauge the overall effect of the drift. We have
analyzed all the data using both methods. In some runs,
especially large drifts made compensating for the drift
essentially impossible. We discarded runs in which the
difference in Cup and Cdown exceeded 30%.

Fig. 4a shows Nu vs. R data for three aspect ratios
Γ. When Nu = 1, the fluid is quiescent. When Nu > 1,
the fluid is convecting. For R ? 104, the data reveal
power law behavior with Nu ∼ Rγ and values of γ close
to either 1/5 (for smaller P) or 1/4 (for larger P), in a
good agreement with the theoretical predictions for the
small R regime. Detailed experimental results for various
Γ and P are listed in Table I. The Rayleigh number R
range used to fit Nu ∼ Rγ was between approximately
100×Rc and the final data point at the largest voltage,
1000 volts. Also note that in Fig. 4a, the critical Rayleigh
number Rc at the onset of convection is ∼ 100, and thus a
factor of 10 smaller than the corresponding Rac = 1708
for RBC. This is in agreement with the detailed linear
stability analysis of annular electroconvection presented
in Ref. [25].

From a total of 46 experiments, the scaling exponents
γ were either 0.20±0.03 (0.19±0.03) or 0.25±0.02 (0.24±
0.02) by analysis method A (B), depending on P . The
error bars quoted cover the scatter in γ and also include
the uncertainties in the film thickness, the critical volt-
age, and the film conductance drift. In Fig. 4b compen-
sated plots of Nu/Rγ vs. R are shown. The best fit
exponent γ obtained from experiments was used to com-
pensate the Nu data. Although only about one decade
of scaling range is available, the compensated plots show
that a local power law is an adequate description of the
data. This range is probably too short to resolve details
about possible cross-over scalings [9].
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FIG. 4: (Color online) (a) shows representative plots of Nu vs
R for Γ = 0.33 ±0.01 (△), 3.74 ±0.02 (2), and 6.60±0.02 (◦),
analyzed by method A. For these, P = 8.8 ± 0.5, 21 ± 1,
and 36 ± 1, respectively. Least-square fits to the power law
Nu ∼ Rγ give best fit values γ = 0.19 ± 0.01, 0.21 ± 0.02,
and 0.26 ± 0.01, respectively. The solid reference lines in the
figure have slopes of 1/5 (lower one) and 1/4 (upper one). In
(b) we plot the compensated scaling Nu R−γ vs. R for the
same data as in (a). The inset in (b) shows a more expanded
scale for Γ = 0.33 (△), and 3.74 (2).

TABLE I: Results of fits to Nu ∼ Rγ , for different aspect
ratios Γ and various Prandtl numbers P by analysis method
A. Results obtained by method B are consistent.

Γ range of P γ range of R

0.33 6 − 9 0.21 ± 0.02 8 × 103 − 7 × 104

1.54 19 − 28 0.21 ± 0.01 1 × 104 − 2 × 105

3.74 21 − 25 0.22 ± 0.02 2 × 104 − 2 × 105

6.6 25 − 41 0.24 ± 0.04 2 × 104 − 2 × 105

6.6 48 − 61 0.21 ± 0.01 2 × 104 − 3 × 105

11.1 70 − 74 0.25 ± 0.02 1 × 104 − 2 × 105

11.1 112 − 120 0.18 ± 0.01 2 × 104 − 4 × 105

11.1 127 − 136 0.19 ± 0.01 2 × 104 − 4 × 105

16.1 205 − 241 0.18 ± 0.02 8 × 103 − 5 × 105
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Dependence on the Prandtl number P

The electric Prandtl number P defined by Eqn. 10 is
the dimensionless ratio of the charge and viscous relax-
ation time scales. P−1 appears as a prefactor in the
nonlinear and time derivative terms when the equations
of motion are written in dimensionless variables. It is
thus reasonable that any dependence on P vanishes for
large P . However, for P ∼ 1 the turbulent flow and
scalings are expected to depend on P . The relative
length scales of the electric potential and viscous bound-
ary layers, which depend on P , enter into the scaling
arguments of Grossmann and Lohse [7]. For RBC, GL
theory predicts that Nu should exhibit local power law
scalings with Prandtl number, albeit with rather small
powers [7, 9]. RBC experiments suggest that the heat
transport is largely independent of the Prandtl number
between 4 to 1350. For example, it has been found that
Nu ∼ P−0.03 at Γ = 1 [13]. In turbulent electrocon-
vection for 2×104 ≤ R ≤ 105, we find that Nu varies by
only a factor of 2 over the broad range 5 ≤ P ≤ 250.

Fig. 5 shows a plot of Nu vs. P for two aspect ratios
Γ = 6.6 and 11.1. At each P , we have averaged the
compensated data NuR−γ over 2× 104 ≤ R ≤ 105, with
γ from the best fit. The data plotted in Fig. 5 were
obtained from a total of 26 experiments, and results for
both analysis methods A and B are shown.

For a fixed aspect ratio Γ, our data suggest a crossover
from one local power law Nu ∼ Rγ to another as P
increases. Taking Γ = 6.6 as an example, the Nu vs.

