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The Earth and other planets have magnetic fields

 The Earth’s Dynamo 
 Primarily a dipole, aligned with rotation axis 
 liquid metal core is turbulent ( Re~106 )

 Glatzmaier and Roberts, A three-
dimensional self-consistent computer 
simulation of a geomagnetic field 
reversal, Nature  377 203 (1995).



The Earth’s dynamo is spatially complex 
and dynamic

 Jackson, Jonkers and Walker, Four centuries of geomagnetic 
secular variation, Phil. Trans. R. Soc. Lond. A  358 957 (2006).



The Sun’s magnetic field is even 
more complex

 The Sun’s magnetic field 
Free surface, rigid inner core
Large scale dipole with higher order multipoles
Periodic (22 year cycle)



Magnetic field of Sun is dynamic



Solar magnetic field alternates polarity

 Hathaway http://science.msfc.nasa.gov/ssl/pad/solar/dynamo.htm (2005)

http://science.msfc.nasa.gov/ssl/pad/solar/dynamo.htm
http://science.msfc.nasa.gov/ssl/pad/solar/dynamo.htm


How are these magnetic fields generated?

‘‘ . . . possible for the internal cyclic motion to 
act after the manner of the cycle of a self-
exciting dynamo, and maintain a permanent 
magnetic field from insignificant beginnings, at 
the expense of some of the energy of the 
internal circulation.’’

J. Larmor, How could a rotating body such as the Sun 
become a magnet? Br. Assoc. Adv. Sci. 159 (1919).
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What is a self-exciting dynamo?

feedback

!J = σ
(

!E + !V × !B
)

Induction Equation

Equation of Motion

Faraday’s Law of Induction

~ µ0 σ a V



The self-excited generator 
of Werner von Siemens (1866)

The “dynamo electric principle”
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MHD equations describe well the magnetic field 
evolution in a liquid metal or plasma

Ohm’s law and
Pre-Maxwell’s 

Equations 

∇× V ×B
1

µoσ∇
2B

∼ µoσLV0 ≡ Rm

Induction Equation

Equation of Motion



Fluid flow can amplify and distort magnetic fields 
when the magnetic Reynolds number is large

 transverse component of field is generated, 
amplifying the initial field

 finite resistance leads to diffusion of field lines
0



Standard Model of an MHD dynamo  
Step 1:  dipole field can be converted into strong toroidal field

The “Ω  effect” 

Induction Equation

∂Bφ

∂t = Rm rBP ·∇Ω + (∇2 − r−2)Bφ



Cowling’s Anti-Dynamo Theorem

When the magnetic field and the fluid 
motions are symmetric about an 
axis...no stationary dynamo can exist.

 T.G. Cowling, The magnetic fields of sunspots, 
Monthly Notices Roy. Astron. Soc.  94 39 (1933).



Standard Model of an MHD dynamo  
Step 2: Nonaxisymmetric, helical flows convert toroidal field 
back into dipole

The “α  effect” 
 E.N. Parker, Hydromagnetic dynamo models, 

Astrophys. J. 122 293 (1955)

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)
B = 〈B〉 + b̃, V = 〈V 〉 + ṽ

Mean Field Electrodynamics

E =
〈
ṽ × b̃

〉
= α 〈B〉+ β∇× 〈B〉



The Standard Dynamo Model: The αΩ Dynamo

1.  Ω-Effect: differential, 
axisymmetric rotation generates 

Bφ from seed dipole

Bφ ∝ Rm Bp 

Amplification 
depends on 
Rm=μ0σaV

2.  symmetry breaking helical 
fluctuations generate toroidal 

current:  Jφ =σ αBφ 
αB is turbulent EMF= <VxB>

Jφ reinforces
seed field

~  ~

seed Bp



Current state of theory is to solve the non-
linear MHD equations numerically

 Induction equation                                     

 Equation of Motion 



Why do Experiments?

...in magnetohydrodynamics one 
should not believe the product of a long 
and complicated piece of mathematics 
if it is unsupported by observation.

     Enrico Fermi



Why do experiments when we can simulate 
self-exciting dynamos?"

 Simulations are limited in resolution and speed
 To resolve resistive dissipation scale requires a 3D grid of 

Rm3

  easy for Earth where Rm=300-600
  hard for Sun where Rm=107

 To resolve viscous dissipation scale requires a 3D grid of Re3

 Pm = Rm/Re is a property of the medium
 for liquid metals and solar plasma Pm=10-5

 Re>107 in Earth and Liquid metal experiment
 Flows are very turbulent
 Can’t be simulated accurately
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Which flows are self-exciting 
dynamos? 
The kinematic dynamo problem:
 choose geometry (e.g. a sphere)

 uniform conductivity σ
 radius a
 surrounded by an insulating region

 Find V(r) which leads to growing B(r,t)
 Ignore back-reaction



The kinematic dynamo problem
 Solve induction equation:

 Since its linear in B, use separation of variables:

 Solve eigenvalue equation for given V(r) profile
λnBn = Rm∇× V̂ ×Bn +∇2Bn

B (x, t) =
∑

n eλnτBn (x)

∂B

∂τ
= Rm∇× V̂ ×B +∇2B

τ = t/µoσa2, V̂ = V /Vmax

Rm = µoσaVmax



General solution shows growth/damping depends 
upon Rm

 Rm = μ0 σ a Vmax ~ conductivity X size X velocity
 must exceed critical value for system to self-excite 

(typically 50 to 100)



Flows of liquid sodium can achieve high Rm
 Why sodium?

