COMPLEX FLOW OF NANOCONFINED POLYMERS

Connie B. Roth, Chris A. Murray and John R. Dutcher

Department of Physics University of Guelph Guelph, Ontario, Canada N1G 2W1

OUTLINE

- instabilities in freely-standing liquid films
- hole growth in freely-standing PS films
 - ideal geometry for probing complex flow
 - shear thinning
 - convective constraint release relaxation mechanism
 - hole growth occurs for T comparable to T_g^{bulk}
- hole growth in freely-standing PS/PI/PS trilayer films
 - holes in central PI layer
- summary & conclusions

CURRENT PROJECTS

POLYMERS

- molecular mobility
 - glass transition & hole growth
- instabilities & pattern formation
- biodegradable polymers

BIOPOLYMERS

 polypeptides & proteins – lipid membranes & polymer brushes

BACTERIAL CELLS

 bacterial adhesion & physical properties of bacteria & biofilms

SURFACE-SENSITIVE PROBES

- to measure structure, dynamics, interaction forces, molecular conformations, adsorption kinetics, we use
 - atomic force microscopy
 - ellipsometry
 - surface plasmon resonance
 - quartz crystal microbalance
 - optical tweezers
 - TIRF
 - infrared techniques (PM-IRRAS, ATR-FTIR)
 - surface circular dichroism
 - TEM
 - differential pressure techniques

THIN LIQUID FILMS

- thin liquid films occur in everyday life
 - adhesives (superglue)
 - lubricants (on cornea of eye, engine piston)
 - spray coatings (paint, herbicides, fibers)
 - printing (ink on transparency or tape)
 - soap bubbles & films
 - foams (shaving cream, cappuccino)
 - water films (water spotting, hydroplaning)

stability desirable/ essential

stability undesirable

HOLE GROWTH IN NON-VISCOUS FILMS

- fluid collects in a rim
- rest of film undisturbed

 hole radius grows linearly with time

[Taylor, Proc. Roy. Soc. (1959)] [Culick, J. Appl. Phys. (1960)]

POLYMER MOLECULES

polymers are complex molecules

– different length scales ranging from segment size to overall chain size $R_{EE} \sim M_w^{0.5}$

 different time scales ranging from segmental relaxation to diffusion of entire molecules

- effect of confinement in thin films

– changes in conformation & dynamics

HOLE GROWTH IN VISCOUS FILMS

[Debrégeas et al., PRL (1995)]

 hole radius grows exponentially with time

FREELY-STANDING FILM PREPARATION

 high molecular weight, monodisperse polymers dissolved in good solvents

spincoat polymer solution onto mica substrate

anneal film under vacuum

transfer film onto water surface

capture film on holder containing 4 mm diameter hole

HOLE GROWTH IN POLYMER FILMS

- driven by surface tension

$$\sigma = \frac{2\varepsilon}{h}$$
 at edge of hole; $\sigma \sim \frac{1}{r^2}$ into rest of film

- polymer chains become aligned near edge of hole

PREVIOUS HOLE GROWTH IN PS FILMS

- optical microscopy of freelystanding polystyrene films
 - $M_w = 717$ k
 - 96 nm < *h* < 372 nm
 - $T = 115^{\circ}C (T_g^{\text{bulk}} = 97^{\circ}C)$
 - exponential hole growth

- decrease in viscosity for increasing strain rate
- consistent with shear thinning

[Dalnoki-Veress et al., PRE 59, 2153 (1999)]

SHEAR THINNING OF POLYMERS

- decrease in viscosity η with increasing shear strain rate $\dot{\gamma}$

- shear thinning only observed for entangled polymers [Peterlin, Adv. Macromol. Chem. 1, 225 (1968)]
- η is M_w -independent in nonlinear regime [Stratton, J. Colloid Interf. Sci. **22**, 517 (1966)]

SHEAR THINNING IN FREELY-STANDING PS FILMS

 results consistent with viscous flow in presence of shear thinning

[Roth & Dutcher, PRE 72, 021803 (2005)]

FLOW AT SUCH LOW TEMPERATURES?

- in bulk, viscosity $\eta_0 \sim 10^{12}$ Pa•s at $T \sim T_q$
 - expect both viscous and elastic effects important
 - late stage hole growth is well-described by viscous flow
- previous studies of crazing of PS films [Berger & Kramer, Macro (1987)]
 - chain scission at low temperatures
 - chain disentanglement at strain rates
 & higher temps

- for $M_w = 1800$ k: $T > 70^{\circ}$ C for $\gamma = 4.1 \times 10^{-6} \text{ s}^{-1}$

 $T > 90^{\circ}$ C for $\gamma' \sim 10^{-2} \text{ s}^{-1}$

• comparable strain rates & temps for hole growth 1.5 x 10⁻⁴ s⁻¹ < $\dot{\gamma}$ < 2 x 10⁻² s⁻¹ for 101°C < T < 117°C

TRANSITION IN HOLE GROWTH

- measure R(t) for single hole
 using optical microscopy
 - linear growth at early times
 velocity v
 - exponential growth at late times
 - growth time $\boldsymbol{\tau}$
 - range of times for linear growth decreases with
 - increasing T
 - decreasing M_w

[Roth et al., PRE 72, 021802 (2005)]

