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* instabilities in freely-standing liquid films

* hole growth in freely-standing PS films
— ideal geometry for probing complex flow
— shear thinning
— convective constraint release relaxation mechanism
— hole growth occurs for T comparable to T °uk

* hole growth In freely-standing PS/PI/PS trilayer films
— holes in central Pl layer

* summary & conclusions



'CURRENT PROJECTS ‘

POLYMERS

* molecular mobility
— glass transition &
hole growth
e instabilities & pattern formation
 biodegradable polymers

BIOPOLYMERS
* polypeptides & proteins — lipid
membranes & polymer brushes

BACTERIAL CELLS
- bacterial adhesion & physical
properties of bacteria & biofilms




‘_SURFACE-SENSITIVE PROBES

* to measure structure, dynamics, interaction forces,
molecular conformations, adsorption kinetics, we use
— atomic force microscopy

— ellipsometry

— surface plasmon resonance

— guartz crystal microbalance

— optical tweezers

— TIRF

— infrared techniques (PM-IRRAS,
ATR-FTIR)

— surface circular dichroism

— TEM

— differential pressure techniques

S - polarizer
& W

- Sampl® stage



THIN LIQUID FILMS

* thin liquid films occur in everyday life

— adhesives (superglue) )
— lubricants (on cornea of eye, engine piston) .

. . - . stability
— spray coatings (paint, herbicides, fibers) > desirable/
— printing (ink on transparency or tape) essential
— soap bubbles & films
— foams (shaving cream, cappuccino) /

stability

— water films (water spotting, hydroplaning)}

undesirable
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‘\‘ HOLE GROWTH IN NON-VISCOUS FILI\/IS“_k\\

Y

— fluid collects In h

a rim ' _ t
— rest of film | 1

undisturbed i

* hole radius grows linearly
with time

R

=

t [Taylor, Proc. Roy. Soc. (1959)]
[Culick, J. Appl. Phys. (1960)]



SN Pouvmer woLecutes RN

* polymers are complex molecules

— different length scales ranging from segment size to
overall chain size Rgg ~ M, 0

— different time scales ranging from segmental relaxation
to diffusion of entire molecules

AN /T

Rec | @ ( \ L
B/

— effect of confinement in thin films
— changes in conformation & dynamics




HOLE GROWTH IN VISCOUS FILMS

.
. h
—No rim 3
— film thickens ' L
uniformly Btch

* hole radius grows
exponentially with time

—

[Debrégeas et al., PRL (1995)]




‘ FREELY-STANDING FILM PREPARATION -

 high molecular weight, monodisperse polymers dissolved
In good solvents

spincoat polymer Qqq anneal film
solution onto under vacuum
® mica substrate
. —

/ transfer film gipr:lcj)lrdeeﬁrlm
| oo water containing 4 mm
" surface E vy wa“ g
diameter hole



\h HOLE GROWTH IN POLYMER FILMS |/ m

— plug flow h+dh ,'::

A —>
— driven by surface tension

1 . .
o= 2—8 at edge of hole; o~ P Into rest of film
h

— polymer chains become aligned near edge of hole

-’ —

b,
’ \ R+dRatt=t,

Ratt=t,




PREVIOUS HOLE GROWTH IN PS FILMS

 optical microscopy of freely- 3
standing polystyrene films

- M, =717k

— 96 NM<h<372nm

— T =115°C (T ulk = 97°C)
— exponential hole growth 0

s /[
195s 330s
96 nm 122 nm

670 s
158 nm

6360 s -
372 nm

2000 3000 4000 5000

t(s)

0 1000

10 + 1
f g
. . n~y
— decrease in viscosity for
Increasing strain rate

— consistent with shear
thinning

n x 10° (poise) at 115°C

[Dalnoki-Veress et al., PRE 59, 2153 (1999)] o000t o0t oo
(s



y SHEAR THINNING OF POLYMERS m

* decrease in viscosity n with increasing shear strain rate 7/

----- N PSofdiffM,
Mo T T TNy :

log n <
e l

. q i 2 3
log ¥

log 7 (sec™)
— shear thinning only observed for entangled polymers
[Peterlin, Adv. Macromol. Chem. 1, 225 (1968)]

—n IS M, -independent in nonlinear regime
[Stratton, J. Colloid Interf. Sci. 22, 517 (1966)]



