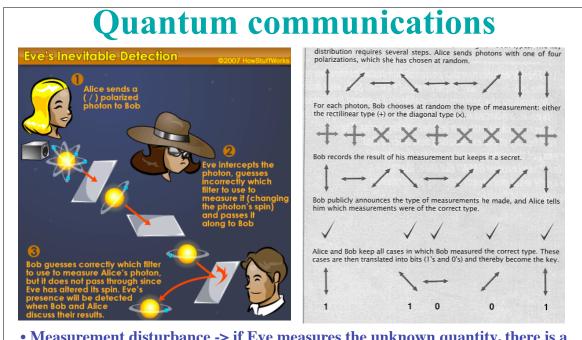

Two Goals for Last Lecture

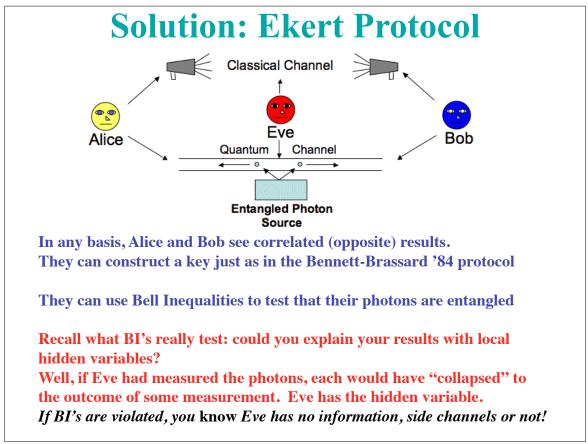

- (1) A few words about *usefulness* of these strange features of QM (entanglement et cetera)
- (2) Just so you don't feel cheated, a few words about the zoo of subatomic particles, antimatter, et cetera -- not so much "concepts" as "botany¹"...

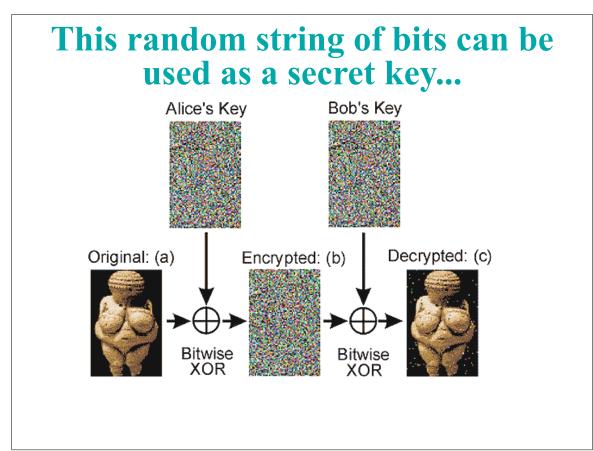
Reminder: office hrs tomorrow for review (could schedule another if demand indicates...)

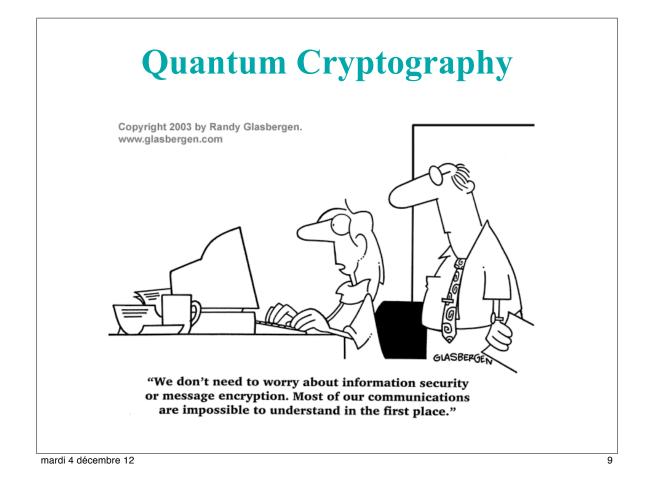
1- (with apologies. Physicists can't help making fun of botany, which we like to misinterpret as "memorizing the names of flowers.")



• Measurement disturbance -> if Eve measures the unknown quantity, there is a detectable effect


• Incompatible observables -> there is always at least one unknown quantity


• No-cloning -> she can't just make a second copy and wait to measure later



One slight problem: "side channels"

the device that operated the switch in the first demonstration was so noisy that the system was only "secure against an eavesdropper who happened to be blind and deaf"

A few words about Quantum Computation...

