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If a classical computer takes input |n> to output |f(n)>,
an analogous quantum computer takes a state
|n>|0> and maps it to |n>|f(n)> (unitary, reversible).

By superposition, such a computer takes
Σn |n>|0> to Σn |n>|f(n)>; it calculates f(n)
for every possible input simultaneously.

A clever measurement may determine some global
property of f(n) even though the computer has
only run once...

The rub: any interaction with the environment
leads to "decoherence," which can be thought
of as continual unintentional measurement of n.

A not-clever measurement "collapses" n to some
random value, and yields f(that value).



What makes a computer quantum?

If a quantum "bit" is described by two numbers: 
! ! ! |Ψ> = c0|0> + c1|1>,
then n quantum bits are described by 2n coeff's:
! ! |Ψ> = c00..0|00..0>+c00..1|00..1>+...c11..1|11..1>;
this is exponentially more information than the 2n coefficients it 
would take to describe n independent (e.g., classical) bits.

It is also exponentially sensitive to decoherence.

Photons are ideal carriers of quantum information-- they
can be easily produced, manipulated, and detected, and
don't interact significantly with the environment.  They
are already used to transmit quantum-cryptographic
information through fibres under Lake Geneva, and soon
through the air up to satellites.

Unfortunately, they don't interact with each other very much
either!  How to make a logic gate?

across the Danube

(...Another talk, or more!)

We need to understand the nature of quantum information itself.

How to characterize and compare quantum states?  
How to most fully describe their evolution in a given system?  
How to manipulate them?

The danger of errors & decoherence grows exponentially with system size.
The only hope for QI is quantum error correction.
We must learn how to measure what the system is doing, and then correct it.

(One partial answer...)



Measuring and
manipulating
entanglement
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Information and measurement
Any measurement on a qubit (two-level system) yields at most 1 bit of info.

On the other hand, a full specification of the state (density matrix) of a qubit
involves 3 independent real parameters (coordinates on Bloch/Poincaré sphere);
this is in principle an infinite amount of information.

How much information can be stored or transferred using qubits?

Measure & reproduce – only one classical bit results from the measurement,
and this is all which can be reproduced.

"No cloning": cannot make faithful copies of unknown, non-orthogonal quantum
states, because {<a|<a|}{|b>|b>} = {<a|b>}2 and unitary evolution preserves
the inner product.

[Wooters & Zurek, Nature 299, 802 (1982).]
(N.B.: Applies to unitary evolution.  With projection, one can for instance

distinguish 0 from 45 sometimes, and then reproduce the exact state –
but notice, still only one classical bit's worth of information.)



Dense coding & Teleportation
Observation: a pair of entangled photons has four orthogonal
basis states – the Bell states – but they can be connected by
operations on a single photon.  

Thus sending that single photon to a partner who already possesses
the other entangled photon allows one to convey 2 classical bits
using a single photon.

Bennett & Wiesner, PRL 69, 2881 (1992)

The Bell state basis:

flip
phase

flip
pol.

single-photon 
operations:

Note: even with more photons, you never get more
than 2 bits per photon; see if that starts to make sense
as the term goes on, or remember to bring it up later!



Remember the polarisation-dependence
of rate at centre of H-O-M dip...



What does the HOM do to polarized photons?
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            =   1H 2V - 1V 2H  + i [1H 1V + 2H 2V]

In coincidence, only see |HV> - |VH> .... that famous EPR-entangled state.
Of course we see nonlocal correlations between the polarisations.



Hong-Ou-Mandel Interference
as a Bell-state filter

r

r
t
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r2+t2 = 0; total destructive interf. (if photons indistinguishable).
If the photons begin in a symmetric state, no coincidences.
   {Exchange effect; cf. behaviour of fermions in analogous setup!}

The only antisymmetric state is the singlet state |HV> – |VH>, in
which each photon is unpolarized but the two are orthogonal.
Nothing else gets transmitted.

