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Abstract

We investigate the flow transitions that occur in sheared annular electroconvection using Newton-

Krylov numerical bifurcation techniques based on time-integration. In particular, we study a model

that simulates the flow of a liquid crystal film in the smectic A phase suspended between two annular

electrodes, and subjected to an electric potential difference and a radial shear. Due to the layered

structure of the smectic A phase, the fluid can be treated as two-dimensional and is modeled using

the 2-D incompressible Navier-Stokes equations coupled with an equation for charge continuity.

Newton-Krylov methods are implemented for the parameter continuation of steady axisymmetric

flow, rotating waves and amplitude-modulated rotating waves, with the electric Rayleigh number

as the parameter. In particular, we present a defining system for the computation of the amplitude-

modulated rotating waves that does not require a linearized code, and that exploits the rotational

nature of the flow. The linear stability of the solutions is computed to identify the value of the

electric Rayleigh number at which the transition from axisymmetric flow to rotating waves and the

subsequent transition to amplitude-modulated rotating waves occur. Finally, we locate the tertiary

transition and show that it corresponds to a period-4 bifurcation of the amplitude-modulated

rotating waves.

I. INTRODUCTION

Much can be learned about the fundamental properties of natural fluid systems, such as

the atmosphere, by studying laboratory experiments that isolate certain key aspects of the

system and ignore others that do not determine the essential character of the flow. One

such classical example is the differentially heated rotating fluid annulus experiment [1–5], in

which a fluid is placed in a rotating cylindrical annulus while the inner and outer walls of

the annulus are held at different temperatures. The fluid flow undergoes successive transi-

tions upon variation of the temperature difference and/or the rotation rate; transitions are

observed from axisymmetric flow to rotating waves, then to amplitude-modulated rotating

waves (often called amplitude vacillating flow) or other forms of modulated rotating waves,

and eventually to irregular flows. The flows observed in the laboratory experiments resemble

those observed in the atmosphere [3].
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Another example of an experiment that has geophysical relevance is sheared annular elec-

troconvection, in which a thin liquid crystal film suspended between two annular electrodes

is driven to convection by an applied potential difference while a shear is imparted through a

rotation of the inner electrode. In this system, radial electrical forces play the role of radial

gravity-driven thermal buoyancy in a geophysical context. The system is a close analogue

of some laboratory-scale geophysical flow experiments, e.g. those mentioned above [1, 2]

(see also [6]), and to simplified models of the rotating equatorial regions of planetary atmo-

spheres and planetary interiors [7, 8]. Although sheared annular electroconvection shares

many characteristics with these counterparts, including their SO(2) symmetry, a crucial

difference is in the two-dimensional nature of electroconvection. In particular, the electro-

convection experiments employ a liquid crystal in smectic A phase, which can essentially

be considered to be a two-dimensional fluid. In addition to providing insight into transition

phenomena in buoyancy driven rotating flows, this is an ideal system in which to study

bifurcations in spatiotemporal pattern formation [9].

Laboratory and numerical studies of sheared annular electroconvection [10–17] have ob-

served that under small electric potential difference, the system exhibits axisymmetric flow

in which the velocity of the fluid is in the azimuthal direction and the electric current is

carried only by conduction between the annular electrodes, while the surface charge remains

undisturbed by the flow. At a critical potential difference, a primary transition occurs to

rotating waves in which the charge is also convected by the flow, increasing the total current

beyond that of pure conduction. Beyond this critical potential difference, it is observed that

the system undergoes successive transitions similar to those observed in the differentially

heated annulus, in particular, transitions from the rotating wave state to modulated rotating

waves [14], to localized vortices [15], and subsequently to unsteady turbulent flow [16, 17],

are observed.

Here, we use numerical bifurcation methods to compute the primary, secondary and

tertiary transitions in a mathematical model of sheared annular electroconvection. In par-

ticular, we use numerical continuation to follow the solutions corresponding to the steady

axisymmetric flow, rotating waves, and amplitude-modulated rotating waves, and determine

transitions from a linear stability analysis of these solutions. In relation to numerical exper-

imentation, i.e. using time-stepping simulations alone, such bifurcation techniques are able

to compute unstable solutions, and are able to unambiguously and accurately determine the
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range of parameters over which a flow is stable, even when the ranges are small. Bifurcation

methods can also determine regions of bistability without relying on finding specific initial

conditions that lead to the different stable solutions. Moreover, they can provide insight

into the mechanism of the flow transitions themselves. They can determine the type of

bifurcation associated with the transition, even in the case of subcritical bifurcations. Thus,

a clearer picture of the dynamics of the system can be discovered. However, the advantages

of this approach are balanced by the increase in the required computational resources.

The steady axisymmetric flow corresponds to a steady solution of the model equations,

while the rotating waves and amplitude-modulated rotating waves correspond to periodic

orbits and invariant tori, respectively. Numerical methods have been developed for the

parameter continuation of such solutions in large-dimensional systems, with special interest

in applications to fluid dynamics; see, e.g. [18] for a review. Some such methods, e.g., [19–

21], are based on time-integration of the dynamical system. These methods can be useful,

in particular, when a time-stepping (i.e. simulation) code is already available, as is often

the case. The method of Tuckerman and Barkley [21] effectively uses the linear part of the

time-stepping code as a preconditioner to solve for steady solutions of the model equations;

this method, however, cannot be generally used to compute periodic orbits. The approach of

Sanchez et al. [19, 20] formulates the solution of the relevant flows as fixed points of maps,

and can be used to compute steady solutions and periodic orbits, and can be extended for

the computation of invariant tori.

In the current application, it is possible to use the rotational property of the flow to aid

in the reduction of the computational cost. In particular, our approach uses the observation

that the rotating waves are relative equilibria with respect to a rotating reference frame.

Consequently, the rotating waves can be computed as steady solutions with an additional

unknown, corresponding to the constant phase speed of the rotating wave. This approach

has been used extensively in the context of fluid dynamics; see, e.g., [18, 22–25]. Not common

is the application to amplitude-modulated rotating waves, which are periodic orbits when

viewed in an appropriately defined rotating reference frame. This idea has been used by

[26] to compute such solutions in thermal convection in a spherical shell. We use a similar

approach here. In particular, we use a Newton-Krylov method based on time-integration,

in a formulation in which the rotating waves and modulated rotating waves are computed

as fixed points of a discrete dynamical system (a map) [19]. Stability of the flows can be
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determined in terms of the stability of the fixed points of the map. Here, unlike [26], we

do not use a linearized version of the code in the computations, but instead use a finite-

difference approximation. This requires the use of an alternative auxiliary condition for

the defining system used in the numerical continuation of the modulated rotating waves.

The advantage of our approach is that the numerical simulation code is only required to

act as a ‘black-box’, i.e. it can be used directly without modification, which significantly

simplifies the implementation. In addition, unlike [26], our computations require the use

of preconditioning because the natural preconditioning, which is discussed in [19], is not

sufficient.

In Section II, we provide details of the electroconvection experiment and of the mathe-

matical and numerical models used in the study. In Section IV, we introduce the methods,

and discuss some details of the implementation. The results and discussion are presented in

Section V.

