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In primary school, we learned ...

there are four states of matter:

Solid Liquid

Gas Plasma
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In university, we learned ...
there are much more than four phases:
different phases = different symmetry breaking
→ Landau symmetry breaking theory

(a) (b) (b)(a)

A A A

BB’
φ φ φ

g gc g’ε ε ε

(a) (b)

Group theory: From 230 ways of translation symmetry breaking,
we obtain the 230 crystal orders in 3D
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In graduate study after 1980’s, we learned ...

there are phases beyond symmetry-breaking:

Ey = RH jx , RH = p
q

h
e2

• 2D electron gas in
magnetic field has many
quantum Hall (QH)
states

that all have the
same symmetry.
• Different QH states can-

not be described by sym-
metry breaking theory.
• We call the new order

topological order Wen 89
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Symmetry breaking orders through pictures

Ferromagnet Anti-ferromagnet

Superfluid of bosons Superconductor of fermions

• Long-range order: every spin/particle is doing the same thing.
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Topological orders through pictures

FQH state String liquid (spin liquid)

• Global dance:
All spins/particles dance following a local dancing “rules”

→ The spins/particles dance collectively
→ a global dancing pattern.

Xiao-Gang Wen, Perimeter, Sept. 2012 Topological order & long-range entanglements: A totally new kind of quantum materials and an unification of light and electrons



Local dancing rule → global dancing pattern

• Local dancing rules of a FQH liquid:
(1) every electron dances around clock-wise

(ΦFQH only depends on z = x + iy)
(2) takes exactly three steps to go around any others

(ΦFQH’s phase change 6π)
→ Global dancing pattern ΦFQH({z1, ..., zN}) =

∏
(zi − zj)

3

• Local dancing rules are enforce by the Hamiltonian
to lower the ground state energy.
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Local dancing rule → global dancing pattern

• Local dancing rules of a string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= Φstr

( )
→ Global dancing pattern Φstr

( )
= 1

• Local dancing rules of another string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= −Φstr

( )
→ Global dancing pattern Φstr

( )
= (−)# of loops

• Two string-net condensations → two topological orders Levin-Wen 05
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What really is topological order (through experiments)

To define a physical concept, such as symmetry-breaking order or
topological order, is to design a probe to measure it

For example,
• crystal order is defined/probed by X-ray diffraction:
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Symmetry-breaking orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order ???
(Global dancing pattern)

• All the above probes are linear responses. But topological order
cannot be probed/defined through linear responses.
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Topological orders through experiments

Topological order can be defined “experimentally” through two
unusual topological probes (at least in 2D)

(1) Topology-dependent ground state degeneracy Dg Wen 89

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

(2) Non-Abelian geometric’s phases of the degenerate ground
state from deforming the torus: Wen 90

- Shear deformation T : |Ψα〉 → |Ψ′α〉 = Tαβ|Ψβ〉

- 90◦ rotation S : |Ψα〉 → |Ψ′′α〉 = Sαβ|Ψβ〉

• Topological degeneracies and non-Abelian geometric phases, T
and S , define topological order “experimentally”.

Xiao-Gang Wen, Perimeter, Sept. 2012 Topological order & long-range entanglements: A totally new kind of quantum materials and an unification of light and electrons



Symmetry-breaking/topological orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order Topological degeneracy,
(Global dancing pattern) non-Abelian geometric phase

• The linear-response probe Zero-resistance and Meissner effect
define superconducting order. Treating the EM fields as non-dynamical fields

• The topological probe Topological degeneracy and non-Abelian
geometric phase define a completely new class of order –
topologically order.
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What is the significance of topological order?

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

represent experimental probes of topological order which can
hardly be realized in experiments.

How to measure/study topological order in practice?

• Topological orders produce new kind of waves
(collective excitations above the topo. ordered ground states).
→ change our view of universe

• The defects of topological order carry
fractional statistics (including non-Abelian statistics) and
fractional charges (if there is symmetry).
→ a medium for topological quantum memory and computations.

• Some topological orders have topologically protected gapless
boundary excitations
→ perfect conducting surfaces despite the insulating bulk.
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Principle of emergence: from order to physical properties

Different orders → different wave equations for the
deformations of order → different physical properties.

• Atoms in superfluid have a random distribution
→ cannot resist shear deformations (which do nothing)
→ liquids do not have shapes

Wave Eq. → Euler Eq.
∂2
t ρ− ∂2

xρ = 0 One longitudinal mode

• Atoms in solid have a ordered lattice distribution
→ can resist shear deformations
→ solids have shapes

Wave Eq. → elastic Eq.
∂2
t u

i − C ijkl∂x j∂xku
l = 0

One longitudinal mode and two transverse modes
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Origin of photons, gluons, electrons, quarks, etc

• Do all waves and wave equations emerge from some orders?

Wave equations for elementary particles

• Maxwell equation → Photons
∂ × E + ∂tB = ∂ × B− ∂tE = ∂ · E = ∂ · B = 0

• Yang-Mills equation → Gluons
∂µF a

µν + f abcAµbF c
µν = 0

• Dirac equation → Electrons/quarks
[∂µγ

µ + m]ψ = 0

What orders produce the above waves? What are the origins
of light (gauge bosons) and electrons (fermions)?
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Elementary or emergent?

