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Maxwell viscoelastic materials are commonly simulated numeri-

cally in order to model the stresses and deformations associated with

large-scale earth processes, such as mantle convection or crustal de-

formation. Both implicit and explicit time-marching methods require

that the timesteps used be small compared with the Maxwell relax-

ation time if accurate solutions are to be obtained. For crustal tec-

tonic modelling, where Maxwell times in a ductile lower crust may be

of order of a decade or less, the large number of timesteps required to

model processes lasting many millions of years imposes a huge com-

putational burden. This burden is avoidable. In this paper I show

that, with the appropriate formulation of the problem, timesteps may

be taken which are much larger than the Maxwell time without loss

of accuracy, as long as they are not large compared with the inverse

strain rates (“tectonic” timescales) in the model. The method relies

on explicit analytic integration of the Maxwell constitutive relation
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for the stress over time intervals which may be longer than the re-

laxation time as long as they are short compared with the timescale

over which crustal stresses and geometries change. The validity of

the formulation is also demonstrated numerically with two simple

models, one involving extension of a uniform block, and the other

involving the shear of a composite layer.

Keywords: Tectonic modelling - Maxwell - visocelastic - large

timesteps
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1 Introduction

Earth processes which are represented by the behaviour of a vis-

coelastic solid [Ranalli 1995] are now routinely modelled numeri-

cally [Melosh & Raefsky 1980, Sabadini, Yuen & Portney 1986, Wu 1992,

Komatitsch & Tromp 1999, Martinec 2000, Latychev et al 2001, Huismans et al 2001,

Moresi et al 2001]. For tectonic modelling problems of slow pro-

cesses involving the entire crust, however, the wide range of physi-

cally important timescales (Maxwell relaxation times alone span at

least six orders of magnitude) makes accurate finite-element mod-

elling difficult, or at the very least time consuming: for numerical

stability, simple explicit time-marching of the Maxwell constitutive

relation has to proceed with steps significantly less than the short-

est relaxation time present in the modelled region. Approaches

which use implicit methods avoid this stability problem: implicit

methods are unconditionally stable for all timestep sizes. However,

implicit methods are not accurate for timesteps comparable with

the Maxwell relaxation time, so that small timesteps are desirable

even for implicit methods. For hot lower crust in tectonically ac-

tive regions, the viscosity η may be as low as 1017 or 1018 Pa-s

[Klein et al 1997]. With a shear modulus µ of 20 GPa, for example,

this implies a Maxwell time τ = η/µ of the order of 10 years. This

means a very large number of modelling steps are required to satisfy

the timestep constraint above, even though it may take millions of
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years for significant tectonic displacements to occur.

To illustrate the problem, consider the very simple case of stress

decaying in a non-deforming block of a Maxwell material. The stress

decays as exp(−t/τ) where τ is the Maxwell time. Fig. 1 illustrates

the problem: explicit methods of tracking Maxwell stress evolution

of material with Maxwell relaxation time τ effectively correspond to

assuming a stress decay of the form (1− t/τ) and are only accurate

for timesteps ∆t << τ . Implicit methods typically correspond to

modelling the stress with a decay function of the form (1 + t/τ)−1,

and are accurate at both short and long times, but not at interme-

diate times.

The requirement for short timesteps is frustrating when one real-

izes that stress and large-scale geometry in typical crustal tectonic

processes change on a timescale (the “tectonic timescale”) much

longer than the shortest Maxwell relaxation time present in the

crust. This raises the possibility of using an implicit method and

taking timesteps which are small compared to the tectonic timescale

but large compared to the shortest relaxation times found in the

crust, in order to accelerate the modelling computations. Because

the relaxation times in the cold uppermost crust are always much

longer than tectonic timescales, there must be somewhere in the

model regions where the relaxation times will be comparable with

the timestep, leading to the inaccuracies shown in Fig. 1 in this
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region. If one judiciously chooses this timestep just small enough

that this “difficult” region is sufficiently below the brittle ductile

transition, where stresses are small and tectonically insignificant,

then even large fractional errors in computing the stress there will

not matter. Because stresses cannot adjust in the computation on

timescales shorter than the timestep, this is equivalent to artificially

increasing the viscosity (and thus the relaxation time) as far as pos-

sible in those parts of the model where it will make a negligible

difference to the dynamics.