II. ELECTROCONVECTION

Electroconvection refers to fluid flows generated by electrical forces acting on space

charges within the fluid, or on surface charges at the interfaces between fluids [27]. Here, we

will be concerned with convection of thin liquid films driven by surface charges. Smectic A

liquid crystals are layered materials that naturally form stable suspended films composed of

weakly conducting organic liquids. In the smectic A phase, the elongated molecules arrange

themselves into layers with their long axes oriented perpendicular to the layers. A layer is of

nano-meter thickness and, within a layer, the oriented molecules move freely as in a normal

Newtonian viscous liquid, while molecular motion between layers is very restricted, as in a

soft solid. A suspended smectic A film has a submicron film thicknesses and consists of an

integer number of discrete molecular layers that move together as a nearly ideal 2-D fluid

and strongly resist variations in the film thickness. When suspended between electrodes,

the films readily form surface charges that interact with the electric field to produce flow;

the film can span a distance between electrodes on the order of millimeters.

Many laboratory experiments on electroconvecting smectic A films, using various geome-

tries, have been reported, including rectangular geometry [28–31], annular geometry [13],

and annular films with an applied shear [10–12, 32]. Here, we consider the experiment of
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Tsai et al. [12] which employed a smectic A film suspended between two concentric annular

electrodes. The inner electrode is rotated at a constant speed ωi, imposing a radial shear,

and a DC voltage V is applied between the two electrodes. The working fluid was 8CB

(4-cyano-4’octylbiphenyl) [12], which is in the smectic A phase at room temperature.

The standard experimental protocol of Tsai et al. [12] consisted of measuring the current I

between the electrodes as the applied DC voltage V is incremented from zero to a maximum

value in small steps, and then similarly decremented back to zero, with the inner anode

rotating at a prescribed constant angular speed ωi and the outer cathode stationary and

grounded. For relatively low voltage, the fluid flow is axisymmetric. In this state, the

velocity of the fluid is in the azimuthal direction where the flow lines are concentric circles

and the current passes between the electrodes by conduction. However, when the applied

voltage V exceeds a critical voltage Vc, the fluid becomes arranged into symmetric pairs of

convective vortices. At higher voltages, more complicated flows are provoked.

It is shown in [11, 12], that the primary transition to convection is supercritical for differ-

ent rotation rates, i.e. the amplitude of the observed convective vortices grows monotonically

from zero. Furthermore, the rotation acts as a stabilizer of the flow, delaying the onset of

convection.

These transitions have been reproduced with numerical simulations [14, 17]. The numer-

ical experiments consisted of long-time integrations using a random perturbation from the

base state solution (axisymmetric flow) as the initial condition. Simulations were conducted

for a wide range of the Rayleigh number R, defined below, while fixing the other nondimen-

sional parameters. In addition to reproducing the transition from the axisymmetric flow to

rotating waves, a secondary transition from rotating waves to amplitude-modulated rotating

waves was found.

A. The Mathematical Model

In the physical experiment, the thin film is confined in an annular region defined in

circular cylindrical coordinates (r, θ, z) as, ri ≤ r ≤ ro; see Figure 1. The film is a liquid

crystal in smectic A phase with uniform thickness s, and gap width d = ro − ri. Since

s� d, the film is treated as a 2D electrically conducting Newtonian fluid lying in the plane

z = 0. The density, dynamic viscosity and conductivity of the fluid are denoted by ρ, η and σ
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respectively. The inner electrode, 0 ≤ r ≤ ri, z = 0, is rotating at a constant angular speed

ωi and is held at a constant electric potential V . The outer electrode, r ≥ ro, z = 0, is held

at zero potential and does not rotate. The conservation of momentum and the conservation

of matter, given by the incompressible Navier-Stokes equations with an electric body force

qE, model the velocity field u(r, θ, t) = u(r, θ, t)r̂ + v(r, θ, t)θ̂

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + η∇2u + qE, (1a)

∇ · u = 0, (1b)

where r̂ is the unit vector in the radial direction, θ̂ is the unit vector in the azimuthal

direction, ∇ is the 2D gradient operator, P is the pressure, q is the surface charge density,

E = − (∇ψ) |z=0 is the electric field in the film plane z = 0, and ψ is the 3D electric potential

which extends both above and below the film. The conservation of charge is expressed by

the continuity equation

∂q

∂t
= −∇ · J, J = σE + qu, (1c)

where the current density J is composed of an ohmic conduction term σE, and a convective

term qu due to the fluid motion. The 3D electric potential ψ satisfies the Laplace equation(
∇2 +

∂2

∂z2

)
ψ = 0, (1d)

in the charge-free region z 6= 0. To find the charge in the film region z = 0, we note that

the 2D surface charge density q satisfies Maxwell’s equation [30]

q = −2ε0
∂ψ

∂z

∣∣∣
z=0+

, (1e)

where ε0 is the permittivity of free space. The currents are sufficiently small that magnetic

effects may be neglected. The factor of two in (1e) arises from accounting for the charge

accumulation on the both sides of the film.

Equations (1a)–(1e) are subject to the following boundary conditions. At each electrode,

the velocity field satisfies no-slip boundary conditions

u = ωiriθ̂, r = ri, (2a)

u = 0, r = ro. (2b)
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FIG. 1. The geometry of sheared annular electroconvection. The liquid crystal is confined in an

annular region ri ≤ r ≤ ro, and the inner electrode rotates at a constant rate ωi.

The potential ψ is set to zero at infinity

lim
z→±∞

ψ(r, θ, z) = 0, (2c)

and, at z = 0, takes on the imposed voltage, so that

ψ(r, θ, 0) = ψ2(r, θ) =

V, for r ≤ ri,

0, for r ≥ ro,
(2d)

where ψ2 is the 2D electric potential in the z = 0 plane.

A stream function/vorticity formulation can be used to eliminate the pressure term in

(1a). We define the stream function φ = φ(r, θ, t) and vorticity ω = ω(r, θ, t) as follows

u = ∇φ× ẑ, ∇× u = ωẑ, (3)

and use these to replace the velocity vector u as dependent variables. In addition, we can

define a characteristic length, time and charge. If we let the imposed voltage V denote a

representative voltage over a length scale of d = ro − ri and a relaxation time τc = ε0d/σ,

where σ is the conductivity and ε0 is the permeability of free space, then we obtain the

following nondimensionalization

r = dr̃, φ =
σd

ε0
φ̃, ψ = V ψ̃ t = τct̃, q =

ε0V

d
q̃, (4)
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where the tilde represents the dimensionless variables. Applying the formulation (3) to (1a)–

(1e), nondimensionalizing with (4), and dropping the tilde, we obtain the system of equations

describing the evolution of the dimensionless physical quantities, i.e. the vorticity ω, stream

function φ, charge density q, the 2D potential in the fluid ψ2 and the 3D potential ψ:

∇2φ = −ω, (5a)

∂ω

∂t
+ (u · ∇)ω = P∇2ω + PR (∇ψ2 ×∇q) · ẑ, (5b)

∂q

∂t
+ (u · ∇) q = ∇2ψ2, (5c)(
∇2 +

∂2

∂z2

)
ψ = 0, q = −2

∂ψ

∂z

∣∣∣
z=0+

, (5d)

where the nondimensional parameter groups are the Rayleigh numberR and Prandlt number

P defined as

R =
ε20V

2

ση
, P =

ε0η

ρσd
, (6)

respectively. The Rayleigh number R, which is proportional to the square of the applied

voltage V , describes the relative strength of the applied electric forcing to the viscous dissi-

pation, and the Prandtl number P is a fluid parameter that describes the ratio of the charge

relaxation time to the viscous relaxation time.