• But none of the symmetry breaking orders can produce:
- electromagnetic wave satisfying the Maxwell equation
- gluon wave satisfying the Yang-Mills equation
- electron wave satisfying the Dirac equation.

• We have seen that topological order corresponds to to new states
of quantum matter, such as FQH states and spin-liquid states.

• Can topological order produces the Maxwell equation, Yang-Mills
equation, and the Dirac equation?

Yes
• A particular topologically ordered state, string-net liquid, provide a

unified origin of light, electrons, quarks, gluons, ... ...
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Topological order (closed strings)
→ emergence of electromagnetic waves (photons)

• Wave in superfluid state |ΦSF〉 =
∑

all position conf.

∣∣∣ 〉
:

density fluctuations:
Euler eq.: ∂2

t ρ− ∂2
xρ = 0

→ Longitudinal wave

• Wave in closed-string liquid |Φstring〉 =
∑

closed strings

∣∣∣ 〉
:

String density E(x) fluctuations → waves in string condensed state.
Strings have no ends → ∂ · E = 0 → only two transverse modes.
Equation of motion for string density → Maxwell equation:
Ė− ∂ × B = Ḃ + ∂ × E = ∂ · B = ∂ · E = 0. (E electric field)
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Topological order (string nets)→
Emergence of Yang-Mills theory (gluons)

• If string has different types and can branch
→ string-net liquid → Yang-Mills theory
• Different ways that strings join → different gauge groups

A picture of our vacuum A string−net theory of light and electrons

Closed strings → Maxwell gauge theory
String-nets → Yang-Mills gauge theory
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Topological order →
Emergence of electrons

• In string condensed states, the ends of string be have like point
particles
- with quantized (gauge) charges
- with Fermi statistics
Levin-Wen 2003

• String-net/topological-order provides a way to
unify gauge interactions and Fermi statistics in 3D
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Emergence of fractional spin/statistics

• Why electron carry spin-1/2 and Fermi statistics?

• Φstr

( )
= 1 string liquid Φstr

( )
= Φstr

( )
360◦ rotation: → and = →

+ has a spin 0 mod 1. − has a spin 1/2 mod 1.

• Φstr

( )
= (−)# of loops string liquid Φstr

( )
= −Φstr

( )
360◦ rotation: → and = − → −

+ i has a spin −1/4 mod 1. − i has a spin 1/4 mod 1.
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Spin-statistics theorem

(a) (b) (c) (d) (e)

• (a) → (b) = exchange two string-ends.

• (d) → (e) = 360◦ rotation of a string-end.

• Amplitude (a) = Amplitude (e)

• Exchange two string-ends plus a 360◦ rotation of one of the
string-end generate no phase.

→ Spin-statistics theorem
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Topological order
is the source of many wonders
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What is the microscopic picture of topological order?

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

represent an experimental definition of topological order.

• But what is the microscopic understanding of topological order?

• Zero-resistance and Meissner effect → experimental definition of
superconducting order.

• It took 40 years to gain a microscopic
picture of superconducting order:
electron-pair condensation
Bardeen-Cooper-Schrieffer 57

• It only took 20 years to gain a microscopic
picture of topological order:
long-range entanglements
(global dancing patterns) Chen-Gu-Wen 10
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Quantum entanglements through examples

• | ↑〉 ⊗ | ↓〉 = direct-product state → unentangled (classical)

• | ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉 → entangled (quantum)
• | ↑〉 ⊗ | ↑〉+ | ↓〉 ⊗ | ↓〉+ | ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉

→ more entangled

= (| ↑〉+ | ↓〉)⊗ (| ↑〉+ | ↓〉) = |x〉 ⊗ |x〉 → unentangled

• = | ↓〉 ⊗ | ↑〉 ⊗ | ↓〉 ⊗ | ↑〉 ⊗ | ↓〉... → unentangled

• = (| ↓↑〉 − | ↑↓〉)⊗ (| ↓↑〉 − | ↑↓〉)⊗ ... →
short-range entangled (SRE) entangled

• Crystal order: |Φcrystal〉 =
∣∣∣ 〉

= |0〉x1 ⊗ |1〉x2 ⊗ |0〉x3 ...

= direct-product state → unentangled state (classical)

• Particle condensation (superfluid)

|ΦSF〉 =
∑

all conf.

∣∣∣ 〉
= (|0〉x1 + |1〉x1 + ..)⊗ (|0〉x2 + |1〉x2 + ..)...

= direct-product state → unentangled state (classical)
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• | ↑〉 ⊗ | ↓〉 = direct-product state → unentangled (classical)
• | ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉 → entangled (quantum)
• | ↑〉 ⊗ | ↑〉+ | ↓〉 ⊗ | ↓〉+ | ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉

→ more entangled

= (| ↑〉+ | ↓〉)⊗ (| ↑〉+ | ↓〉) = |x〉 ⊗ |x〉 → unentangled

• = | ↓〉 ⊗ | ↑〉 ⊗ | ↓〉 ⊗ | ↑〉 ⊗ | ↓〉... → unentangled

• = (| ↓↑〉 − | ↑↓〉)⊗ (| ↓↑〉 − | ↑↓〉)⊗ ... →
short-range entangled (SRE) entangled

• Crystal order: |Φcrystal〉 =
∣∣∣ 〉

= |0〉x1 ⊗ |1〉x2 ⊗ |0〉x3 ...