SHEAR THINNING IN FRELY-STANDING PS FILMS

* different T, M, and h

optical microscopy

* use growth time t to on GFe-experment
b - . . d 1@9_———?@&)— Soo-- ~ DPE W:
obtain viscosity n at edge " || Do s M =717k
1 1[ o . W_
of hole i M, = 282k
1QOL_ v M =120k
107 §f
77 90 r slope =-0.75 + 0.01
ﬂ%_ 1(1)o
0 [ f
* plot n/n, versus reduced 1&3«1_
shear strain rate 3 il
187 FF . copamakiiesseesal PRRE1499P)
1@6_: ooxaﬂaéteéteélalmma@r@z@@@ﬂ)

* results consistent with
viscous flow in presence
of shear thinning

10" 10 105' 10610010t of01Q0°10b’ 100° 10° 10° 10

B= 3, Nl R

[Roth & Dutcher, PRE 72, 021803 (2005)]



! FLOW AT SUCH LO TEMPERATURES? '

* in bulk, viscosity ng ~ 10* Pass at T ~ T,
— expect both viscous and elastic effects important
— late stage hole growth is well-described by viscous flow

* previous studies of crazing of PS films
[Berger & Kramer, Macro (1987)]

— chalin scission at low temperatures
— chain disentanglement at strain rates
& higher temps
— for M, = 1800k: T > 70°C for y =4.1 x 10° s
T >90°C for ¥y ~ 102 s
e comparable strain rates & temps for hole growth
1.5x10%st<y <2x10?%siforl01°C<T<117°C
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* measure R(t) for single hole
using optical microscopy
— linear growth at early times
— velocity v

— exponential growth at late
times
— growth time 1

— range of times for linear
growth decreases with
—increasing T
— decreasing M,
[Roth et al., PRE 72, 021802 (2005)]
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TRANSITION IN HOLE GROWTH |

4

2

PS M,, = 2240k,

L h=79nmatT=103°C _

T




In R(t) / R(x)

+/

o 103°C

107°C

115°C

X 4+ <4 > 0

105°C |
110°C 1

117°C

TRANSIENT BEHAVIOR \ 'l \‘

0.0 0.5 1.0 1.5
t/t

2.0

In[R(t)/R(r)]-(t/r-l)

0.0

o
(V)

o
o

0.0 05 1.0 15 2.0
t/t

* scale axes: In[R(1)/R(7)] vs t/r

] data sets coincide fort>t
* isolate transient

— single exponential decay time 1,



J—

* measure R(t) for single hole
using optical microscopy
— linear growth at early times
— velocity v

— exponential growth at late
times
— growth time 1

— range of times for linear
growth decreases with
—increasing T
— decreasing M,
[Roth et al., PRE 72, 021802 (2005)]
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TRANSITION IN HOLE GROWTH |

4

2

PS M,, = 2240k,

L h=79nmatT=103°C _

T




INn[Rt)/R()]-(t/x-1)

In R(t) / R(x)

TRANSIENT BEHAVIOR \ 'l \‘

: 0.0
0.5 l._)
0.0 E -0.2
> ’ 1'? 0.4}
1.0} } ?
15} DDD : 117°C E -0.6
OjO 0j5 110 115 2.0 OiO 0i5 1i0 1i5 2.0
t/z t/t
@ | )
0.0k L R L OO K ESES
M, = 717K * scale axes: IN[R(t)/R(7)] vs t/r
-0.2+F = nm A . .
B '] data sets coincide for t > t
° 105°C i :
04l o * isolate transient
e — single exponential decay time t,
o0 e * refer t to t, for which R(ty) = 0
0.0 0.5 1.0 15 2.0 25
t-1)/r — overlap of data

— decay time 1, scales with t



| FITTING FUNCTION FOR R(t) &

* empirically, R(t) data for all times well fit by

— equivalent to time-dependent viscosity n(t)

ET . : :
where 7. = r IS viscosity for t >> 1,

— described by a three-component spring & dashpot model

@)

|U|83

) =

single relaxation time
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(a) T=101°C

(b) T=107°C

0 1000 2000 3000 4000 5000

t (s)

FITS TO R(t) DATA

.

- 3 fitting parameters:
R, value at start of measurements (t = 0)
T exponential hole growth time
1, longest relaxation time

. (c) T=115°C -
1M, =717 x 103

ol Ih =
el I'h =90 nm
= _

2_

O ......................

