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Main Course:
     How to count a single photon and get a result of 1000

• Giant optical nonlinearities
• NL phase shift driven by a single post-selected photon
• Weak-value amplification of the phase shift of a single photon
• (Questions about SNR)

Dessert:
Progress towards cold-atom tunneling experiments

( Digestif ?
Imaging as a Quantum State Discrimination 
problem
(better resolution through not discarding phase information)

                                                      ?)

Outline
Appetizer:

Intro to measurement tradeoffs
    Weak-measurement
     Measuring the measurement disturbance
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Quantum archaeology
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Predicting the past...

A+B

What are the odds that the particle
was in a given box (e.g., box B)?

B+C

A+B

It had to be in B, with  100% certainty.



Conditional measurements  
(Aharonov, Albert, and Vaidman)

Prepare a particle in |i> …try to "measure" some observable A…
postselect the particle to be in |f>

Does <A> depend more on i or f, or equally on both?
Clever answer: both, as Schrödinger time-reversible.

Conventional answer: i, because of collapse. 

Measurement  
of A

Reconciliation: measure A "weakly."
Poor resolution, but little disturbance.

AAV, PRL 60, 1351 ('88)

the “weak value”
(but how to determine?)



A (von Neumann) Quantum 
Measurement of A

Well-resolved states
System and pointer become entangled

Decoherence / "collapse"
Large back-action

Initial State of Pointer

x x

Hint=gApx

System-pointer
coupling

Final Pointer Readout
to
 s
ys
te
m.
..



 A Weak Measurement of A

Poor resolution on each shot.

On the other hand, essentially no disturbance to the 
system

System-pointer
coupling

x

Initial State of Pointer

x

Final Pointer Readout

Hint=gApx

Strong:

Weak:

Aharonov, Albert, & Vaidman, PRL 60, 1351 (1988)



“Post-selecting” on the desired final state

And now, even though each pointer position seems to be pretty random, 
if you make millions of measurements and build up statistics, you can 
figure out the average shift --



`



(This remains controversial)
Some would argue that whatever this Byzantine strategy yields, it 
is not really a “measurement” of anything (it’s not on page 36 of 
the QM textbooks yet)...

Some of us instead maintain that the QM definition of 
measurement has only ever aimed to model what happens when we 
really interact with measuring devices, and if interacting with 
them strongly changes the results, it’s only natural to investigate 
what interacting with them weakly does.



“Breaking” Heisenberg’s  
Uncertainty Principle ?

Any precise measurement of X is guaranteed to disturb P,
by an amount ΔP ≥ ℏ/2ΔX

0+



What I’ve always taught my students:
• This is true, but it puts a limit on measurement only.
• A much deeper statement puts a limit on reality:

“Any precise measurement of X is guaranteed to disturb P,
by an amount ΔP ≥ h/2ΔX”

“Any state in which X is determined precisely is guaranteed to
 have an intrinsic uncertainty in P, such that ΔP ≥ h/2ΔX”



What I’ve always taught my students:
• This is true, but it puts a limit on measurement only.
• A much deeper statement puts a limit on reality:

“Any precise measurement of X is guaranteed to disturb P,
by an amount ΔP ≥ h/2ΔX”

“Any state in which X is determined precisely is guaranteed to
 have an intrinsic uncertainty in P, such that ΔP ≥ h/2ΔX”

What I tell my students now:
Not only does the first version put a limit on measurement
only, but it’s also wrong!



The wave function of some particle,
with a small uncertainty in position
          (so a pretty big one in momentum)

Rotating-arm approximation for x & p...



The wave function of some particle,
with a small uncertainty in position
          (so a pretty big one in momentum)

A slit – if the particle is 
transmitted, this constitutes 
a measurement that it was 
in the slit...

But if the slit is wider than the original wave function, the 
particle never even sees the walls;
how could the particle be disturbed at all?

Rotating-arm approximation for x & p...



The wave function of some particle,
with a small uncertainty in position
          (so a pretty big one in momentum)

A slit – if the particle is 
transmitted, this constitutes 
a measurement that it was 
in the slit...

So we have confirmed that the particle is near x=0, with some 
finite precision – and we have done this without disturbing the 
momentum at all.  

(Of course, the final momentum is uncertain – there was 
enough uncertainty in the state all along, and I didn’t need to 
add any more with my measurement!)

Rotating-arm approximation for x & p...



Ozawa, PRA 67, 042105 (2003):

But how can you measure the disturbance due to a measurement?
You would need to know B before and after the measurement – 
but unless you’re already in an eigenstate of B, this would change
the state (and the RHS of the inequality).