This interferometer is a "Bell-state filter," used
for quantum teleportation and other applications.



Log2(3) bits in a single photon

To extract both bits, one would
need to distinguish all 4 Bell
states – this can't be done with
linear optics, but 2 of the 4 can,
leaving a third (ambiguous) 
possibility.

Mattle et al., PRL 76, 4656 (1996)



Quantum Teleportation

(And the other three results just leave Bob with a unitary operation to do)

Bennett et al., Phys. Rev. Lett. 70, 1895 (1993)

BSM

If BSM finds A & S in a singlet state, 
then we know they have opposite polarisation.
Let Bob know the result. If S and I were opposite,

and A and S were opposite,
then I = A!

singlet
states

S and I have
opposite polarisations

S I

Alice Bob
A (unknown
        state)



Teleportation as projections



Quantum Teleportation (expt)

Bouwmeester et al., Nature 390, 575 (1997)



One striking aspect of teleportation

• Alice's photon and Bob's have no initial relationship –
Bob's could be in any of an infinite positions on the
Poincaré sphere.

• The Bell-state measurement collapses photon S (and
hence Bob's photon I) into one of four particular states
– states with well-defined relationships to Alice's initial
photon.

• Thus this measurement transforms a continuous,
infinite range of possibilities (which we couldn't detect,
let alone communicate to Bob) into a small discrete set.

• All possible states can be teleported, by projecting the
continuum onto this complete set.



Quantum Error Correction

In classical computers, small errors are continuously corrected –
built-in dissipation pulls everything back towards a "1" or a "0".

Recall that quantum computers must avoid dissipation and irreversibility.

How, then, can errors be avoided?
A bit could be anywhere on the Poincaré sphere – and an error
could in principle move it anywhere else.  Can we use measurement
to reduce the error symptoms to a discrete set, à la teleportation?

Yes: if you measure whether or not a bit flipped, you get either a "YES"
or a "NO", and can correct it in the case of "YES".
As in dense coding, the phase degree of freedom is also important, but you
can similary measure whether or not the phase was flipped, and then correct
that.
Any possible error can be collapsed onto a "YES" or "NO" for each of these.



The four linearly independent errors



Encoding & decoding

i1

i2

i1

i1⊕ i2

Notation - the controlled NOT (CNOT):

1011

1110

0101

0000
Out (ct)In (ct)

err
ors

i1

0

i1

i1

i1

0

Error detection!



Q. error correction: Shor's 3-bit code

Encode: a|0> + b|1> ⇒ a|000> + b|111>

10a|001> +
b|110>

i3 flips

01a|010> +
b|101>

i2 flips

11a|100> +
b|011>

i1 flips

00a|000> +
b|111>

Nothing
happens

i1 ⊕i3i1⊕i2StateSymptom

In case of bit flips, use redundancy – it's unlikely that more than 1 bit
will flip at once, so we can use "majority rule"...

BUT: we must not actually measure the value of the bits!

And now just flip i1 back if you found that it was flipped –
note that when you measure which of these four error
syndromes occurred, you exhaust all the information in the
two extra bits, and no record is left of the value of i1!

err
ors

i1

i2

i3

i1⊕ i2

i1⊕ i3

NOTE: you could have phase errors as well as bit flips; more copies required.



How to measure the continuous
analog of Bell states ?

E1 + E2E1

E1 E1 – E2

X1 + X2;

P1 + P2

X1 – X2;

P1 – P2

We wish to learn about the “relative” state of two systems,
without measuring the exact state of either...

Do homodyne measurement on the outcomes, to measure
differences or sums of the chosen quadratures.
(At best, one difference and one sum.)



How to generate the continuous
analog of Bell pairs?

X1

P1

X1 is well known

X2

P2

P2 is well known

E1 + E2  = E3E1

E2 E1 – E2   = E4

X3 + X4 = X1 is well known.
P3  – P4 =P2 is well known.

E3 & E4 are entangled (EPR)
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