R scaling for 20 < P < 40 gives a γ exponent ≈ 1/4 ,
while for 50 < P < 70, the exponent is ≈ 1/5. The same
indications of a 1/4 to 1/5 crossover of scaling exponents
are found for Γ = 11.1, but for a higher value of P . In
the case of Γ = 11.1, we find γ ≈ 1/4 for 70 < P < 80
and γ ≈ 1/5 for 100 < P < 130. One interpretation of
this observation is that the boundaries between different
Nu vs. R scaling regimes depend on the aspect ratio
Γ. This has not been previously considered in scaling
theories of RBC, which are specific to the case Γ ∼ 1.
In annular electroconvection, we may have to consider a
three dimensional parameter space of Nu scaling regimes
that depends on R, P and Γ.

The GL scaling theory applied to annular electrocon-
vection yielded an explicit aspect ratio dependence for
the dimensionless charge transport Nu, given by the
function F (Γ) defined in Eqn. 37. Thus, we can take
the varying aspect ratio into account by dividing the Nu
data by the theoretically predicted value of F (Γ). Fig.6,
shows such a fully compensated plot of NuR−γF−1 vs.

P for various aspect ratios Γ. Our data span 5 ≤ P ≤ 250
and 0.3 ≤ Γ ≤ 17. All of this data had γ ∼ 1/5. A weak
dependence on P remains, amid considerable scatter. A
power law fit ∼ Pβ gives β = 0.20±0.04 (analysis method
A) and 0.26± 0.05 (analysis method B). The theoretical

prediction is Nu ∝ F (Γ)R1/5P1/5 for the regime of low
R and Nu. Thus, our measured value of β is at least
consistent with the GL theory applied to annular elec-
troconvection for this specific regime, although the scat-
ter is obviously too large to definitively establish that a
power law is present. For the the adjacent regime where
γ = 1/4, we have less than a decade of P range which is
insufficient even to look for such consistency.

Dependence on the aspect ratio Γ

In the scaling theory described above, we explicitly
accounted for the aspect ratio dependence, a considera-
tion omitted in the GL theory for turbulent RBC [7, 9]
which treats the case Γ = 1 . In our formulation of the
GL theory for annular electroconvection, we found that
the charge transport is modified by an aspect ratio de-
pendent prefactor F(Γ) given by Eqn. 37. Unlike the
previous studies of RBC in Ref. [41], we find the aspect
ratio dependence is not a power law scaling but rather a
simple function of the annular geometry. To make a di-
rect comparison to previous turbulent RBC experiments,
we consider a new function kF, which we define to be
F(Γ) multiplied by a normalization constant k, chosen
such that kF(Γ = 1) = 1. The appropriate value of k
is π/((π + 1) ln(2π + 1)) = 0.382. The function kF(Γ)
decreases monotonically with Γ with its greatest varia-
tion for Γ < 2, and is within 2% of its limiting value
kF(∞) = 0.764 for Γ > 7.

Our experimental data span the range 0.3 < Γ < 17.
Because our data span the wide range 5 < P < 250, we
expect some corrections due to changes in the Nu vs. P
scaling, predicted by the theory and also observed in the
current experiments. To separate the aspect ratio de-
pendence of Nu and to compare it with the theoretical
prediction Nu ∝ F(Γ)RγPδ, we divide Nu by RγPδ and
take its averaged value over the R range from 2 × 104

to 105. Nu could still depend on Γ independent prefac-
tors which are not captured by a scaling theory. These
prefactors can not be separately extracted from the ex-
perimental data and may change for the various scaling
regimes [9]. To avoid these, we restrict our discussion
to those data for which the Nu vs. R scaling exponent
γ is close to 1/5. We extract the exponents γ from the
power law fits of Nu ∼ Rγ to the experimental data. We
use δ = 0.20 and 0.26 which are obtained by the power
law fit of Nu/(F(Γ)Rγ) ∼ Pδ shown in Fig. 6, using
the two analysis methods A and B, as described above.
This effectively completes a circle of mutual consistency
checks which delivers a self-consistent experimental result
for the F(Γ) dependence alone. Using one free parameter
for all the data, we scale these data so that F(Γ = 1) = 1,
to allow a comparison to similarly normalized RBC data.
Our data for six different Γ, obtained from a total of 36
experiments, are in a reasonable agreement with the the-
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FIG. 5: (Color online) Plots of averaged Nu/Rγ vs. P for
Γ = 6.60±0.05 (black symbols) and 11.1±0.1 (blue symbols),
where γ is taken from the best fit to Nu ∼ Rγ . Circular
symbols (◦, •) show results obtained by analysis method A,
while (∗) symbols are obtained by method B. Solid (•) and
open (◦) symbols indicate when the scaling exponent γ ∼
1/4 (1/5). Note that the crossover between 1/4 and 1/5
exponents occurs at different P for different aspect ratios Γ,
as indicated by the shaded rectangles.
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FIG. 6: (Color online) The average value of fully compensated
Nu/(F(Γ)Rγ) vs. P on a log-log scale for various Γ. Circu-
lar symbols (◦) show results obtained by analysis method A,
while (∗) symbols are obtained by method B. All of these
data had a Nu vs. R scaling exponent of γ ∼ 1/5. The solid
(dashed) line is the best fit to ∼ Pβ with β = 0.20 (0.26),
using analysis method A (B).

oretical prediction for kF, as shown in Fig. 7. The errors
are representative of the scatter inNu/RγPδ among runs
for each aspect ratio.