Ozawa’s relation
Heisenberg’s uncertainty principle
for variances is proved in every textbook,
and we take no issue with it: Δ(A)Δ(B) ≥ <[A,B]> / 2

A similar relation for measurement precision  
ε(A)  of the probe vs. disturbance to the 
system η(B) is, however, false: ε(A)η(B) ≥ <[A,B]> / 2



Proposal Using Weak Measurements

Lund & Wiseman, NJP 12, 093011 (2010)

Consider a von Neumann measurement of A
•The system becomes entangled with probe, disturbing the system

• Define disturbance to B as the RMS difference between the value of B 
before and after the measurement

• Define precision of A as the RMS difference between the value of A of 
the system before the measurement and the value of A on the probe

final (strong) 
measurement of B

weak measurement of B or A

von Neumann measurement of A

ALTERNATE APPROACH:
theory: Ozawa, Ann. Phys. 311, 350 (2004)
expt: Erhart et al., Nature Physics 8, 185 (2012)



   Weak Measurement
and Post-Selection

Putting it all together

   Entangled
State Preparation

von Neumann
Measurement

   Probes are both path qubits
State set with variable attenuator    PBS’s implement CNOTs

Polarization qubit controls the path qubit 

To implement consecutive C-NOT 
gates start with an entangled state

Do first C-NOT with qubit 1,

teleport state to qubit 2, leaving it 
free to control a second C-NOT



Results – Disturbance & Precision
Fix the strength of the weak probe, vary the strength of the von Neumann 
measurement and observe the precision and disturbance

Dashed lines are theory, solid 
lines are simulations 
accounting only for imperfect 
entangled state preparation



Rozema et al., PRL 109, 100404 (2012)

Results – Ozawa & Heisenberg’s Quantities

Heisenberg’s relation is clearly violated

Ozawa’s remains valid

Forbidden region set by 
measuring of <Y> on the 
qubit after the weak 
measurement and 
teleportation

Dashed lines are theory, solid 
lines are simulations 
accounting only for imperfect 
entangled state preparation
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Background:
Quantum non-demolition measurements 
via weak (/giant) optical nonlinearities

MAIN COURSE: COUNTING 1 PHOTON AND  
GETTING A RESULT OF 1000



Practical motivation: quantum NLO 
(e.g., weak “giant nonlinearities”)

“Giant” optical nonlinearities...
(a route to optical quantum computation; 
and in general, to a new field of quantum nonlinear optics )

                – cf. Ray Chiao, Ivan Deutsch, John Garrison)



Signal photon

Motivation: quantum NLO 
(e.g., weak “giant nonlinearities”)

(Also of course, cf. “giant giant nonlinearities,” 
e.g., Lukin & Vuletic and Rempe with Rydberg atoms; 
Jeff Kimble et al. on nanophotonic approaches; Gaeta Rb in hollow-core fibres; et cetera)

Munro, Nemoto, Spiller, NJP 7, 137 (05)

“Giant” optical nonlinearities...
(a route to optical quantum computation; 
and in general, to a new field of quantum nonlinear optics )

                – cf. Ray Chiao, Ivan Deutsch, John Garrison)



AC Stark shift changes effective detuning, 
changing index of refraction experienced by probe

Δsig

Signal 
pulse
Δss

Probe

Probe Frequency
Pr
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Phase accumulated: 

eikL  = ei2πnL/λ

Cross-phase modulation (XPM)



(ωp  - ω21 )/
γ21

(ωp  - ω21 )/
γ21

Narrower transparency windows yield larger 
cross-phase shifts

EIT-enhanced XPM

AC Stark shift is intensity-dependent – i.e. 
broadband signal pulses produce larger XPM

e.g., Schmidt & Imamoglu, Opt. Lett. 21, 1936 (96)

Steep slope of dispersion curve ->  
higher sensitivity to AC Stark shift  

(& transparency too)
EIT width -> 0 as Icoup -> 0



EIT-enhanced XPM ?

No problem: put a narrowband probe in the window, 
and the (broadband) signal on the other transition

What is the use of a narrow transparency 
window if the signal pulse is broad? (E.g., 7 

MHz single photons from our Rb-tuned OPO)

But still: if the EIT bandwidth is 100 kHz, a 100 ns 
pulse is much shorter than the 10 us response time...



XPM for narrow EIT windows

Time (us)

40 ns (6 MHz) Gaussian pulse, 0.8 uW peak power, 40 MHz detuned 
from a sample of cold 85Rb atoms (OD=3 ).  