The dimensionless boundary conditions become

∂

∂r
φ(ro, θ) = 0, φ(ro, θ) = 0, (7a)

∂

∂r
φ(ri, θ) = −ωriε0

σ
= −ωiriτc, φ(ri, θ, t) = g(t), (7b)

ψ2(ri, θ) = 1, ψ2(ro, θ) = 0, (7c)

ψ(r, θ, 0) =


1, for 0 ≤ r ≤ ri,

ψ2(r, θ), for ri ≤ r ≤ ro,

0, for r ≥ ro,

(7d)

lim
z→±∞

ψ(r, θ, z) = 0, (7e)

where ri, ro are dimensionless quantities scaled by d and the tilde have once again been

dropped for clarity. The radial component of the no-slip boundary condition implies that

the stream function is independent of θ at the boundaries; it is determined up to a (possibly
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time-dependent) constant. If there were only one boundary, one could set the stream function

to be zero at that boundary. As there are two boundaries, we are still able to choose the

stream function at the outer boundary to be zero, but, then, we need to determine the

stream function at the inner boundary (i.e. the function g(t)) from the flow; see (7b). The

width of the film in dimensionless units is then ro − ri = 1, where ro is the dimensionless

radius of the outer electrode set at zero electric potential and ri is the dimensionless radius

of the inner electrode set at an electric potential of 1. It is convenient to express the radii of

the annular geometry with the aspect ratio α = ri/ro. Introducing this, the dimensionless

radii can be expressed as

ri =
α

1− α
, ro =

1

1− α
. (8)

It remains to determine g(t) in (7b). It is related to the total azimuthal flux as follows:∫ ro

ri

v(r, θ, t) dr = φ(ri, θ, t)− φ(ro, θ, t) = g(t) =⇒ g(t) =

∫ ro

ri

v̂
0
(r, t) dr. (9)

Above, v̂
0

denotes the zeroth Fourier coefficient of the Fourier series of v; the Fourier coef-

ficients are functions of r and t. It satisfies the following partial differential equation

∂v̂
0

∂t
+

(
û
∂v

∂r

)
0

+
1

r
(ûv)

0
= P

(
1

r

∂v̂
0

∂r
+
∂2v̂

0

∂r2
− 1

r2
v̂
0

)
− P R

r

( ̂
q
∂ψ2

∂θ

)
0

, (10)

which is found by computing the angular average of the angular component of (1a). Inte-

grating (10) with respect to r yields an ODE for g(t), closing the system

dg

dt
=

∫ ro

ri

P

(
1

r

∂v̂
0

∂r
+
∂2v̂

0

∂r2
− 1

r2
v̂
0

)
− P R

r

( ̂
q
∂ψ2

∂θ

)
0

−

(
û
∂v

∂r

)
0

− 1

r
(ûv)

0
dr. (11)

Equations (5a)–(5d) with the boundary conditions (7a)–(7e), (11) describe the sheared

annular electroconvection of any arrangement of 2D thin conductive film freely suspended

in empty space. In other words, the model still holds for the unsheared electroconvection

with appropriate changes to the boundary conditions.

1. The deviation equations

The rotation of the inner electrode generates an axisymmetric steady Couette shear,

which is observed at low R. The flow is characterized by a dimensionless Reynolds number

Re =
riΩ

P
, (12)
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where Ω = τcωi is the dimensionless angular frequency of the inner electrode. We call

this flow the base state and denote it by a superscript zero. This flow can be computed

analytically by considering only steady axisymmetric solutions of (5a)–(5d) with boundary

conditions (7a)–(7e). In particular, the base state is given by

∂φ(0)(r)

∂r
= ReP α

1 + α

(
r − r2o

r

)
, (13a)

ω0(r) = 0, (13b)

q(0)(r) =
2

lnα

(
1

ro
F

(
1

2
,
1

2
; 1;

r2

r2o

)
− 1

r
F

(
1

2
,
1

2
; 1;

r2i
r2o

))
, (13c)

ψ
(0)
2 (r) =


1, for 0 ≤ r ≤ ri,

ln(r/ro)
ln(ri/ro)

, for ri ≤ r ≤ ro,

0, for r ≥ ro,

(13d)

ψ(0)(r, z) =

∫ ∞
0

A(k)J0(kr)e
−kzdk, (13e)

where F is a hypergeometric function [10], J0 is the zeroth Bessel function and

A(k) = k

∫ ∞
0

ψ(0)(r, 0)J0(kr)rdr. (14)

Equation (13a) can be integrated from ri to ro to obtain an explicit form for φ(0) that satisfies

the boundary condition (7b) with

g(t) = g(0) = ReP α

α2 − 1

(
α + 1

2
+

1

1− α
ln(α)

)
. (15)

We note that, in this experiment, the inner electrode is rotating at a constant rate while the

outer electrode is fixed. However, independent rotations of the electrodes can be dealt with

by applying a transformation to a rotating frame of reference, where the outer electrode is

stationary. The Coriolis forces introduced by the transformation can be absorbed into the

pressure term of (1a).

Using the axisymmetric base state, we can view the solutions as the sum of the base state

and the deviation from the base state:

q(r, θ, t) = q(0)(r) + q(1)(r, θ, t), (16)

and likewise for the other dependent variables. It is convenient to rewrite the equations in

terms of the deviations, ψ(1) and q(1), instead of their counterparts, ψ and q, respectively.
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Upon applying this decomposition and substituting into (5c)–(5d), we obtain equations

which govern the evolution of the deviations ψ(1) and q(1).

∂q(1)

∂t
+

1

r

(
∂q(0)

∂r

∂φ(1)

∂θ
+
∂q(1)

∂r

∂φ(1)

∂θ
− ∂φ(0)

∂r

∂q(1)

∂θ
− ∂φ(1)

∂r

∂q(1)

∂θ

)
−∇2ψ

(1)
2 = 0, (17a)(

∇2 +
∂2

∂z2

)
ψ(1) = 0, q(1) = −2

∂ψ(1)

∂z

∣∣∣
z=0

. (17b)

The deviation variables, ψ
(1)
2 and ψ(1), satisfy the following boundary conditions

ψ
(1)
2 (ri, θ) = ψ

(1)
2 (ro, θ) = 0, (18a)

ψ(1)(r, θ, 0) =


0, for 0 ≤ r ≤ ri,

ψ
(1)
2 (r, θ), for ri ≤ r ≤ ro,

0, for r ≥ ro,

(18b)

lim
z→±∞

ψ(1)(r, θ, z) = 0. (18c)

Thus, equations (5a)–(5b), (11), (17a)–(17b) with boundary conditions (7a)–(7b), (18a)–

(18c) form a closed set of equations describing the flow of the liquid crystal.

III. THE NUMERICAL SOLVER

In this section, we provide a brief overview of the numerical time-stepper, which is imple-

mented in Matlab [17], that will be used in our computations. The solutions of the evolu-

tion equations (5a)–(5b), (11), (17a)–(17b) with boundary conditions (7a)–(7b), (18a)–(18c)

are approximated with a pseudospectral method. In particular, the 2D physical quantities,

the stream function φ, the vorticity ω, the charge density deviation q(1) and the electric

potential deviation ψ
(1)
2 , are approximated using a truncated Fourier series {eimθ} in the θ̂

direction and a truncated Chebyshev series {Tn(r)} in the r̂ direction. That is, we write

φ(r, θ, t) =
Nc∑
n=0

K∑
m=−K

φ̃nm(t)eimθ Tn(x), (19)

and similarly for the other physical quantities, where K is the highest Fourier mode, Nc is

the order of the highest Chebyshev polynomial and

x = 2r − 1 + α

1− α
, (20)
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linearly maps r ∈
[

α
1−α ,

1
1−α

]
to x ∈ [−1, 1].