= direct-product state → unentangled state (classical)

• Particle condensation (superfluid)

|ΦSF〉 =
∑

all conf.

∣∣∣ 〉

= (|0〉x1 + |1〉x1 + ..)⊗ (|0〉x2 + |1〉x2 + ..)...

= direct-product state → unentangled state (classical)
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How to make long range entanglements (topo. orders)

To make topological order, we need to sum over different product
states, but we should not sum over everything.

• Sum over a subset of the particle configurations, by first join the
particles into strings, then sum over the loop states

→ string-net condensation (string liquid): Levin-Wen 05

|Φloop〉 =
∑

all loop conf.

∣∣∣∣ 〉
which is not a direct-product

state and not a local deformation of direct-product states
→ non-trivial topological orders (long-range entanglements)
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Long range entanglements
→ A new and deeper understanding of quantum phases

For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase

• According to entanglement picture:
- There are long range entangled (LRE) states

→ many phases

- There are short range entangled (SRE) states

→ one phase

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases:
patterns of long range entanglements = topological orders
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Short-range entanglements that break symmetry
→ Landau symmetry breaking phases

different phases = different symmetry breaking

(a) (b) (b)(a)

A A A

BB’
φ φ φ

g gc g’ε ε ε

(a) (b)

From 230 ways of translation symmetry breaking, we obtain the
230 crystal orders in 3D
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Short-range entanglements w/ symmetry → SPT phases

For gapped systems with a symmetry G (no symmetry breaking):

• there are LRE symmetric states → many different phases

• there are SRE symmetric states → one phase

many different phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase

1
g

2
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

SB−SRE 2

SY−SRE 2

g
1

LRE 2LRE 1

SRE
SPT phases

symmetry breaking

(group theory)

topological orders

( ??? )

( ??? )

topological order
topological order

symmetry
preserve

no symmetry

phase

transition

SPT 1 SPT 2

- Haldane phase of 1D spin-1 chain w/ SO(3) symm. Haldane 83

- Topo. insulators w/ U(1)× T symm.: 2D Kane-Mele 05; Bernevig-Zhang 06

and 3D Moore-Balents 07; Fu-Kane-Mele 07

1D 2D 3D
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Compare topological order and topological insulator

• Topological order describes states with long-range entanglements
- The essence: long-range entanglements

• Topological insulator is a state with short-range entanglements,
particle number conservation, and time reversal symmetry, which is
an example of SPT phases.
- The essence: symmetry entangled with short-range entanglements

Topo. order Topo. Ins. Band Ins.

Entanglements long range short range short range

Fractional charges of Yes No No
finite-energy defects

Fractional statistics of Yes No No
finite-energy defects

Proj. non-Abelian stat. of Yes Yes Yes
infinite-energy defects > Majorana only Majorana only Majorana

Gapless boundary topo. protected symm. protected not protected
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Where are long-range entanglements: FQH states

Filling fractions ν = 1/3, 2/3, 4/3, 5/3, ... → Abelian FQH states
→ U(1) or U(1)× U(1) Chern-Simons theories

Filling fractions ν = 5/2, ... → non-Abelian FQH states
→ U(1)× SO(5) Chern-Simons theory
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Where are long-range entanglements: spin liquid states

Herbertsmithsite: spin-1/2 on Kagome lattice H = J
∑

Si · Sj .

• J ∼ 200K , no phase trans. down to 50mK → spin liquid Helton etal 06

• Numerical calculations → Z2 topological order (emergence of Z2

gauge theory) Misguich-Bernu-Lhuillier-Waldtmann 98; Jiang-Weng-Sheng 08;Yan-Huse-White 10
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Where are long-range entanglements: Organics κ-(ET)2X

Hubbard model on triangular lattice:

t ′/t = 0.5 ∼ 1.1 X=Cu[N(CN)2]Cl, Cu2(CN)3,...

Cu[N(CN)2]Cl t ′/t = .75 Cu2(CN)3 t
′/t = 1.06

Spin interaction
J = 250K
But no AF order
down to 35mK

• Emergence of U(1) gauge theory int. with spinon Fermi surface.
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Highly entangled quantum matter:
A new chapter of condensed matter physics

Haldane
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State conductor
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Short−Range Entangled

Symm. Breaking

Gauge theory

Fermi statistics Boundary excitations

Liquid

Spin Crystal

Magnet

InsulatorShape

Information storage

Boundary excitations

Gapless Goldstone mode

With symmetry

Fractional statistics

Long−Rang Entangled

= Topological order

Tensor category
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Group

Anti−localization
Topological degeneracy

Group Theory

theory

theory

Quantum States of Matter (gapped)
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