A better alternative is presented in this paper, in which the

timestep may chosen without worrying at all about the Maxwell

relaxation time. The only constraint on this choice is that the

timestep has to be small compared to the tectonic timescale (the

inverse of the tectonic strain rate). This is not an onerous restric-

tion; it is the same condition which must be applied in any case for

Lagrangian mesh calculations in order to keep the mesh distortion

per timestep small. Large timesteps are here dealt with by explic-

itly and analytically integrating the Maxwell constitutive relation

for the stress over the timestep interval, on the assumption that the

strain rate itself does not change significantly over the interval. The

force-balance equation is also developed so as to be accurate over

large timesteps. Finally, explicit numerical demonstrations of the

method on two simple test cases are given.
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2 Theory

2.1 Notation

The force balance or momentum equations for static or quaistatic

problems (in which intertial terms are negligible) are given by

fi +
σij

∂xj

= 0 (1)

where fi is the i’th component of the body force and σij is the stress

tensor. (The Einstein summation convention is used throughout.)

An isotropic linear elastic solid is described by

σij = λεkkδij + 2µεij (2)

where λ and µ are the Lame parameters. An isotropic linear viscous

(Newtonian) fluid is described by

σij = 2ηε̇ij (3)

where η is the viscosity. An isotropic linear viscoelastic (Maxwell)

solid is described by

σ̇
(D)
ij +

σ
(D)
ij

τ
= 2µε̇

(D)
ij (4)

where the Maxwell relaxation time is defined as τ = η/µ, and the

superscript (D) indicates the deviatoric part of a tensor. On long

timescales, this is the viscous relation, on short timescales, the de-

viatoric part of the elastic relation.
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A constitutive relation which embodies Maxwell behaviour for

deviatoric flow and elastic behaviour for dilatation is

2µε̇ij = σ̇ij +
σ

(D)
ij

τ
− λ

3K
σ̇kkδij (5)

or

2µε̇ij = σ̇ij +
σij

τ
+

p

τ
δij +

λ

K
ṗ δij (6)

where p = −σkk/3 is the pressure, and K = λ + 2µ/3 is the bulk

modulus, defined by

Kθ = −p (7)

for an elastic solid and θ = εkk is the dilatation.

2.2 Integrating the Maxwell constitutive relation

The Maxwell constitutive relation (4) can be quite generally inte-

grated exactly to give

σ
(D)
ij (t) = σ

(D)
ij (0) + 2µ

∫ t

0
e−t′/τ ε̇

(D)
ij (t′) dt′. (8)

If one assumes that the strain rate ε̇
(D)
ij is effectively constant over

the (possibly large) interval ∆t, (8) becomes

σ
(D)
ij (t + ∆t) = σ

(D)
ij (t) e−∆t/τ + 2ηε̇

(D)
ij

(
1− e−∆t/τ

)
(9)

This relation, corresponding to the true decay curve in Fig. 1, is ac-

curate no matter what the relaxation time is, as long as the timestep

∆t is significantly shorter than the time over which the strain rate

ε̇
(D)
ij changes significantly (the “tectonic” timescale). On its own,
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however, it is useless unless the pressure and velocity fields can be

solved for accurately over the same timestep (again assuming that

the strain rates do not change significantly over that time).

The stress propagator equation (9) can if desired be written in

terms of total rather than deviatoric stresses as

σ′ij = (1− s)(σij + pδij)− p′δij + 2sηε̇
(D)
ij (10)

where the saturating growth function
(
1− e−∆t/τ

)
is abbreviated as

s.