The AB/BDI2 time-stepping scheme

3u(k+1) − 4u(k) + u(k−1)

2δt
≈ ∂u

∂t
= L(u) +N ≈ L(u(k+1)) + 2N (k) −N (k−1), (21)

is implemented, where δt is a prescribed time step and u(k) is the spatially discretized

solution vector at the kth time-step (see e.g. [33]). This scheme is a second-order implicit-

explicit method, in which the nonlinear part N is treated explicitly and the linear part

L(u) is treated fully implicitly. It has also be referred to as semi-implicit BDF (SBDF) or

extrapolated Gear [34, 35].

The two-step method (21) requires two initial values; the first is given, while the second

must be approximated. In the context of the bifurcation methods discussed in IV, it is neces-

sary that this second step is sufficiently accurate. To this end, a hierarchy of discretizations

is used. Specifically, a one-step first-order scheme is used with a very small time-step to

generate a preliminary second initial step. The two-step method is then used, with sequen-

tially increasing step size, to generate an approximation of the solution at t = δt, which is

used as the second initial step at the desired step size δt used for the rest of the calculation.

The numerical time-stepper for the smectic electroconvection is complicated by a non-

standard boundary condition. The surface charge q is not only coupled to flow motion, but

also regulated by the 2D electric potential field ψ2. To handle this situation, a different ap-

proach is required to resolve the nonlocal coupled electric body force that involves Maxwell’s

equation (17b) which connects the charge density with the electric potential. However, the

nonlocal calculation of the 3D potential and the charge field are coupled instantaneously

and therefore do not involve any time derivatives. The Laplace equation is solved implicitly

in integral form where the boundary condition is resolved by decomposing the field using a

pseudospectral technique [17].

With the proper initial conditions, boundary conditions and time step, the 2D electric

potential ψ2 is computed simultaneously with the surface charge q by means of the nonlocal

mapping. The vorticity ω can then be obtained from the computed q and ψ2 leading to

the computation of the stream function φ. The Orszag 3/2 aliasing rule is performed when

dealing with the nonlinear terms.

For a more detailed explanation of the time-stepper, the reader is referred to [17]. The

method we use is essentially the same, except that in [17], it is the evolution equations
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governing the deviations from the base state of the stream function φ(1) and vorticity ω(1),

that are time-stepped, rather than the full φ and ω as in our formulation. Also in [17],

the approximation that φ(1)(ro, t) = φ(1)(ri, t) = 0 is made [36]. We do not make this

approximation, i.e. we do not assume that g(t) = g(0). We, therefore, need to discuss the

time-stepping of (11), starting from (9) for the full stream function φ.

From (9), g(t) is the radial integral of v̂
0
(r, t). We time-step (10) to find v̂

(k+1)

0
and

then use Chebyshev-Gauss quadrature to approximate the radial integral, thus determining

g(k+1). The time-stepping is done as follows. First, the velocity components u(k−1), u(k),

v(k−1), and v(k) are determined from the stream function φ(k−1) and φ(k). The nonlinear

terms u∂v
∂r

, uv, and q ∂ψ2

∂θ
are computed at the (k − 1)st and kth time levels. Applying

the FFT and then selecting the component that approximates the zeroth Fourier coefficient

determines the nonlinear terms of (10): N̂ (k−1)
0

and N̂ (k)
0
. The time-stepping (21) is then

applied to (10), determining v̂
(k+1)

0
.

IV. METHODS

After spatial discretization using the spectral methods described above, our model can

be written as a continuous dynamical system in the general form

Mdu

dt
= F(u, µ), F : Rn × R→ Rn, (22)

where u = u(t) ∈ Rn is the discretized solution vector, µ is a real parameter, and the matrix

M may not be invertible due to algebraic constraints. Here, the solution vector u contains

the four physical quantities (the electric potential ψ2, the charge density q, the vorticity ω,

and the stream function φ), and has size n = 4(2K + 1)(Nc + 1), where K is the highest

Fourier mode and Nc is the highest degree of Chebyshev polynomial as shown in Section III.

A. Computation of rotating waves

The solutions of the continuous dynamical system (22) corresponding to rotating waves

can be computed as fixed points of a flow map Φt:

u→ Φt(u, µ), Φt : Rn × R× R→ Rn, (23)
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where Φt(u, µ) is given by the solution of (22) at time t ∈ R, given an initial condition

u ∈ Rn and a fixed parameter µ ∈ R. In particular, the rotating waves are limit cycles, and

thus, such solutions of (22) must satisfy u(t) = u(t+ τw), where τw is the period of the limit

cycle. Therefore, the flow map Φτw(u, µ) will map u to itself, for any u on the limit cycle,

and thus the rotating waves can be found as fixed points of the map Φτw by solving

Φτw(u, µ)− u = 0, (24)

where τw is to be determined. This method, however, requires each integration of the map to

be over a full period τw, and therefore, we choose, instead, a less general, but more efficient,

approach. In particular, we use the property that the rotating waves are relative equilibria,

i.e., integration through any time t is equivalent to rotation by θ̃ = wt, where w is the

constant phase speed of the wave. Therefore, all points u on the rotating wave must satisfy

Φt(u, µ)− γu = 0, (25)

where the rotation operator γ ∈ SO(2) acts on u via γu = u(r, θ − wt), the phase speed w

is to be determined, and t is arbitrary and thus may be taken to be much smaller than the

period τw.

Equation (25) defines the rotating wave up to a phase, and therefore, to obtain uniqueness,

we introduce the phase condition

∂

∂θ
u(0) ·

(
u− u(0)

)
= 0, (26)

which chooses the phase relative to a reference solution u(0), usually chosen to be the initial

guess used for the nonlinear solver (see below). The phase condition ensures that we seek

corrections to u(0) that are orthogonal to the tangent to the symmetry generator ∂
∂θ
u(0), the

derivative of u(0) with respect to θ. We choose to seek corrections orthogonal to u(0) instead

of u to remove the complication of working with an extra nonlinear equation.

The nonlinear system given by (25) and (26) can then be solved using the Newton-

Raphson method, in which case updates
[
δu

(k)
j , δw

(k)
j

]
at each iteration k are found from
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the linear systemDuΦt(u
(k)
j , µj)− γ t

∂u
(k)
j

∂θ

∂u(0)

∂θ
0

δu(k)
j

δw
(k)
j

 =

u(k)
j − Φt(u

(k)
j , µj)

∂u(0)

∂θ

(
u
(k)
j − u(0)

) , (27a)

u
(k+1)
j = u

(k)
j + δu

(k)
j , (27b)

w
(k+1)
j = w

(k)
j + δw

(k)
j , (27c)

where the subscript j labels points along the solution curve Γ, and DuΦt is the Jacobian of the

map Φt. The matrix in the linear system (27a) is of size (n+ 1)× (n+ 1), that is, it is only a

single row and column larger than the matrices required for the numerical integration, but it

is dense and computational intensive to compute. However, the action of the Jacobian DuΦt

on a vector δu can be found from the evolution of an initial perturbation δu as determined

by the model equations linearized about the solution u. Thus, if GMRES [37], or some other

iterative method, is used to solve the linear system (27a), it is not necessary to form the

Jacobian explicitly, because such methods only require knowledge of matrix-vector products

involving the Jacobian. As such, each iteration of the linear solve involves a time-integration

of the linearized model equations (i.e. the solution of a variational problem).