People like Richard Feynman and David Deutsch realized that the "uncertain" state of a quantum computer could actually be useful...

If it doesn't know what state it's in, maybe it can be in all of them at the same time... and then solve many possible problems all at once?!

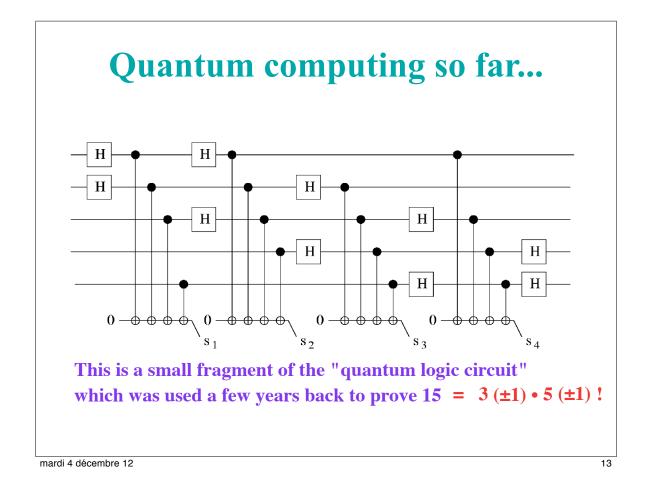
(Yes and no, but Deutsch – and later Shor – showed there were at least some clever things to do.)

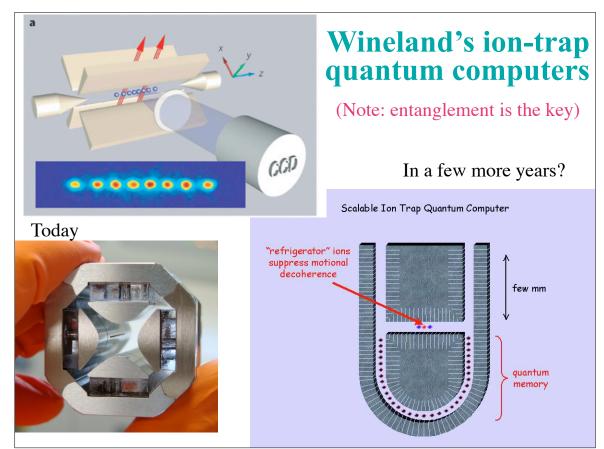
Quantum Computation?

Some problems (like factoring large numbers) are "exponentially hard" on classical computers [as far as we know] – this means that every time you make the number one digit longer, the problem takes twice [for example] as long for a computer to solve.

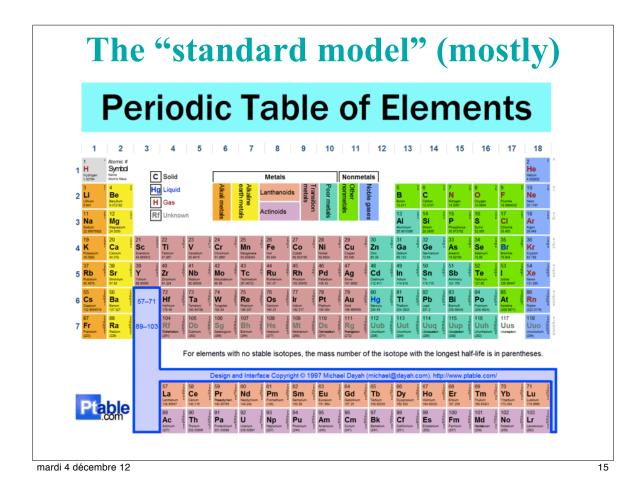
This is why your credit card # is (maybe) secure when you send it over the internet!

But there are countless examples throughout history of people who thought their codes were secure, but learned otherwise (see Simon Singh's "The Code Book").