2.3 The large timestep force balance

The force balance equation at time t + ∆t is exactly

0 = fi(t + ∆t)− ∂

∂xi

p(t + ∆t) +
∂

∂xj

σ
(D)
ij (t + ∆t) (11)

Letting primes distinguish values at time t+∆t from variables eval-

uated at time t gives

0 = f ′i −
∂

∂xi

p′ +
∂

∂xj

σ
′(D)
ij (12)

With the same notation, the integrated deviatoric stress propagator

(9) is

σ
′(D)
ij = σ

(D)
ij e−∆t/τ + 2ηε̇

(D)
ij

(
1− e−∆t/τ

)
(13)

or

σ
′(D)
ij = (1− s)σ

(D)
ij + 2sηε̇

(D)
ij (14)
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where the saturating growth function
(
1− e−∆t/τ

)
is abbreviated as

s. Substituting (14) into (12) gives

0 = f ′i −
∂

∂xi

p′ +
∂

∂xj

(1− s)σ
(D)
ij +

∂

∂xj

2sηε̇
(D)
ij (15)

Alternatively, this can be written in terms of the total stress

rather than the deviatoric stress: express the deviatoric stress in

terms of the total stress:

σ
(D)
ij = σij + pδij (16)

and eliminate it from (15) to give

0 = f ′i −
∂

∂xi

p′ +
∂

∂xj

(1− s)(σij + pδij) +
∂

∂xj

2sηε̇
(D)
ij (17)

Together with the dilatational part of the constitutive relation

−(p′ − p) = k ε̇kk∆t (18)

this can be used to solve for the velocity field and the new pressure p′

at the end of an arbitrarily large time interval ∆t as long as the strain

rate is effectively constant over that time interval. Together with the

deviatoric stress propagator equation (9), equations (17) and (18)

constitute a system for numerically solving a Maxwell viscocelastic

deformation problem.
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2.4 The equivalent Navier-Stokes problem

It is instructive to recast the system as an equivalent Navier-Stokes

problem. Collecting terms with the aliases

f
(E)
i = f ′i +

∂

∂xj

(1− s)σ
(D)
ij (19)

η(E) = sη (20)

restates equation (17) as a classic Navier-Stokes problem in terms of

a effective body force f
(E)
i , an effective viscosity η(E), but the true

pressure p′ and strain-rate field ε
(D)
ij as

0 = f
(E)
i − ∂

∂xi

p′ +
∂

∂xj

2η(E)ε̇
(D)
ij (21)

For timesteps ∆t much larger than the Maxwell relaxation time,

the effective viscosity is the true viscosity, and the behaviour mod-

elled is that of a Newtonian viscous fluid. For timesteps ∆t much

shorter than the Maxwell relaxation time, the effective viscosity can

be shown to be proportional to ∆t (the stress rises linearly with

time for constant strain rate), and equation (21) precisely models

the elastic behaviour. At intermediate timestep sizes, the effective

viscosity precisely models the intermediate behaviour.

The effective body force has, in addition to the true body force, a

term which arises from differential unbalancing of the stress balance

because of spatial gradients in the Maxwell relaxation time.
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3 The Algorithm

The procedure for stepping forward in time is then seen to be, for a

Lagrangian mesh formulation:

1. Compute the effective body force (19) using the true body force

at time t + ∆t and the stress tensor at time t;

2. Solve the fictitious Navier-Stokes problem (21) (or its equiva-

lent (17)) in conjunction with the dilatational equation (18) to

obtain the true velocity field over the time interval ∆t, and the

new pressure p′ at the end of that interval;

3. Use the integrated constitutive equation (10) to obtain the new

deviatoric stress tensor σ′ij at the end of the time interval ∆t;

4. Use the true velocity field to advect the mesh, problem bound-

aries, and any advected properties through the time interval

∆t. If stress rotation is to be modelled (Jaumann stresses), the

instantaneous rotation rate can be computed from the veloci-

ties and the stress tensor rotated at this point.

The formulation as an equivalent Navier-Stokes problem is con-

venient for intuiting the physics in terms of an effective viscosity,

but not required for coding the problem. Equations (15) or (17) are

equally well adapted to the direct implementation and the applica-

tion of boundary conditions.
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4 Plane strain tests of the algorithm

4.1 Coding platform

The algorithm was tested using a commercial PDE solver pack-

age (FEMLAB), modified to allow moving mesh (Lagrangian) so-

lutions. Numerical solutions thus obtained for two representative

plane-strain problems are presented here, along with the analytic

solutions.