If code for the linearization is not available, the action of DuΦt on δu can be approximated

using a finite-difference method, e.g., the forward finite-difference approximation can be used

DuΦt(u, µ)δu ≈ Φt(u + εδu, µ)− Φt(u, µ)

ε
, (28)

for some ε > 0. Thus, the action of DuΦt on the vector δu can be approximated given

knowledge of the action of Φt on the vectors (u+εδu) and u. That is, using the approximation

(28), each matrix-vector product in the linear solve can be computed from two evaluations

of Φt. However, one of the two are the same for each GMRES iteration, and therefore, only

a single time integration is required per iteration.

In general, in order to ensure convergence of the solution of the linear system in a rea-

sonable number of iterations, preconditioning is required. We discuss this in Section IV C.

The computation of the derivative with respect to the angle θ and the action of the rotation

operator γ on the vector δu are computed in spectral space as an element-wise multiplication

using the Fast Fourier Transform (FFT). As a result, the main cost in this computation is

the time-integration, approximated using the time-stepping code.

16



These systems can be adapted very simply to incorporate pseudo-arclength continuation

[18]. However, we choose to implement natural continuation as we do not observe any limit

points along the solution branches.

B. Computation of amplitude-modulated waves

Amplitude-modulated rotating waves correspond to invariant 2-tori in phase space, and

resemble rotating waves with the exception that their amplitude varies periodically in time.

As such, we can use an extended version of the approach used to compute the rotating

waves. In particular, we replace integration for arbitrary time t with integration for time

τ the unknown period of the oscillation of the wave amplitude. That is, an amplitude-

modulated rotating wave has the property that integration for time τ will be equivalent

to rotation by angle wτ . In this case, there are two unknown parameters, namely, the

phase speed w and the unknown period τ of the amplitude, while there are also two phases

that need to be specified, namely, the phase of the wave, and the phase of the amplitude

oscillation. To fix the phase of the wave, we use the criterion (26) as we did for the rotating

waves, while to fix the phase of the amplitude, we consider only corrections to our initial

guess that are orthogonal to the initial guess (29c); essentially this selects an amplitude

of the solution. Other possibilities exist for this second condition; see [26]. As such, the

amplitude-modulated rotating waves can be found from the defining system:

Φτ (u, µ)− γu = 0, (29a)

∂

∂θ
u(0) ·

(
u− u(0)

)
= 0, (29b)

u(0) ·
(
u− u(0)

)
= 0, (29c)

where τ is the (unknown) period of the amplitude oscillations, γu = u(r, θ − wτ, τ), w is

the phase speed. The phase speed itself does not need to be constant; in particular, we can

interpret w as a mean phase speed for which θ̃ = wτ gives the angle of rotation required for

(29a) to be satisfied.

This system is solved using the same approach as used for the rotating waves. In partic-

ular, the linear system to be solved for each Newton-Raphson iteration is similar to that for

the rotating wave (27), and is solved with GMRES, using (28) to approximate the action

of the Jacobian DuΦ. The linear system contains only a single extra equation, i.e. the am-
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plitude phase equation (29c), and the Jacobian DuΦ is the same size as in (27). Generally,

the period τ is much longer than the arbitrarily chosen t, and therefore, the computation

of the amplitude-modulated waves requires significantly more computation time, but is no

more memory-intensive.

C. Preconditioning

As described above, the linear systems for the Newton-Raphson iterations can be solved

with GMRES. If the spectrum of the matrix associated with the linear system is well clus-

tered, then it may not be necessary to introduce preconditioning to reduce the number

of GMRES iterations required to obtain convergence in a reasonable number of iterations.

Generally for dissipative system, the spectrum is expected to become more clustered around

the origin as the integration time increases because most of the eigenvalues of the Jaco-

bian DuΦt correspond to damped perturbations, and thus, for sufficiently long integration

times, preconditioning is not required [19]. However, for the current application, we find

that even for relatively long integration times, the number of GMRES iterations required

for convergence is prohibitively many, and thus preconditioning is required.

Because we do not have an explicit form for the matrix DuΦt, we cannot use most

standard preconditioners. However, we can construct DuΦt column by column, for the

linearization about a particular solution u and for a particular value of the parameter µ,

because [DuΦt] ei = ith column of DuΦt, where ei is the ith standard basis vector. If using

the approximation (28), this process requires n + 1 evaluations of Φt to compute, and is

therefore not practical to construct for each Newton-Raphson iteration. We can, however,

use it as a preconditioner. In particular, we find that it works well as a preconditioner for

all Newton-Raphson iterations, over a large range of parameters. Thus, although expensive

to compute initially, it can be used for many computations. Furthermore, an accurate

approximation of DuΦt is not required, and therefore, significant efficiency is obtained by

computing it using time steps that are an order of magnitude larger than for the computation

of the solutions themselves. Also, although DuΦt is dense, it does not require prohibitively

more memory than the matrices involved in the numerical integration itself, due to the use

of spectral methods.
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D. The Eigenvalue Problem

The steady solutions, which are given by (u = 0, µ) when written in terms of deviations

from the base state, and the rotating wave solutions (u, w, µ) described above can be com-

puted as fixed points of the flow map Φt(u, µ); for the steady solutions, t is arbitrary, while

for the rotating waves, t is the period τw of the corresponding solution, which can be com-

puted from wτw = 2π/m, where m is the primary azimuthal wave number observed in the

rotating wave. Thus, the stability of the solutions can be determined from the spectrum of

DuΦt(u, µ), the linearization of the flow map Φt(u, µ) about fixed points u. In particular, for

maps, a fixed point is said to be linearly stable if all eigenvalues of the Jacobian DuΦt(u, µ)

lie in the unit circle of the complex plane, and unstable if at least one eigenvalue lies outside

the unit circle. Bifurcations of the system occur when an eigenvalue crosses the unit circle

as a parameter is varied.

The amplitude-modulated rotating wave solutions (u, w, τ, µ) are fixed points of the map

γ−1Φτ (u, µ), where τ is the period of the amplitude oscillations. The linear stability of these

solutions can also be found from the eigenvalues of γ−1DuΦτ (u, µ).

We use the Implicitly Restarted Arnoldi Method (IRAM) to compute the relevant eigen-

values of DuΦt(u, µ), where the IRAM is an iterative method that computes approximations

of the eigenvalues of largest magnitude of a matrix using only matrix-vector products [38, 39].

Thus, its implementation together with (28) enables us to compute the relevant eigenvalues,

i.e. those of largest magnitude, without explicitly forming DuΦt(u, µ). We use the IRAM

Matlab implementation eigs.

V. RESULTS AND DISCUSSION

We consider the Rayleigh number R as a bifurcation parameter, and apply the methods

described in Section IV. The results are presented in the bifurcation diagram of Figure 2.

The relevant physical and numerical parameters used for the computations are presented in

Table I.
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FIG. 2. The bifurcation diagram with Rayleigh number R as parameter. Solutions are represented

in terms of
∥∥φ(1)(·, t)∥∥∞, the infinity norm of the stream function deviation at a particular time

(spatial maximum of |φ(1)|), i.e. the wave amplitude. For the amplitude-modulated (AM) rotating

waves, the maximum (red) and minimum (magenta) amplitude of the solution over a period of

the amplitude oscillations is plotted. The squares represent the critical parameter values, i.e. the

bifurcation points. Values for other parameters are listed in Table I.