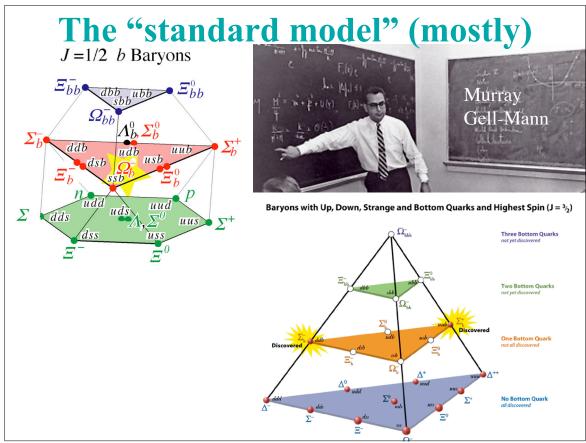

Feynman noticed that figuring out what a quantum system is going to do is also exponentially hard... does that mean that (unlike classical computers), the quantum system is "powerful" enough to "simulate" these other hard problems?


mardi 4 décembre 12

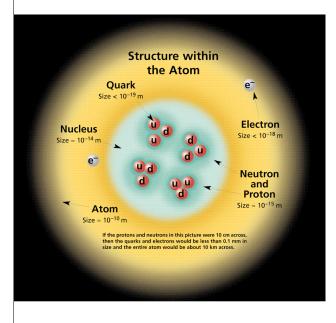
<text><text><text><text>


mardi 4 décembre 12


11



mardi 4 décembre 12

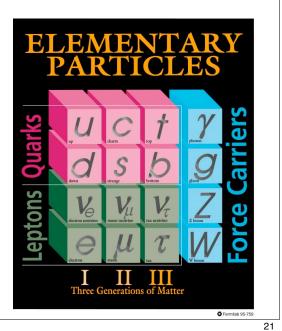


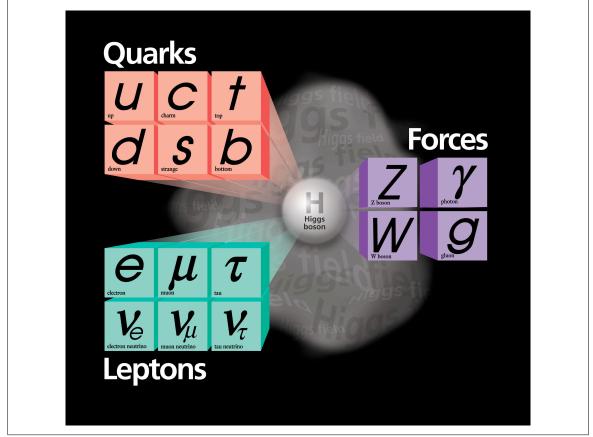
-			ard	= ¹ 12*1	aryons						
Particle name	Symbol +	Quark conten	Rest mass (MeY/o ²) *			Q(e) •	s .	с.	в.	Mean lifetime (s)	Commonly decays to
nucleon/proton[7]	p/p ⁺ /N ⁺	uud	938.272013 ±0.000023 ^[8]	112	1 ₁₂ +	+1	0	0	0	Stable ^[b]	Unobserved
nucleon/neutron[8]	n/n ⁰ /N ⁰	udd	939.565346 ±0.000023 ^[*]		1 ₁₂ +	0	0	0	0	8.857 ±0.008 = 10 ^{2[0]}	p ⁺ +e ⁻ +v _e
Leanbde ^[9]	٨0	uds	1,115.683 ±0.005	0	1 ₁₂ +	0	-1	0	0	2.631 ±0.020 = 10 ⁻¹⁰	1
channed Lambda ^[10]	٨,+	udo	2,285.46 ±0.14	0	1 ₁₂ +	+1	0	+1	0	2.00 ±0.05 × 10 ⁻¹³	See Λ_0^+ decay modes (s
bottom Lambda ^[11]	∧ _b 0	udb	5,620.2 ±1.6	0	1 ₁₂ +	0	0	0	-1	1.391 +0.038 = 10-12	See 🔥 decay modes 🔉
Sigma[12]	Σ+	uus	1,189.37 ±0.07	1	1 ₁₂ +	+1	-1	0	0	8.018 ±0.026 = 10 ⁻¹¹	p ⁺ +π ⁰ or n ⁰ +π ⁺
Sigma ^[13]	Σ ⁰	uds	1,192.642 ±0.024	1	1 ₁₂ +	0	-1	0	0	7.4 ±0.7 × 10 ⁻²⁰	Λ ⁰ +γ
Sigma ^[14]	Σ_	dds	1,197.449 ±0.030	1	1 ₁₂ +	-1	-1	0	0	1.479 ±0.011 × 10 ⁻¹⁰	n ⁰ +=
channed Sigma ^[15]	Σ0++	uuc	2,454.02 ±0.18	1	1_{12}^{+}	+2	0	+1	0	2.95 ±0.40 × 10 ^{-22^[d]}	$\Lambda_{0}^{+} + \pi^{+}$
channed Sigma ^[15]	z,+	ude	2,452.9 ±0.4	1	1 ₁₂ +	+1	0	+1	0	>1.4 × 10 ^{-22^[d]}	Λ_0^+ + π
channed Sigma ^[15]	Σ°	ddo	2,453.76 ±0.18	1	1 ₁₂ +	0	0	+1	0	3.0 ±0.5 × 10 ^{-22^[d]}	Λ_0^+ + π