The data at Γ = 6.6 and 16.1, which deviate most
from the theoretical prediction for kF, consist of a few
runs which have rather high values of P , about 60 and
220, respectively. This deviation may be due to difficulty
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FIG. 7: Plot of kF(Γ) vs. Γ from the scaling theory (solid
line), with k chosen so that kF(Γ = 1) is unity. Experimental
data for turbulent electroconvection are shown by solid sym-
bols (•) by method A and by (∗) for method B. The data span
5 ≤ P ≤ 250. The inset shows the same data on a logarithmic
scale.

of finding the appropriate P scaling exponent δ. For rel-
atively small R and high P , scaling theory [9] predicts
thatNu becomes independent of P , scaling with R1/5P0.
It is possible that our few data points with very high P
might fall into the scaling regime γ = 1/5, δ = 0 instead
of γ = 1/5, δ = 1/5, as we have assumed. Thus, the
F(Γ) data at Γ = 6.6 and 16.1 may be significantly un-
derestimated in Fig. 7. Many more experiments with a
wider range of parameters would be required to system-
atically explore the various scaling regimes, boundaries
and crossover effects.

Data from several turbulent RBC experiments [4–
6, 16, 42] for various values of Γ are also in broad agree-
ment with the function kF(Γ), in spite of the difference
in geometry and the higher range of Rayleigh numbers.
Details of this comparison may be found in Ref. [18].
One should only expect the comparison between the as-
pect ratio dependence for RBC and the function kF to
be reasonable in the limit Γ → ∞. Nevertheless, we find
approximate agreement, in spite of the difference in ge-
ometry, the smaller aspect ratios and the higher range of
Rayleigh numbers.

CONCLUSION

We have theoretically and experimentally studied how
the dimensionless charge transport Nu scales with the
Rayleigh number R, the Prandtl number P , and the as-
pect ratio Γ, for turbulent electroconvection in a 2D an-
nular film. The electroconvection is driven by an unsta-
ble charge distribution that is analogous to the inverted
fluid density distribution in 3D, thermally driven RBC.
The strong similarity of the governing equations between
electroconvection and RBC allowed us to adapt GL scal-
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ing theory [7, 9] and experimentally investigate its con-
sequences. The unique annular geometry of the electro-
convection also made it possible to explicitly account for
the aspect ratio dependence of the scaling relations.

From the theory, we found various regime-dependent
local power laws of the form Nu ∼ F(Γ)RγPδ, with the
same exponents as those for turbulent RBC, but with an
additional aspect ratio dependent prefactor F(Γ). F(Γ)
is a nontrivial function of the finite annular geometry,
rather than a power law.

In experiments, we found that the exponents for the
Nu vs. R scaling were consistent with 1/4 or 1/5, for
104 . R . 2×105, in reasonable agreement with the the-
ory for the regime where R and Nu are both small. The
Nu measurements for 0.3 < Γ < 17 and 5 < P < 250 are
consistent with the theoretical prediction for the regime
where Nu ∼ F (Γ)R1/5P1/5. Furthermore, our exper-
imental data suggests Γ-dependent cross-over between
different scaling regimes.

The weak dependence of F on Γ for large Γ suggests
that the global heat or charge transport approaches a
universal, Γ independent limit for laterally extended sys-
tems. This conjecture suggests that future work on the
charge or heat transport in turbulent convection should
focus on large Γ systems. Although such systems can be
difficult to achieve experimentally, they are common in
nature.

The parameter space of R, P and Γ is, however, very
large. In this study, we have have only sparingly sam-
pled from the experimentally accessible portion of this
parameter space. In spite of the general consistency be-
tween the experiment and theory, it is difficult to draw
definitive conclusions about the scaling assumptions un-
derlying the theory. The range of parameters we can
access experimentally is too narrow to span the various
regimes. Also, the decomposition of the dissipations into
bulk and boundary contributions is not directly testable
with our current experimental techniques.

The great strength of the GL scaling analysis is its
generality. It can be applied as easily to our 2D elec-
troconvection as 3D RBC. The relative simplicity of the
2D fluid mechanics in electroconvection suggest that we
can greatly extend the range of parameters by numerical
simulation. Simulations will also allow us to test directly
the scaling assumptions. The GL theory could also be
extended to the case of convection with a superposed
shear [23, 25, 28–30], a situation which is experimentally
feasible in electroconvection but not in RBC.

The nearly power law scaling of the globally averaged
heat or charge transport in turbulent convection poses
an interesting and difficult problem. Any approach to
this problem must creatively combine theory, simulation
and precision experiment. The unique features of thin
film electroconvection give us a new vantage point on
this challenging, and as yet unsolved problem.
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