A. Axisymmetric flow and the primary transition

For all values of the Rayleigh number, the base state (axisymmetric solution) is given by

(13); in terms of the deviations, this solution corresponds to the zero solution. Computation

of the eigenvalues of the map Du=0Φt reveals a primary bifurcation from the base state at

a critical Rayleigh number Rc1 = 573.0; see Figure 2. In particular, at Rc1, a supercritical

Neimark-Sacker bifurcation of the flow map Φt occurs, at which a complex conjugate pair of

eigenvalues has modulus 1, and for R < Rc1, all eigenvalues have modulus less than 1 [40].

The bifurcating solutions exist for R > Rc1 and correspond to stable rotating waves with
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TABLE I. The parameters used in the numerical results.

Model parameters

Symbol Parameter Value

P Prandlt number 75.8

Re Reynolds number 0.249

α Aspect ratio 0.56

Time-stepper: discretization parameters

Symbol Parameter Value

Nc Highest order of the Chebyshev basis 24

K Highest Fourier wave number 32

δt Time step 1× 10−4

δtP Time step for preconditioner calculation 1× 10−3

Numerical bifurcation parameters

Symbol Parameter Value

t Arbitrary integration time 0.1

ε Perturbation amplitude of the forward finite dif-

ference approximation

10−3

New tol Newton-Raphson residual tolerance: 10−8

gmres tol GMRES tolerance 10−6

azimuthal wave number six (see Figure 3); the wave has constant (positive) phase speed

and constant amplitude, i.e. as time evolves, the solution maintains its shape and rotates

counter-clockwise at a constant rate. See Supplemental Material at [URL will be inserted

by publisher] for an animation of the stream function deviation φ(1) corresponding to the

rotating wave solution at R = 600. We discuss the parameter continuation of the rotating

waves in Section V B.

The value of t used in the computation of the eigenvalues is arbitrary; we use a value

t = 0.2, which provides convergence in a reasonable number of iterations. Increasing the

value of t increases the separation of the eigenvalues, enabling convergence in fewer iterations,

but also increases the cost per iteration. We find that the linear stability analysis is not
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FIG. 3. Rotating wave solution at Rayleigh number R = 600. A snapshot of the deviations from

the base state of the four physical quantities are shown: (a) the stream function φ(1); (b) the 2D

electric potential ψ
(1)
2 ; (c) the vorticity ω(1); and (d) the charge distribution q(1). The solution

maintains this shape and rotates counter-clockwise at a constant phase speed (see Supplemental

Material at [URL will be inserted by publisher] for an animation of the stream function deviation

φ(1)).

sensitive to the choice of t. The linear stability is determined from the computation of

the eigenvalues with the 20 largest magnitudes, and the critical value Rc1 is computed to

a tolerance of 10−2 using a secant method. Other parameters are held fixed at the values

listed in Table I.
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B. Rotating waves and the secondary transition

The rotating wave solutions, observed for R > Rc1, satisfy (25)–(26), while their linear

stability can be determined from the spectrum of DuΦτw , where τw = 2π/(mw) is the period

of the rotating wave, and w and m are its phase speed and primary azimuthal wave number,

respectively. As we continue the rotating wave solution in the Rayleigh number R, the

amplitude of the rotating wave grows from zero at R = Rc1 as shown in Figure 2, while the

phase speed w does not vary significantly along the branch; specifically, the phase speed w

decreases monotonically from 5.45 at R = Rc1 to 5.44 at R = 674.

Along the branch, a secondary bifurcation is detected at a critical Rayleigh number

Rc2 = 636.2, where again a complex conjugate pair of eigenvalues crosses the |z| = 1 curve

in the complex plane, while for Rc1 < R < Rc2, all eigenvalues have modulus 1 or less [41];

see Figure 4. This bifurcation of the map Φτw is supercritical and of type Neimark-Sacker.

In this case, the bifurcating solution corresponds to a 2-torus in the phase space, and a

modulated rotating wave for the governing equations. The eigenfunction corresponding to

the critical eigenvalue, shown in Figure 4, resembles a wave with azimuthal wave number 6,

and thus, we expect that the bifurcating solution is amplitude modulated (also referred to as

amplitude vacillating wave), which we confirm using simulations. These solutions resemble

a rotating wave with wave number six (see Figure 3) whose amplitude oscillates periodically

in time, except that there is a slight tilting of the vortices when the amplitude is at its

lowest. See Supplemental Material at [URL will be inserted by publisher] for an animation

of the stream function deviation φ(1) corresponding to the amplitude-modulated rotating

wave solution at R = 660. Generally, these solutions are quasi-periodic, and trajectories

in the phase space are dense on the 2-torus. That is, the amplitude-modulated wave never

quite returns to its starting values, although it will get arbitrarily close. The solution at

the end of a period of the amplitude oscillations is a rotated version of the solution at the

beginning of the period; this is true regardless of the number of periods. However, at isolated

points along the solution branch, in particular when the frequency of amplitude oscillations

is rationally related to the frequency of the oscillations due to the rotating wave, the solution

is periodic. In this case, there are an infinite number of periodic solutions; phase shifts of

the periodic solution at any point in time correspond to other periodic solutions. We discuss

the parameter continuation of the amplitude-modulated rotating waves in in Section V C.
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FIG. 4. (a) The evolution of the eigenvalues of the linearization of the map Φτw along the solution

branch of the rotating waves. The 10 largest eigenvalues with respect to modulus are depicted

for Rayleigh number 602 ≤ R ≤ 650. At Rc2 = 636.2, the critical eigenvalues are marked with

a square, while the others eigenvalues are marked with a circle; all eigenvalues are marked with

a star at R = 602. The real and imaginary parts of Vφ, the φ component of the eigenfunction

corresponding to the critical eigenvalues at R = Rc2, are plotted in (b) and (c), respectively.

The arbitrary time for the continuation of the rotating waves (i.e. of the flow map Φt)

is taken to be t = 0.1 with time step δt = 10−4, while the time step for the computation

of the preconditioner is δtP = 10−3. The parameters t and δtP are chosen to maximize

efficiency, while still enabling convergence. In particular, choosing a δtP > 10−3 does not

produce an effective preconditioner, while choosing it smaller does not significantly improve

the effectiveness of the preconditioner. The preconditioner computed at R = 600 is used for

the entire rotating wave solution branch. The results are not sensitive to the choice of t. Each

point on the solution branch {(uj, wj,Rj)} is obtained by using the Newton-Raphson solver

to correct an initial guess to within the desired residual tolerance of 10−8 in the infinity norm.

The initial guess is obtained by following a secant to the branch which is computed from

the two previous (known) points on the branch. The initial guess for the first two points

on the branch is obtained by time stepping a random initial condition for t = 10, with

R = 600. At this parameter value the solution associated with the flow of rotating waves is

stable and the time integration produces a sufficiently good guess to obtain convergence of

the Newton-Raphson iterations. Along the solution branch, convergence in approximately

three Newton-Raphson iterations is obtained when the parameter is incremented by δR = 1.

Each point on the branch is tested for accuracy by integration over the full period τw of the

solution; each point on the branch is a fixed point of the map Φτw to an error of less than
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10−4 in the infinity norm. A secant method to a tolerance of 10−2 in the parameter R is

used to locate the bifurcation point R = Rc2.