0 50 100 150 200



: f i RELATIONSHIP BETWEEN t AND 'cll : ‘

- T and t, have similar
temperature dependence
with t, ~ t/2

[t/t, = 2.2 £ 1.4]

) M, = 2240k, h = 83 nm
. M, =282k, h =94 nm
: M_ =120k, h =77 nm
M, =717k, h =61 nm
M, =717k, h =90 nm
MW =717k, h =125 nm

»*

X

>

100 105 110 115
T (°C)

4



‘ TUBE MODEL FOR POLYMER DYNAMICS -

Ty Reptation time

low Yy <14l reptation + contour 15 Rouse time
shear rate length fluctuations
(CLF)
. . ) . _ v Hole growth
intermediate Tyl <y <1xt convective constraint = o
atT =101°C
shear rate release (CCR) '
1 -6 10 o-1
) : : 7,1+ ~10°-10'"s
high Tl < chain stretch d
J ROSY Tl ~ 104 - 107 st
shear rate )

y ~10% st

* hole growth at lowest temperatures
occurs in the intermediate to high shear

rate regimes
— relaxation via CCR (no rotation in flow)
—sincey =2/t,expectt,~y t~1/2
— data consistent with CCR

[Graham, Likhtman, McLeish, and Milner,
J. Rheol (2003)]




h_ :Q DIFFERENTIAL PRESSURE EXPERIMENT vﬂ

- differential pressure experiment

[Roth et al., RSI 74, 2796 (2003); Roth & Dutcher, PRE72,021803(2005)]
20} OO
— E o
PS film . 1 E > o E
pressure cell \;,A‘ pressure oo 20T 3 N
(AP, T) sensor E & ol
: ol 0 5 10 15 20
piston position x(t) X t&x10s)
stepper -
motor |
0 »

o 5 10 15 20
t (X 10° S)
PS, M,, = 2240k, h =69 nm, T = 98°C

— maintain pressure difference across PS film
— track piston position as a function of time



H DPE RESULTS FOR FREELY-STANDING PS FILMS I

* temperature dependence of hole growth time <
— M, = 717k, 2240k
—51 nm<h<98 nm _
~92°C < T < 105°C i
— consistent with shear o2t
thinning AN

— despite large differences " | '_:
In Ty, onset temperature 1c:3;—
for hole formation is
comparable to T Uk
for all films

[Roth et al., RSI 74, 2796 (2003): Roth & Dutcher, PRE 72, 021803 (2005)]



F‘H FREELY-STANDING TRILAYER FILMS n

« trilayer films with central fluid layer and solid capping layers
— periodic lateral morphology forms upon heating due
to amplification of thermal fluctuations

PHYSICAL REVIEW E 73, 041801 (2006)
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- HOLE GROWTH IN S/PI/PS TRILAYERS | -

* hole growth in PS freely-standing films
— uniform thickening of films
— absence of rim at edge of hole

* hole growth in PS/PI/PS freely-standing films
— holes form & grow in central Pl layer
— distinct rim at edge of hole

BT




m HOLE GROWTH IN PS/PI/PS TRILAYERS

* presence of rim verified using atomic force microscopy (AFM)

h=50nm,L=75nm

a

\J
M
| | | |

0 5.0 10.0 15.0

M

-25.0 0 25,
|

—

optical AFM
microscopy

[C.A. Murray et al. (2006)]



HOLE GROWTH IN PS/PI/PS TRILAYERS

* radius of hole in Pl layer measured at fixed temperature
T=110°C

3
| /
/35 nm . /%2 nm .
-~ 2 // g '
o 45 ”;W 63 nm
@- l / & s
E 11 . . — 7.5 am
L ~ 50nm - h ~ 50nm
0 24nm < h< 82nm | 16nm < L < 75nm
0 400 800 1200 1600 0 200 400 600
t(s) t(s)
fix PS thickness L fix Pl thickness h
vary Pl thickness h vary PS thickness L

[C.A. Murray et al. (2006)]



HOLE GROWTH IN PS/PI/PS TRILAYERS

* relevant factors that determine hole growth in Pl layer
— surface & PS/PI interfacial energies
— bending energy of PS layers
— dispersion interaction between the PS/air interfaces

e

v
te

—» I 4+

— can understand slowing of hole growth with increase in
h&lL



* hole growth in freely- standlng PS films T T opsammen
— two different experiments o h
— shear thinning Ll
— convective constraint release o
— hole growth occurs o] 2 g s _
at temperatures o M fﬁfﬁ e

comparable to T uk

* hole growth in fs PS/PI/PS films
— gualitatively different hole growth

— hole growth in Pl determined
by PS
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