4.2 The plane strain Maxwell problem

The plane strain problem, although not as complicated as a full

three-dimensional problem, is more complex for the viscoelastic case

than for either the purely elastic or purely viscous cases, because the

stress normal to the plane cannot be derived algebraically from other

variables; it must be tracked as a time-dependent state variable by

the PDE solver.

For displacements confined to the xy plane (so that ε̇zz = ε̇xz =

ε̇xz = 0), no z directed body force, all quantities invariant with z,

and zero shear stresses on the xy plane (σxz = σyz = 0), the x and

y components of equation (17) becomes

0 = fx + ∂
∂x

((1− s)(σxx + p)) + ∂
∂y

((1− s)σxy)

− ∂
∂x

p′ + ∂
∂x

(
2sη(ε̇xx − 1

3
(ε̇xx + ε̇yy))

)
+ ∂

∂y
(2sηε̇xy)

0 = fy + ∂
∂y

((1− s)(σyy + p)) + ∂
∂x

((1− s)σxy)

− ∂
∂y

p′ + ∂
∂x

(
2sη(ε̇yy − 1

3
(ε̇xx + ε̇yy))

)
+ ∂

∂x
(2sηε̇xy)

(22)

The z component of equation (17) yields the identity 0 = 0.
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In purely elastic or purely viscous problems, the out-of-plane nor-

mal stress σzz implicit in p can be explicitly eliminated from the

above equations by obeying the constraint ε̇zz = 0 in the constitu-

tive equations. This is not possible here. Consider the zz component

of the constitutive equations (6):

0 = 2µε̇zz = σ̇zz +
σzz

τ
+

p

τ
+

λ

K
ṗ (23)

For fast variations (compared to τ), elastic behaviour prevails and

0 = σ̇zz +
λ

K
ṗ = σ̇zz − λ

3K
(σ̇xx + σ̇yy + σ̇zz) (24)

yielding

σzz = − p

1 + 2µ
3λ

=
λ

2(λ + µ)
(σxx + σyy) (25)

For slow variations, viscous behaviour prevails and

0 = σ̇zz +
λ

K
ṗ = σ̇zz − λ

3K
(σ̇xx + σ̇yy + σ̇zz) (26)

yielding

σzz =
λ

3K − λ
(σxx + σyy). (27)

In a general plane-strain viscoelastic problem, however, σzz cannot

be explicitly eliminated in this way. It, or equivalently the pressure

p, must be explicitly tracked with (23) or (7).

5 An extensional test

This describes a test using plane strain unconfined uniaxial exten-

sion. Although very simple, it is sufficient to demonstrate that the
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solution formulation is stable and accurate, and uses mixed kine-

matic and stress boundary conditions. In this test, a rectangu-

lar prism of y-height h and x-width w, of infinite extent in the z-

direction, is uniaxially extended in the y-direction. Beginning with

a stress-free state at time zero, the top is pulled upward at velocity

v0, the bottom being held fixed. The material is unconfined in the

x-direction, so that normal stresses applied to the x-sides are zero.

Strain εzz in the z-direction is also kept to zero, so that this is a

plane strain solution. Tangential stresses on all boundaries are zero.

No body force is present. Although a solution is here presented for

one prism, this is also a valid solution for an arbitrary number of

such prisms, of different mechanical properties, stacked beside each

other in a composite block, since the side boundary conditions are

identical for all the prisms.

Strain and stress rates are uniform within the prism. The prism’s

sides are coincident with the principal axes of stress and strain, so

that σxy = ε̇xy = 0. The boundary conditions force σxx = 0. The

vertical strain rate is prescribed: the thickness h will change with

time as h(t) = h0 + v0t, so that the strain rate is time-dependent as

ε̇0 = v0/h =
v0

h0 + v0t
(28)

This can more simply be written in terms of the characteristic strain

time (the “tectonic” timescale) τc = h0/v0 (which will be negative
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for compressional straining) as

ε̇0(t) = v0/h =
1

τc + t
. (29)

The pressure variation can be shown to be

p(t) = −2µ
τ

τp

e−(t+τc)/τp

[
Ei

(
t + τc

τp

)
− Ei

(
τc

τp

)]
(30)

where Ei is the exponential integral function and

τp = τ
(
1 +

4µ

3K

)
. (31)

Fig. 2 shows a comparison of the numerical model of this extension

with the theoretical solution (30). The tension (negative pressure)

builds linearly initially as the material behaves elastically. At longer

times, the behaviour is viscous, with tension proportional to strain

rate (because the velocity is constant, the strain rate falls off as the

elongation becomes significant).