bottom Sigma ^[16]	Σ _b ⁺	uub	5,807.8 ±2.7	1	1 ₁₂ +	+1	0	0	-1	Unknown	$\Lambda_{b}^{0} + \pi^{+}$
bottom Sigma [†]	Σb	udb	Unknown	1	1 ₁₂ +	0	0	0	-1	Unknown	Unknown
bottom Sigma ^[16]	Σb	ddb	5,815.2 ±2.0	1	1_{12} +	-1	0	0	-1	Unknown	Λ _b ⁰ + π ⁻
_{XI} [17]	=0	uss	1,314.86 ±0.20	1 ₁₂	1 ₁₂ +	0	-2	0	0	$2.90 \pm 0.09 \times 10^{-10}$	A ⁰ + 7 ⁰
)0 ^[18]	±7	dss	1,321.71 ±0.07	1 ₁₂	1 ₁₂ +	-1	-2	0	0	1.639 ±0.015 × 10 ⁻¹⁰	A ⁰ + π ⁻
channed Xi ^[19]	Ξ.	usc	2,467.8 +0.4	112	¹ l2 ⁺	+1	-1	+1	0	$4.42 \pm 0.26 \times 10^{-13}$	See 3 ⁺ ₀ decay modes ()
channed Xi ^[20]	≡0	dsc	2,470.88 +0.34	112	¹ l2 ⁺	0	-1	+1	0	1.12 ^{40.13} _{-0.10} ×10 ⁻¹³	See \equiv_0^0 decay modes ()
channed Xi prime ^[21]	≡'₀	usc	2,575.6 ±3.1	112	¹ l2 ⁺	+1	-1	+1	0	Unknown	Ξ <mark>°</mark> +γ(seen)
channed Xi prime ^[22]	='0	dsc	2,577.9 ±2.9	112	¹ l2 ⁺	0	-1	+1	0	Unknown	≣ <mark>0</mark> +γ(seen)
double channed Xi ^[4] †	≡00	ucc	Unknown	112	$^{1}l_{2}^{+}$	+2	0	+2	0	Unknown	Unknown
double channed Xi ^[e] [23]	≡ ⁺ ce	doo	3,518.9 ±0.9 ^[e]	112	112+	+1	0	+2	0	<3.3 × 10 ⁻¹⁴ [e]	$\Lambda_{c}^{+} + K^{-} + \pi^{+[e]}$ or $p^{+} + D^{+} + K^{-[e]}$
bottom Xi ^[24] (or Cascade B)	Ξb	usb	Unknown	112	112+	0	-1	0	-1	1.49 ⁺⁰ .19 _{-0.18} ×10 ⁻¹²	See IIb decay modes ()
bottom Xi ^[24] (or Cascade B)	зī	dsb	5,790.5 ±2.7	112	1 ₁₂ +	-1	-1	0	-1	1.56 ⁺⁰ 0.27 × 10 ⁻¹²	See ≣ _b decay modes (≣ ¯ + J/ © was also seen
bottom Xi prime [†]	≡'b	usb	Unknown	0	112+	0	-1	0	-1	Unknown	Unknown
bottom Xiprime [†]	≡°Б	dsb	Unknown	0	112+	-1	-1	0	-1	Unknown	Unknown
double bottom Xi [†]	=0 =bb	ubb	Unknown	112	¹ l2 ⁺	0	0	0	-2	Unknown	Unknown
double bottom Xi	-7	dbb	Linknown	10	10+	-1	0	0	-2	Linknown	Linknown