EIT window lowered 
from 3.8MHz to 0.38MHz

As EIT linewidth lowered below about half the pulse bandwidth, 
peak phase shift saturates – but it does not fall.
Moreover, the system memory time grows, so the narrow 
window continues to improve the measurability of the phase shift

THEORY: PRA 93, 013843 (2016)
EXP’T: PRL 116, 173002 (2016)



Experiment:
Observing the nonlinear effect of a single photon

10



Towards single-photon XPM: 
experimental setup

EIT COUPLING

SIGNAL 
PULSE

PROBE 
PULSE

MEASUREMENT
(f-domain interf)

Cold 85Rb

A. Feizpour et al., Nature Physics, DOI: 10.1038/nphys3433 (2015) 

PROBE 
PHASE

http://dx.doi.org/10.1038/nphys3433


Measurement of cross phase shift, 
down to signal pulses with <n> = 1

(40 ns pulses
cold 85Rb, OD 2-3
z0 ~ 1mm ; w0 ~ 13 μm
Δ ~ 18 MHz )



Non-linear phase shift due to a single 
post-selected photon

Non-linear phase shift due  
to single photons

Signal 

“Click!”



Post-selected single photons

Roughly: each click means
exactly one extra photon!



Post-selected single photons



Non-linear phase shift due to a single 
post-selected photon

Non-linear phase shift due  
to single photons

Signal 

“Click!”

A. Feizpour et al., Nature Physics, DOI: 10.1038/nphys3433 (2015) 

http://dx.doi.org/10.1038/nphys3433


Can we ask what “that” one photon was doing before 
we observed it?

(How should one describe post-selected states?)

11 



OR:
Can a single photon have the effect of 1000 photons?

11



may be very big if the postselection  
is very unlikely (<f|i> very small)...

Aharonov, Albert, & Vaidman, PRL 60, 1351 (1988)

“Weak value amplification” – pioneering applications, e.g., 
Hosten & Kwiat, Science 319, 5864 (08);
Ben Dixon, Starling, Jordan, & Howell, PRL 102, 173601 (09); etc



Weak Measurement Amplification of Single-Photon Nonlinearity, 
Amir Feizpour, Xingxing Xing, and Aephraim M. Steinberg
Phys Rev Lett 107, 133603 (2011)

How the result of the measurement of 
the number of 1 photon can be 100

<n>w may be >> 1.When the post-selection succeeds, the phase 
shift on the probe may be much larger than 
the phase shift due to a single photon -- even 
though there only ever is at most one signal 
photon!

1

|ii ⌘ (|ai � |bi)/
p
2 (1)

|fi = r |ai+ t |bi (2)

1

|ii ⌘ (|ai � |bi)/
p
2 (1)

|fi = r |ai+ t |bi (2)

http://xxx.lanl.gov/abs/1101.0199


A photon in the hand
is worth 1000* in the vacuum chamber

100

* – (base 2)



Polarisation interferometer



The phase shift due to an 
appropriately post-selected photon

single-photon phase shift



Is it any practical use for 1 photon to act like 100?

101



Is weak measurement good for 
anything practical?

“Weak value amplification” has been proposed as a way to 
enhance the signals of small effects (like our nonlinearity...?): 

Hosten & Kwiat, Science 319, 5864 (08); and, more quantitatively --



Lev Vaidman’s riposte



SNR controversy: the short version
Weak value ~ 1 / <f|i>
Success probability ~ |<f|i>|2

Pointer shift gets 10 times bigger, 
as data rate gets 100 times smaller; noise 10 times bigger too.

TRUE IF ---  the noise is “statistical,” as opposed to “technical.”

Early conjectures: something like pixel size in a detector array is 
insurmountable.  Use WVA to make shift > pixel size (“technical”)
Truth: you can still fit the center of a distribution to better than 
the pixel size, and 1/N1/2 still applies in principle.

BUT: noise only drops as 1/N1/2 because of the random walk, 
i.e., the fact that the noise on different data points is 
uncorrelated.  Adding more data points within a noise 
correlation time does not let you keep averaging the noise away; 
better to post-select, and get a bigger signal.



A. Feizpour et al., Phys. Rev. Lett. 107, 133603 
(2011) + experiment & theory to appear...

WE CONTEND WVA IS USEFUL IN THE FOLLOWING SITUATIONS:
(1)  limited by detector saturation
(2)  most bins “empty” anyway
(3)  noise correlation time > time between photons 
(IN THIS REGIME, IT IS BETTER THAN STRAIGHT AVERAGING, YET STRICTLY 
SUB-OPTIMAL.  IT IS RELATED TO THE BETTER – AND BETTER-KNOWN – “LOCK-
IN” TECHNIQUE, BUT POTENTIALLY MORE “ECONOMICAL” )

NOTE: some language issues?
To most theorists, “postselection” 
means “throwing something out”;
to some experimentalists, it means 
“doing a measurement on the system 
at all” (and perhaps choice of basis)

One (of many) perspective(s) on the 
signal-to-noise issues... “technical noise”



One unexpected advantage



• We were able to generate a “big” (10-5 rad) per-photon nonlinear 
phase shift, and measure it – and confirm that properly post-selected 
photons may have an amplified effect on the probe, as per the weak 
value. 