C. Amplitude-modulated waves and the tertiary transition

We continue the amplitude-modulated waves in R > Rc2 by solving (29) using Newton-

Raphson iteration with natural continuation, i.e. with R fixed at each point along the

solution branch. Initial guesses of the first two points on the solution branch are found

from time-integration of a random initial guess at R = 648. As in the case for the rotating

waves, for this value of the parameter, time-integration leads to sufficient decay of transients

because the solution is stable. Initial guesses for all other points along the curve are found

by following a secant to the solution branch which is computed from the previous two

points along the curve. Relative to the rotating wave case, smaller increments δR = 1/4

of the parameter along the solution curve are required to obtain adequate initial guesses

for the Newton-Raphson iteration to converge. In addition, it is necessary to recompute

preconditioning matrices every several steps along the solution branch with a reduced time-

step of δtP = 5× 10−4. These factors, along with the requirement that the integration time

be that of the period τ of the amplitude oscillations, lead to a significantly more intensive

computational task, relative to the computation of the rotating waves.

Once the solution of (29) is found for a given value of the parameter R, the equations

are integrated over the period τ and a maximum and minimum of the wave amplitude are

computed. These values are plotted in the bifurcation diagram of Figure 2. It can be seen

that the range of the wave amplitude grows quickly as R is incremented from Rc2 = 636.2,

then as the minimum amplitude approaches zero, begins to grow more slowly. Figure 5

shows the variation of the amplitude (spatial maximum of the absolute value of the stream

function deviation φ(1)) as a function of time over a single period of the amplitude, as well

as the period of the amplitude oscillations as R is varied. The phase speed w (not shown)

decreases monotonically from 5.43 at R = 644 to 5.08 at R = 682, where, initially, the

slope is relatively flat but becomes steeper as R is increased. For values of the parameter

R < 644, errors are introduced to the calculation of the phase speed and period of amplitude

oscillation due to the small variation of amplitude.

The stability of the amplitude-modulated waves is found from the spectrum of γ−1DuΦτ ,
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FIG. 5. Amplitude-modulated rotating wave. Left panel:
∥∥φ(1)(·, t)∥∥∞, the infinity norm of the

stream function deviation at a particular time (spatial maximum of |φ(1)|), i.e. the wave amplitude,

as a function of time t over one period of the amplitude oscillations; results at three different values

of the Rayleigh number R are plotted. Right panel: The period τ of the amplitude oscillations as

a function of R; the red dot indicates the period at R = Rc3 = 669.9.

where τ is the period of the amplitude oscillations and γ is the rotation operator through

angle θ = wτ (see Section IV D). The 10 eigenvalues with largest magnitude are computed

at each point along the branch; their dependence on R is plotted in Figure 6. Application

of the secant method finds a tertiary transition at Rc3 = 669.9; see Figure 2. In particular,

a Neimark-Sacker bifurcation of the map γ−1Φτ occurs as a complex conjugate pair of

eigenvalues crosses the |z| = 1 curve in the complex plane, while all other eigenvalues have

magnitude less than or equal to 1 [42]. As such, we might expect a three-frequency flow

to exist close to the bifurcation, although this flow may be dynamically, or structurally,

unstable. However, further inspection of Figure 6 reveals that the critical eigenvalues λ1,2 =

0.12 ± i0.99 are very close to purely imaginary, and thus the bifurcation is very close to

having a strong 1:4 resonance. There is a rich variety of behaviour that may be seen near

such a bifurcation, including period-4 cycles and heteroclinic connections [40]. However,

uncovering the details would require the prohibitively enormous task of computing normal

form coefficients. Furthermore, there is also an eigenvalue λ3 = −0.95, which is very close

to the -1 required for a flip (or period-doubling) bifurcation. Because we can only obtain a

rough estimate of the precision of our eigenvalues and we are close to higher co-dimension

bifurcations, we cannot be certain of the exact form of the bifurcating solutions.

Thus, we investigate whether simulations of the initial value problem (i.e. time-stepping

alone) can reveal any additional information that can verify the nature of the bifurcation.
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FIG. 6. (a) The evolution of the eigenvalues of γ−1DuΦτ along the solution branch of the amplitude-

modulated rotating waves. The 9 largest eigenvalues with respect to modulus are depicted for

Rayleigh number 661 ≤ R ≤ 681. At Rc3 = 669.9, the critical eigenvalues are marked with a

square, while the others eigenvalues are marked with a circle; all eigenvalues are marked with

a star at R = 661. The real and imaginary parts of Vφ, the φ component of the eigenfunction

corresponding to the critical eigenvalues at R = Rc3, are plotted in (b) and (c), respectively.

The initial condition for the simulations is taken to be the end point of the simulation at

the previously computed Rayleigh number, and we visualize solutions only for t > 100 to

ensure that transients have been dampened. The results that are presented in Figures 7

and 8 show the electric Nusselt number as a function of time computed from solutions at

Rayleigh numbers close to the critical Rayleigh number Rc3 = 669.9. The electric Nusselt

number is a nondimensional parameter that is defined as the ratio of the total current to

the ohmic conduction current, and can be computed from

Nu =

∫ 2π

0
(urq − ∂rψ2) rdθ∫ 2π

0

(
−∂rψ(0)

2

)
rdθ

. (30)

Experimental results are often presented in terms of the Nusselt number as it can be cal-

culated directly from current measurements. For more detail see [17]. Because the Nusselt

number is computed as an integration over all the domain, the azimuthal variation of the

rotating wave is averaged out. Thus, the quasiperiodic nature of the amplitude-modulated

wave is hidden, and therefore, it is a good measure for detecting bifurcations from the

amplitude-modulated wave. Observations of the time variation of the Nusselt number can

provide similar information as those of the norm of the solution, or those of the spatial

maximum of one of the components of the solution, e.g. the stream function φ.
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FIG. 7. The Nusselt number Nu as a function of time close to the tertiary transition. Left

panel: (before transition) amplitude-modulated rotating wave at R = 669; Right panel: (after

transition) amplitude-modulated rotating wave at R = 672, with period four times longer than

before transition.

The simulations reproduce the amplitude-modulated rotating wave for R = 669 < Rc3,

while the solution forR = 672 > Rc3 is a stable flow that resembles an amplitude-modulated

rotating wave with an amplitude that oscillates twice before returning to its initial amplitude

(see Figure 7); this pattern is repeated throughout the duration of the simulation (i.e.

over 40 cycles). This flow also exhibits a more pronounced tilting of the vortices at the

lowest amplitudes. See Supplemental Material at [URL will be inserted by publisher] for an

animation of the stream function deviation φ(1) corresponding to the solution at R = 672.

This flow is observed throughout the interval 670 < R < 674, and, as the parameter

is increased, transitions smoothly from the flow observed before the transition, providing

evidence that the bifurcation is supercritical. At first glance, Figure 7 seems to indicate that

a flip (or period-doubling) bifurcation rather than the predicted Neimark-Sacker bifurcation

occurs at Rc3. However, because the Nusselt number is computed as an integral over the

annulus, it does not reveal that for these solutions Φ2τ (u) 6= γ2wτu, where γθ is rotation

by θ, i.e. these solutions are not modulated waves with period of amplitude oscillations

twice that of the modulated waves observed before transition, see (29). Rather, we have

that Φ2τ (u) = −γ2wτu or Φ2τ (u) = γπ/2γ2wτu, and thus, Φ4τ (u) = γ4wτu, are approximately
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satisfied. That is, the flow is not close to a period-2 cycle of γ−1Φτ , but rather a period-4

cycle, as might occur close to bifurcations with 1:4 resonance [40].