		EU				andard Mo					10			
		Fυ	The Standard M	Odel summarizes the current knowled and electromagnetic interactions (e	ge in Particle Physics. It is th	e quantum theory that inclu	des the theory of strong intera-	tions (quantum chromi	dynamics or QCD) and the i	unified	13			
			matter constituents spin = 1/2, 3/2, 5/2,				BOSONS force carriers spin = 0, 1, 2, Unified Electroweak spin = 1 Strong (color) spin = 1							
Leptons spin = 1/2			Qua	r ks spin = 1/2		Structure wi								
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ² charge		the Atom Juark	e	Na		lectric harge	Nam			Electric charge
ve electron	<1×10 ⁻⁸	0	U up	0.003 2/3	Size	< 10 ⁻¹⁹ m	*	ph	γ oton 0	0	glue		0	0
e electron	0.000511	-1	d down	0.006 -1/3	Nucleus	66	Electron Size < 10 ⁻¹⁸ m		V- 80.4	-1	Color C Each qua	rk carries on	e of three type	es of
v_{μ}^{muon} neutrino	<0.0002	0	C charm	1.3 2/3	Size - 10 ⁻¹⁴ m		J .		V ⁺ 80.4 Z ⁰ 91.187	+1 0	*strong c These cha colors of	harge," also irges have n visible light.	called *color o othing to do w There are eigh	charge." vith the ht possible
μ muon	0.106	-1	S strange	0.1 -1/3	eī	60	Neutron	cally-c	harged particles interact by ex Interact by exchanging gluons itions and hence no color cha	changing ph	twees of a	olor charge	for aluons his	st as electri.
τ neutrino τ tau	< 0.02	0	t top b bottom	175 2/3 4.3 -1/3			Proton Size = 10 ⁻¹⁵ m		tions and hence no color cha ks Confined in Mesons a			Wallo 2 G	09010 1999 110 1	silong
					Ator Size ~ 10		Size = 10 ⁻¹³ m	One o	nnot isolate quarks and gluo ns. This confinement (binding harged constituents. As color-	ns: they are o	onfined in	color-neutr exchanges	al particles call of gluons amor	led ng the
				en in units of It, which is the 3 ⁻²⁵ GeV s = 1.05x10 ⁻³⁴ J s.		e protons and neutrons in this picture the quarks and electrons would be and the entire atom would be abo		gy in t tional	he color-force field between t ouark-antiquark pairs (see fig	them increase ure below). T	is. This eni 'he quarks	and antique	ally is converted arks then comb	d into addi- tine into
				I units the electric charge of				nature	is; these are the particles seen mesons qq and baryons q	n to emerge. 99.	Two types	of hadrons	have been obs	erved in
The energy unit tron in crossing a $\mathcal{E} = mc^2$), where 1	f particle phy potential diffe GeV = 10 ⁹ eV	sics is the electronic of one = 1.60×10 ⁻¹⁰	tronvolt (eV), the volt. Masses are joule. The mass of	energy gained by one elec- given in GeV/c ² (remember f the proton is 0.938 GeV/c ²				The st strong	ual Strong Interaction rong binding of color-neutra interactions between their					
= 1.67×10 ⁻²⁷ kg.				DI			INTERACT	viewe	nteraction that binds electric d as the exchange of mesons	ally neutral a between the	atoms to I e hadrons	lorm moleci	ules. It can also	o be
Baryons q	IQ and An		qqq	Interaction		Weak	Electromagnetic		0.00			Mesons		
There are	about 120 typ	ies of baryons.	-	Property	Gravitational	(Electi	oweak)	Fundamental	ong Residual		There are	about 140 t	ypes of mesons	s.
Symbol Name		lectric Mass harge GeV/c		Acts on: Particles experiencing:	Mass – Energy All	Flavor Quarks, Leptons	Electric Charge Electrically charged	Color Charge Quarks, Gluons	See Residual Strong Interaction Note Hadrons	Symbol	Name	-	Electric Mass charge GeV/c	
p proton	_	1 0.938	1/2	Particles mediating:	Graviton (not yet observed)	W ⁺ W ⁻ Z ⁰	γ γ	Gluons	Mesons	π ⁺	pion kaon	ud sū	+1 0.140	
p proton		-1 0.938 0 0.940	1/2	itrength relative to electromag 10 ⁻¹⁸ m or two u quarks at: 3×10 ⁻¹⁷ r	10-41	0.8 10 ⁻⁴	1	25	Not applicable to quarks	κ ρ ⁺	kaon rho	ud	+1 0.770	
		0 1.116		s two protons in nucleus	10 ⁻³⁶	10 ⁻⁴ 10 ⁻⁷	1	60 Not applicable to hadrons	20	в ⁰	8-zero	db	0 5.275	9 0
Λ lambda	SSS	-1 1.672	3/2			ta= _ p0.50		0Z0 + assorted hadron		$\eta_{\rm c}$	eta-c	٢ī	0 2.98	0 0
Λ lambda Ω^- omega		a correspondir	g antiparticle by	n → p e ⁻ v _e	e	+e- → B ⁰ B ⁰	^{B0} pp→2	ZO + assorted hadron	The Particle Advert Visit the award-winn http://ParticleAdv	ing web feat.	are The Pa	rticle Advent	ture at	
Ω ⁻ omega			or - charge is she	iwn).		. 8		hadrons	This chart has bee	n made pos				
Ω ⁻ omega Matter and An For every particle ed by a bar over t Particle and antio	type there is a ne particle syn article have id	mbol (unless + lentical mass a	nd spin but oppo	Site				glases hadrons	U.S. Department of E					
Ω^- omega Matter and An For every particle ed by a bar over t Particle and antip charges. Some ele $K^0 = dE$) are their	type there is a ne particle syn article have id	mbol (unless + lentical mass a	nd spin but oppo , Z^0 , γ , and $\eta_c =$	ine cc, but not	e** _ `	e* y guon	0.0	pages -	U.S. National Science Lawrence Berkeley N	ational Labor	atory			
Ω ⁻ omega Matter and An For every particle of by a bar over t article and antio	type there is a te particle syn article have id ctrically neutr own antiparti e an artist's co	mbol (unless + lentical mass a al bosons (e.g icles.	, Z ⁰ , γ, and η _c =	tr, but not	e l	e* or z http://www.	a ??	hadrons Z ⁰	U.S. National Science Lawrence Berkeley N Stanford Linear Acce American Physical Sc EUCLE INDUSTR	ational Labor lerator Center ciety, Division	atory r of Particle	is and Fields		