6 A shear test

A more complex shear deformation test is described here, which tests

most of the relevant physics of the above formulation of a Maxwell

solver, but in particular adds the modelling of the differential relax-

ation term contribution to the effective body force (19). Consider a

body made of two welded blocks of heights a, b in the y direction,

and infinite width in the x direction, consisting of an top block of

properties µ1 and η1, and a bottom block of properties µ2 and η2.
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Let the weld plane be at y = 0. From a state of zero stress, constant

velocity boundary conditions for the horizontal velocity u (u = Vt

and u = Vb at top and bottom respectively ) are switched on at time

zero. This drives simple shear involving horizontal motion only.

The motion of points on the boundary is in general time depen-

dent: consider, for example, the case where µb >> µt and ηb << ηt,

so that the lower block is elastically stiff but relaxes quickly, and

the upper block is elastically soft but relaxes slowly. Initially, shear

strains will build up linearly with time in both blocks, but the lower

block will elastically resist shearing much more than the upper, with

strain a factor µt/µb less than that of the lower block. Points on the

boundary between the blocks will move leftwards from their initial

positions (negative velocity), carried by the lower block’s initial re-

fusal to deform very much. As stress builds up, a higher fraction of

the strain will be viscous shear, and the upper persistent block will

strain more slowly than the lower one. The upper block will then

drag the boundary with it, leading to a reversal in the boundary

velocity. A detailed analysis gives, for the boundary velocity

V0(t) = hε̇0

[
η0

η∆

+

(
µ0

µ∆

− η0

η∆

)
e
− t

τ0

]
(32)

where mean properties µ0, η0 and τ0 are defined by

1

µ0

=
a/h

µt

+
b/h

µb

(33)

1

η0

=
a/h

ηt

+
b/h

ηb

(34)
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τ0 =
η0

µ0

(35)

and differential properties µ∆ and η∆ are defined by

1

µ∆

=
b/h

µb

− a/h

µt

(36)

and

1

η∆

=
b/h

ηb

− a/h

ηt

(37)

By integrating this with respect to time, we can get the x-displacement

of a particle on the welded boundary as a function of time:

X0(t) = hε̇0

[
η0

η∆

t + τ0

(
µ0

µ∆

− η0

η∆

)
(1− e

− t
τ0 )

]
(38)

Fig 3 shows a comparison between this equation and a numeri-

cal computation using the algorithm outlined in this papaer. The

model’s relaxation times span four orders of magnitude; the numer-

ical timestep used is ten times the smallest relaxation time. The

computation accurately tracks the time-dependent behaviour pre-

dicted by Eq. (38).

7 Errors

The errors for large timesteps are qualitatively described by Fig.

(1); the explicit method is unstable and it is clear that the implicit

method can have significant errors at intermediate timestep sizes.

The errors of the different methods of propagating the stress forward

in time can be examined more quantitatively by comparing them to
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the full solution using the general integral (8). An arbitrary strain

rate is represented as a power series in time as

ε̇(t) = ε̇0 + ε̇1t +
1

2
ε̇2t

2 + ... (39)

where the coefficients ε̇0, ε1, ε̇2, etc. are constant in time. Substitu-

tion of (39) into (8) and integrating explicitly yields

σ(t) = σ(0)e−t/τ + 2µτ(1− e−t/τ )ε̇0 +

2µ
(
τ 2(1− e−t/τ )− τte−t/τ

)
ε̇1 + ... (40)

It is more useful to represent each of the strain rate coefficients in

terms of a corresponding time-scale ε̇n = T n+1
n , where the timescale

constants Tn are all of the order of the “tectonic” timescale, the

time over which the strain rate changes significantly. (For example,

explicit differentiation of the strain rate in the extensional test above

yields |Tn| = T0 = ε̇−1
0 for all n). Then

σ(t) = σ(0)e−t/τ + 2µ
τ

T0

(1− e−t/τ ) +

2µ

(
τ 2

T 2
1

(1− e−t/τ )− τt

T 2
1

e−t/τ

)
+ ... (41)