The simulations for R = 669 and R = 672 have been verified by repeating the computa-

tions using grid size reduced by a factor of two (i.e. using Nc = 48 and K = 64, see table I,

resulting in an increase in the number of grid points by a factor of four). The results found

using the finer grid are qualitatively the same, which provides evidence that a transition of

the same type occurs for 669 < R < 672. Furthermore, the results shown in Figure 7 are

also quantitatively comparable to less than 2%, specifically, for the period of oscillation and

maximum value of the Nusselt number Nu. The linear stability analysis was not computed

on the finer grid, because the computation of the preconditioning matrix was prohibitively

long.

These observations are consistent with the linear stability computations discussed above.

The critical eigenfunction, associated with the critical eigenvalue λ1 = 0.12 + i0.99, looks

like a wave with wave number 5, but with two pairs of cells elongated relative to the other

cell; see Figure 6. The cells that are not elongated appear to have the same size as those

with azimuthal wave number 6, while the elongated cells are approximately twice as large.

Thus, it resembles a wave with wave number 6 additively coupled to one with wave number

1. The imaginary part of the eigenfunction resembles the real part, but rotated by an angle

of π/2. The value of the critical eigenvalue λ1, in particular that it is close to eiπ/2, and the

form and symmetry of the critical eigenfunction indicate how the amplitude (and Nusselt

number) oscillations appear to undergo a period doubling. In particular, the interference of

the bifurcating instability (i.e. the perturbation from the amplitude-modulated wave) with

the amplitude-modulated wave will still resemble a wave number 6 wave. After one period

(i.e. one iteration of the map γ−1Φτ ), the pattern will be different than after 2 periods,

when, to first order, it will resemble the initial flow, but rotated by an angle of π/2 (or

multiplied by -1). That is, the amplitude (and Nusselt number) will return to its initial

value after two periods, even though the solution itself does not. Two additional periods

return the flow, at least approximately, to its initial form.

For R > 674, the flow no longer appears to correspond to a period-4 cycle of γ−1Φτ . In

particular, an apparent three-frequency flow is observed, in which lower frequency oscillations

in the peak amplitude can be seen (see Figure 8). See also Supplemental Material at [URL

will be inserted by publisher] for an animation of the stream function deviation φ(1) for
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FIG. 8. The Nusselt number Nu as a function of time after the tertiary transition. Left panel: at

Rayleigh number R = 675 (modulated amplitude vacillation); Right panel: at Rayleigh number

R = 678 (apparently irregular flow). See Supplemental Material at [URL will be inserted by

publisher] for animations of the stream function deviation φ(1) for the corresponding solutions.

the solution at R = 675. It is not clear whether these oscillations are present, but not

observable, at smaller values of R, or whether this is the result of another bifurcation, e.g. a

Neimark-Sacker bifurcation from the solution corresponding to the period-4 cycle observed

for 670 < R < 674. This type of flow has been called modulated amplitude vacillation and

has been observed in both experiment and simulation of the differentially heated rotating

fluid annulus; see, e.g., [43–46].

The modulated amplitude vacillation solution is observed for only a small interval of the

Rayleigh number. A small increase to R = 678 leads to what appears to be a transition

to irregular flow. The flow itself begins to show characteristics of mode interaction (e.g.

with a wave of wave number 5). However, the simulations did not reveal the nature of

this transition. See Supplemental Material at [URL will be inserted by publisher] for an

animation of the stream function deviation φ(1) for the solution at R = 678.

The results presented in Figure 8 resemble those observed in [46], where numerical simu-

lations of the differentially heated rotating annulus reveal a bifurcation sequence similar to

that observed in the logistic map. Our results may provide some insight into the origin of

this behaviour, which warrants further investigation.
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VI. CONCLUSION

In this study, we use numerical bifurcation techniques to study the flow transitions that

occur in a mathematical model of sheared annular electroconvection as the electric Rayleigh

number R is increased. A pseudo-spectral time-stepping code, that models the motion of

the thin film, is used to approximate a flow map Φt(u) that gives the solution of the model

equations at time t for initial conditions u. The axisymmetric flow, rotating waves, and

amplitude-modulated waves observed in the physical system, which, in the model equations,

correspond to steady solutions, limit cycles and invariant 2-tori, respectively, are computed

as fixed points of this flow map. The approach exploits the fact that the rotating waves are

relative equilibria, which enables the extension of such methods to the continuation of the

amplitude-modulated rotating waves.

The Newton-Krylov numerical continuation and linear stability analysis that are imple-

mented require only knowledge of the map Φt(u), and does not require access to a linearized

code. That is, we consider Φt(u) as a black box, and all computations of the solutions and

eigenvalues are accomplished solely by evaluations of Φt. This distinguishes this study from

[26], the previous study that uses a similar approach to perform numerical continuation

of amplitude-modulated rotating waves. This aspect may enable a more straightforward

implementation on other problems.

Unlike in previous similar applications of these methods, we do not obtain reasonable

convergence of the GMRES iterations [19, 26], during the solution of the linear systems for

the Newton-Raphson iterates, without the use of a preconditioner. This may be due to the

nonlocal nature of the coupling of the charge density through the 3D electric potential. Our

preconditioner is naively computed as a direct approximation of the matrix involved in the

linear equations, but is used for all Newton-Raphson iterations across a range of parameter

values. Although this preconditioner is very effective across a range of parameters, its

computation is a major contribution to the overall time of computation, and therefore it

would be useful to have a better means of computing a preconditioning matrix.

The numerical methods locate a sequence of three flow transitions as the Rayleigh number

R is increased. The primary transition, which is a transition from axisymmetric to rotating

wave flow, is shown to occur at the critical Rayleigh number, Rc1 = 573.0, with a critical

azimuthal wave number, mc = 6, for the parameters in Table I. These results are in
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agreement with those obtained experimentally [11, 12], analytically [10, 30], and using direct

numerical simulation [14, 15, 17]. The secondary transition to the amplitude-modulated

waves is identified at Rc2 = 636.2, and the tertiary transition occurs as the amplitude-

modulated waves lose stability at Rc3 = 669.9. We have confirmed these results by both

qualitative and quantitative comparison to direct numerical simulation computed with a

numerical grid size reduced by a factor of two. The computed values for the secondary and

tertiary transitions cannot be quantitatively compared to previous studies that have used

direct numerical simulation [14, 17] due to the difference in some parameters of the system.

The different choice of parameters may also lead to the observed differences in the qualitative

features of the tertiary transition. In particular, we observe a period-4-type bifurcation from

the amplitude-modulated waves, which has not previously been reported. This observation

follows from the prediction, due to the linear stability analysis, that the tertiary transition

occurs close to a 1:4 strongly resonant Neimark-Sacker bifurcation of the corresponding flow

map.

The flows observed near the tertiary transition greatly resemble flows of interest that have

been observed in various differentially heated rotating systems. In particular, we observe

flows that resemble the modulated amplitude vacillation seen in [43–46], and those that

result from the sequence of bifurcations observed in [46]. This presents an opportunity to

study such flows, and the progression to more complex flows in general, in a two-dimensional

system.

We have shown the feasibility and validity of the application of numerical bifurcation

techniques to sheared annular electroconvection. This motivates an extensive bifurcation

analysis of the system that includes the exploration of the effects of other nondimensional

parameters (e.g. the Reynolds number Re, the aspect ration α, and the Prandtl number P),

and the study of other interesting flows that have previously been observed. Of particular

interest are rotating waves consisting of isolated or elongated vortices [14, 17], because their

origin and nature are not understood. Such studies will help develop an understanding

of this complex and interesting system. Due to its analogy with the differentially heated

rotating annulus, the results may also provide insight into the nature of flows and transitions

observed in differentially heated rotating fluids in general.
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