• We believe WVA is potentially useful in (at least) the following 
circumstances: when  
(1)  you are limited by detector saturation 
(2)  most bins “empty” anyway 
(3)  noise correlation time >  

time between photons  
  

NB: in the third case, this is 
closely related to background 
subtraction & lock-in ampli- 
fication, and in fact cannot 
outperform such techniques. 

Recap Main Course



Dessert: some progress 
with ultracold atoms



Watching a particle in a region it’s “forbidden” to be in

How long has the transmitted particle spent in the region?



Atoms spilling around an  
optical “ReST” trap

53



Preliminary evidence of tunneling through a 
double barrier 

(Fabry-Perot cavity for atoms)

54

time

BEC wavepacket 
incident from the right

A narrow frequency component 
of the BEC remains trapped in the 
FP cavity for 100s of milliseconds!



Toy problem: imaging a binary star
Digestif: Evading Rayleigh’s Curse



Toy problem: imaging a binary star



Toy problem: imaging a binary star
As we all know, if objects separated by less  
than ~width σ of the PSR (diffraction limit),  
we can’t “resolve” them 

… of course, that’s not to say that with  
enough data, we can’t tell there are two  
objects there, and where they are…

σ

s



Toy problem: imaging a binary star

How well can we estimate the separation 
s of two objects, for s < width σ of PSR, 
given N photons? 

σ / sqrt{N}  for N photons would seem 
reasonable?



No such luck!

σ / sqrt{N} is indeed how well you 
can find the centre of one object. 

But two closely separated gaussians just 
look like a slightly broader gaussian – 
the problem is to estimate the width, 
which proves much harder.



How well can you estimate a width?

Full variance V = V0 + s
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How well can you estimate a separation?
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The uncertainty in s does not merely remain  
large (σ/sqrt{N}) as s -> 0 ; 

it actually diverges as 1/s!

σ
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M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033 (2016). 

Information about  
centroid

Fisher Information  
about separation  
(vanishes at small sep.)

The Fisher information drops to 0 —   
the error of any unbiased estimator of s goes to infinity.

Quantum Fisher  
Information  
about separation 

—- constant!!

Classical



For two incoherent sources, the 2-spot distinguishability is essentially 
the same as the 1-spot distinguishability… how to optimally 

distinguish?

This becomes a quantum state discrimination problem

δ 0= + δ – +

SPLICE: 
Project onto any odd-parity mode,  
not necessarily TEM01 in particular — 



Projecting a double-spot onto an  
odd-parity mode

Source of symmetric variable- 
separation pair of spots

π

heralded single photons



Observed vs. actual separation

SPLICE IPC
Approx 1500 photons / image Approx 3000 photons / image

rms width of PSF ~ 400µmrms width of PSF ~ 400µm

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)



SD in inferred separation, vs. sactual

“divergence” for IPC

near-quantum-limited for SPLICE

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)



Total RMS error, including bias 

For IPC, become dominated by bias, 1/N1/4

For SPLICE, remain near σ/N1/2

CONCLUSION: We have shown that a simple phase-mask technique removes the 1/s catastrophe, 
and permits us to achieve near-quantum-limited resolution, providing an unbiased estimator with 
σ/N1/2 resolution, yielding a quadratic-in-N advantage over even the best biased estimator possible 
with image-plane counting.  

With about 1500 photons, SPLICE determined the separation 3 times more accurately  
                                                            than IPC could with about 3000 photons

See also: T. Z. Sheng, K. Durak, and A. Ling, arXiv preprint arXiv:1605.07297 (2016); M. Paur et al. arXiv:
1606.08332 (2016); F. Yang, A. I. Lvovsky et al arXiv:1606.02662 [physics.optics].

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)



• We were able to generate a “big” (10-5 rad) per-photon nonlinear 
phase shift, and measure it – and confirm that properly post-selected 
photons may have an amplified effect on the probe, as per the weak 
value. 

• After talking about it for 20 years, we are getting close to being able 
to probe atoms while they tunnel through an optical barrier, using  
weak measurement to ask “where they were” before being 
transmitted! 

We have preliminary evidence that our Fabry-Perot cavity for 
ultracold Rubidium atoms is working. 

• Even in the image plane, much (even most) of the information may 
be in the optical phase and not the intensity – a new route to super-
resolution, requiring no structured illumination! 

  

Summary

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)

A. Feizpour et al., Nature Physics, DOI: 10.1038/nphys3433 (2015) 
Weak-msmt theory: Phys Rev Lett 107, 133603 (2011) 
Weak-msmt exp’t: under review 

In progress – for previous work, see e.g. S. Potnis, R. Ramos, K. Maeda, L.D. Carr, AMS, 1604.06388; 
R. Chang, S. Potnis, R. Ramos, C. Zhuang, M. Hallaji, A. Hayat, F. Duque-Gomez, J. Sipe, AMS, PRL 
112, 170404 (2014)