Why does "high-energy physics" = "particle physics"?

Uncertainty principle: things confined to small regions may have very large momenta -> high energies.


It takes a lot of energy to build a good "microscope."


mardi 4 décembre 12

Matter is electrons + protons (quarks) + neutrons (quarks).

1936: studying cosmic rays, people found particles which behaved just like electrons, but hundreds of times heavier: "muons."

1937: atomic physicist I. I. Rabi asks "who ordered that?"

How to do QM and relativity?

Wait a minute:

in relativity, space & time are like two aspects of one thing; they need to be treated "symmetrically."

But QM said "there is some $\Psi(x)$ given at t=0; find it for other t."

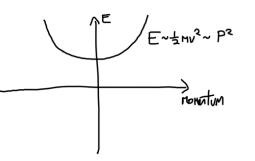
Not symmetric.

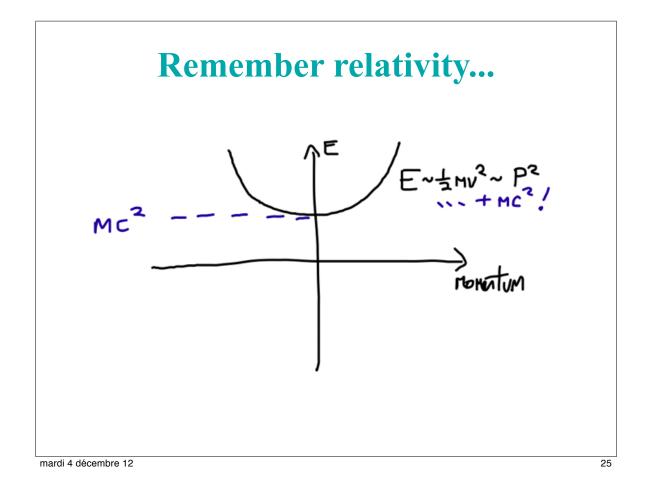
Schrödinger found a symmetric equation, but it gave the wrong answers (turns out to be correct for "pions," not for electrons, I think).

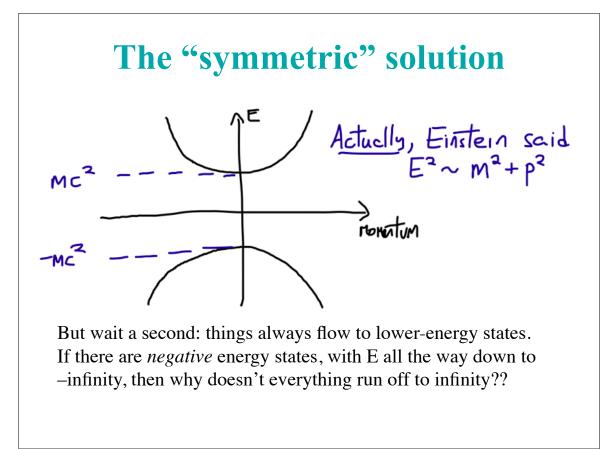
1928 - Dirac finds one that works.