The stresses predicted by the explicit method, implicit method,

and the method developed here are, respectively

σE(t) = σ(0) + 2µ
t

T0

(42)
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σI(t) = σ(0) + 2µ

(
1

1 + t/τ

)
t

T0

(43)

σH(t) = σ(0)e−t/τ + 2µ(1− e−t/τ )
τ

T0

(44)

For timesteps small compared to the relaxation time τ , all of the

methods are accurate and stable. We are interested in timesteps

which are significantly larger than τ , but of course significantly

smaller than the tectonic timescales T0, T1, etc.. As timestep size

becomes large compared to τ , the relative errors tend to infinity for

the unstable explicit method. For both the implicit method and the

method here, they tend to a small value (not zero unless ε̇ is con-

stant). As a fraction of the true stress change ∆σ = σ(∆t) − σ(0),

the errors of the two methods have a term of order

δσI

∆σ
∼ τ

T1

+
τ

∆t
(45)

and

δσH

∆σ
∼ τ

T1

(46)

The implicit method has an additional term of order τ/∆t which

can be significantly larger than τ/T1 for timesteps larger than τ ;

the difference between the two methods can be of order 25%.

There are situations in which the larger relative errors of the

implicit method do not matter. To be more specific, consider the

Earth’s crust: hot and weak (low viscosity and relaxation times

as low as ten years) at depth, but cool and strong (high viscosity

19



and relaxation times which may be as high as 108 years) near the

surface. Many tectonic phenomena of interest occur on timescales

intermediate between these limits. For the lower crust, these tec-

tonic timescales are so long that no significant deviatoric stresses

accumulate, and the large relative error of the implicit method does

not matter. For the strong upper crust, the tectonic timescales are

so short compared to the relaxation time that the errors for all the

methods are small in an absolute sense. Only if the details of the

stress accumulation and dissipation in the intermediate crust are

important will the implicit method fail to be useful. An example

of such a situation would be in attempts to predict the depths to

which brittle faulting could occur during a particular tectonic de-

formation; as implied by Fig. (1), the implicit method would retain

a significantly larger fraction of accumulating stresses than the true

method; it would predict significantly greater depths. More gener-

ally, any modelling of processes sensitive to the location of or rate

of the transformation from ductile physics to brittle physics would

be better done by the method presented here, if large timesteps are

to be taken.
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Figure Captions

Figure 1: Computed decays of elastic stress in a non-deforming

Maxwell solid with unit Maxwell ralaxation time: dot-dash curve:

explicit methods; dashed curve: implicit methods; solid curve: true

decay.

Figure 2: Variation of pressure in a homogenous block, initially a

unit square. The viscosity is 1, the shear and bulk moduli are 1

and 2, respectively. The lower face of the block is fixed, the top

forced to extend at a constant velocity of 0.0025, for a tectonic

timescale of order 400. The top and bottom faces have zero tangen-

tial stresses applied, and the side faces of the block are both normal-

and tangential-stress free. The total strain rate thus varies inversely

with the length of the block. The Maxwell time is unity. The solid

line is the theoretical result from Eq. (30). The circles are the com-

puted values using a timestep of 2.5, significantly larger than the

Maxwell relaxation time. The computational mesh elements used

were about 20% of the block thickness. Errors are of the order of a

percent or so as suggested by equation (46).
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Figure 3: Variation of position of a point (initially at x = 0.03, y =

0) on the boundary between two welded homogenous layers, each

of unit thickness. The total strain rate averaged across the two

layers is forced to be 0.1. The Maxwell time is 100 in the top layer

(µ = 0.1, η = 10) and 0.01 in the bottom layer (µ = 10, η =

0.01). The solid line is the theoretical result from Eq. (38). The

circles are the computed values using a timestep of 0.1, one order

of magnitude larger than the Maxwell relaxation time in the lower

layer. The computational mesh elements used were about 20% of

the layer thickness. The magnitude of the errors is consistent with

that suggested by (46).

...
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Figure 2
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Figure 3
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