• scale axes: $\ln[R(t)/R(\tau)]$ vs t/τ

 \Box data sets coincide for t > τ

- isolate transient
 - single exponential decay time τ_1

TRANSITION IN HOLE GROWTH

- measure R(t) for single hole
 using optical microscopy
 - linear growth at early times
 velocity v
 - exponential growth at late times
 - growth time $\boldsymbol{\tau}$
 - range of times for linear growth decreases with
 - increasing T
 - decreasing M_w

[Roth et al., PRE 72, 021802 (2005)]

TRANSIENT BEHAVIOR

FITTING FUNCTION FOR R(t)

• empirically, R(t) data for all times well fit by

– equivalent to time-dependent viscosity $\eta(t)$

where
$$\eta_{\infty} = \frac{\varepsilon \tau}{h}$$
 is viscosity for $t >> \tau_1$

- described by a three-component spring & dashpot model

single relaxation time

FITS TO R(t) DATA

RELATIONSHIP BETWEEN τ AND τ_1

• τ and τ_1 have similar temperature dependence with $\tau_1 \sim \tau/2$ $[\tau/\tau_1 = 2.2 \pm 1.4]$

- $M_{w} = 2240$ k, h = 83 nm
- * $M_{w} = 282$ k, h = 94 nm
- × $M_{w} = 120$ k, h = 77 nm

•
$$M_w = 717$$
k, $h = 61$ nm

•
$$M_w = 717$$
k, $h = 90$ nm

• $M_{W} = 717$ k, h = 125 nm

TUBE MODEL FOR POLYMER DYNAMICS

low shear rate	γ ['] < τ _d ⁻¹	reptation + contour length fluctuations (CLF)	$\begin{cases} \tau_{\rm R} \text{ Rouse time} \\ \text{Hole growth} \\ \text{at } T = 101^{\circ}\text{C} \\ \tau_{\rm d}^{-1} \sim 10^{-6} - 10^{-10} \text{ s}^{-1} \\ \tau_{\rm R}^{-1} \sim 10^{-4} - 10^{-7} \text{ s}^{-1} \\ \tau_{\rm r} \sim 10^{-4} \text{ s}^{-1} \end{cases}$
intermediate shear rate	$\tau_{d}^{-1} < \gamma' < \tau_{R}^{-1}$	convective constraint release (CCR)	
high shear rate	$\tau_{\rm R}^{-1} < \gamma$	chain stretch	

- hole growth at lowest temperatures occurs in the intermediate to high shear rate regimes
 - relaxation via CCR (no rotation in flow)
 - since $\dot{\gamma} = 2 / \tau$, expect $\tau_1 \sim \dot{\gamma}^{-1} \sim \tau / 2$

 \rightarrow data consistent with CCR

[Graham, Likhtman, McLeish, and Milner, J. Rheol (2003)]

DIFFERENTIAL PRESSURE EXPERIMENT

differential pressure experiment
 [Roth *et al.*, RSI 74, 2796 (2003); Roth & Dutcher; PRE 72, 021803 (2005)]

PS, M_w = 2240k, h = 69 nm, T = 98°C

- maintain pressure difference across PS film
- track piston position as a function of time

DPE RESULTS FOR FREELY-STANDING PS FILMS

- temperature dependence of hole growth time τ
 - $-M_w = 717$ k, 2240k
 - 51 nm < *h* < 98 nm
 - $-92^{\circ}C < T < 105^{\circ}C$
 - consistent with shear thinning
 - despite large differences in T_g , onset temperature for hole formation is comparable to $T_g^{\text{ bulk}}$ for all films

[Roth et al., RSI 74, 2796 (2003); Roth & Dutcher, PRE 72, 021803 (2005)]

FREELY-STANDING TRILAYER FILMS

• trilayer films with central fluid layer and solid capping layers

 periodic lateral morphology forms upon heating due to amplification of thermal fluctuations

PAPER

PHYSICAL REVIEW E 73, 041801 (2006)

Stress-guided self-assembly in Dutcher films

Gavin A. Buxton and Nigel Clarke Department of Chemistry, University of Durham, Durham DH1 3LE, United Kingdon (Received 28 November 2005; published 10 April 2006)

Structural evolution and control of Dutcher films Gavin A. Buxton* and Nigel Clarke Received 4th April 2006, Accepted 25th May 2006 First published as an Advance Article on the web 14th Ju DOI: 10.1039/b604790d

www.rsc.org/softmatter | Soft Matter

[C.A. Murray et al., PRE 69, 061612 (2004)]

hole growth in PS freely-standing films

- uniform thickening of films
- absence of rim at edge of hole

- hole growth in PS/PI/PS freely-standing films
 - holes form & grow in central PI layer
 - distinct rim at edge of hole

presence of rim verified using atomic force microscopy (AFM)

h = 50 nm, L = 75 nm

[C.A. Murray et al. (2006)]

• radius of hole in PI layer measured at fixed temperature $T = 110^{\circ}$ C

[C.A. Murray et al. (2006)]

- relevant factors that determine hole growth in PI layer
 - surface & PS/PI interfacial energies
 - bending energy of PS layers
 - dispersion interaction between the PS/air interfaces

– can understand slowing of hole growth with increase in
 h & *L*

SUMMARY

- hole growth in freely-standing PS films
 - two different experiments
 - shear thinning
 - convective constraint release
 - hole growth occurs at temperatures comparable to T_{a}^{bulk}
- hole growth in fs PS/PI/PS films
 - qualitatively different hole growth
 - hole growth in PI determined
 - by PS

ntario

Canada Research