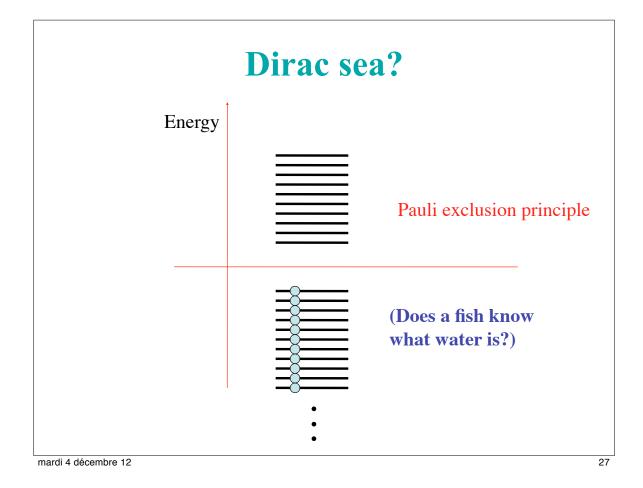
But a problem...

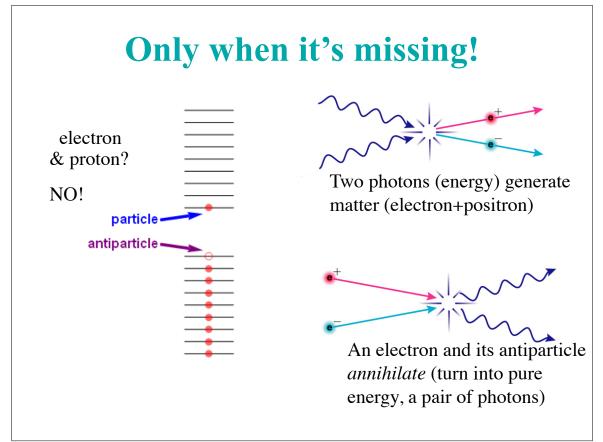
mardi 4 décembre 12

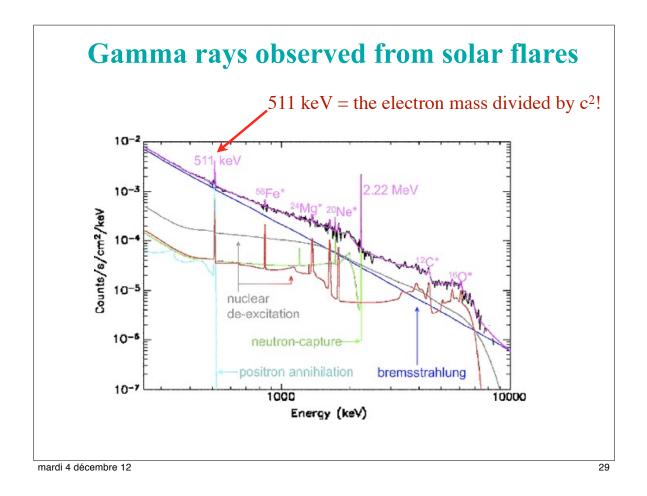

23


Symmetry of x & t


The Schrödinger equation starts from the idea that the energy depends on momentum squared (kinetic energy goes up by 4 if velocity doubles)


It turns out that Energy has to do with time (the frequency of the wave) and Momentum has to do with space (the wave*length*).


To by symmetric, the equation should either relate E^2 and P^2 or E and P, but certainly not E and P^2 !



Problems...

Mass (Higgs?) Gravity (string theory? loop quantum gravity?) Symmetries (why these tiny violations of symmetry)? Why these particular particles, masses, charges,...? And, of course, flightless waterfowl:

mardi 4 décembre 12

Summary"There is more on Heaven and Earth, Horatio, than is dreamt of
in your philosophy."But that's not a reason to try to learn as much as we can about
it and, whenever possible, to make sense of it.This (not "calculating things," let alone building things) is the
project of physics. (Though we're kind of chuffed if what we
find out also turns out to be useful, naturally!)