 Sodium is more conducting than any other liquid 
metal (melts at 100 C)

 How big must an experiment be to provide Rm=100?
 Power ≥ 100 kW
 a ≥ 0.5 m (volume ≈ 1 m3)
 Vmax  ∼15 m/s



Riga experiment successfully self-generated a 
dynamo in 2001 (essentially single helical vortex)

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200

B r
 [m

T]

Ro
ta

tio
n 

ra
te

 [1
/m

in
]

t [s]

Hall sensor
Rotation rate

-0.2

-0.1

 0

 0.1

 0.2

 120  130  140  150

 1775

 1825

 1875

 1925

B z
 [m

T]

Ro
ta

tio
n 

ra
te

 [1
/m

in
]

Fluxgate
Rotation

 A. Gailitis, et al.,Magnetic Field Saturation in the Riga 
Dynamo Experiment, Phys. Rev. Lett. 86 3024 (2001)



The Karlsruhe experiment used channels to produce 
a small scale helical eddies to mimic the helical 
turbulence in the Earth’s core

 Muller and Stieglitz, Experimental demonstration of 
a homogeneous dynamo, Phys. Fluids 13 561 (2001).
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Big questions remain unanswered 
by experiments"
 What happens if the velocity field is not 

constrained by pipes and baffles? 

 What role does turbulence play in self-
excitation?
 Can turbulence generate current?  
 Does mean-field theory make sense?



This simplest possible self-exciting flow:
a two vortex flow with Rmcrit~50

-0.5 0.00 0.5

Magnitude of V

Vpol

Vφ

 Dudley and James, Time-dependent kinematic dynamos with 
stationary flows, Proc. Roy. Soc. Lond. A.  425 407 (1989).



Predicted eigenmode is an 
equatorial dipole



Dynamo is of the stretch-twist-fold type:  
field line stretching and reinforcement 
leads to dynamo



Dimensionally identical water experiment was 
used to demonstrate feasibility 

 Laser Doppler velocimetry is 
used to measure vector velocity 
field

 Measured flows are used as 
input to MHD calculation

 Full scale, half power 



LDV measurements provide data for a reconstruction 
of the mean velocity field
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Velocity fields can be generated in water which 
lead to dynamo action

a=0.5 m, σ=107 mhos 



The Madison Dynamo 
Experiment

300 gallons sodium

200 Hp (150 kW)
V~15 m/s

1 m

vessel heating and cooling



 Bz ≤ 100 gauss
 Measure 

 surface probes 
 Br(a,θ,ϕ)
 Ylm for l≤6, |m|≤4

 Internal Probes
 Bϕ(r,θp), 6 arrays
 Bz(r,θ=π/2)

Magnetic field is measured both internally and externally;  
external magnetic fields can be applied to probe experiment



Experiment: apply axisymmetric poloidal seed field 
to sphere and measure induced magnetic fields 

Magnetic Flux Ψ   
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Predicted total magnetic fields
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Large scale (mean) and small scale (turbulent) magnetic 
fields are generated by liquid sodium flows

Br(a,θ)

0 10 20 30
Time [s]

-60

-40

-20

0

20

40

60

F
ie

ld
 [
G

]

!!"!#$%&

!!"!'$#(

!!"!'$)*

!!"!'$+%

!!"!($'(

!!"!($,*

0

50

100

150

R
m

Motor 1
Motor 2

-62.9 -31.5 0.0 31.5 62.9
Toroidal Field [G]

Bpol

B

Bz



Spectra are turbulent:  the turublent magnetic 
energy is much smaller than the kinetic energy
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Nornberg, Spence, Bayliss, Kendrick, and Forest,  Measurements of the magnetic 
field induced by a turbulent flow of liquid metal, Phys. Plasmas 13 055901 (2006).



The time-averaged, axisymmetric part of the magnetic 
field shows poloidal flux expulsion and a strong Ω effect

Magnetic Flux Ψ   
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Magnetic field is reconstructed from magnetic field 
measurements at discrete positions

Bpol
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Question: Does a simple Ohm’s law make sense?

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)

Fluctuation driven

Measured by LDV

Time averaged 
current density 

generates 
measured <B>



<V>x<B>  does not account for measured field:  
turbulence must be generating current

B due to 〈V 〉 × 〈B〉

Bpol
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Bpol
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Field can be separated into mean-flow, mean-field 
driven currents and fluctuation generated currents

B due to 〈V 〉 × 〈B〉 B due to
〈
ṽ × b̃

〉



The mean induced magnetic field has a dipole moment

components of Ylm

Impossible to reconstruct 
with axisymmetric flows!

Bpol

Spence, Nornberg, Jacobson, Kendrick, and Forest,  Observation of a turbulence-
induced large-scale magnetic field, Phys. Rev. Lett.  96 055002 (2006).



Intermittent equatorial dipole is observed on 
surface of sphere

Equator



Excited eigenmode has structure similar to that 
predicted for the mean-flow, self-generated dynamo

Predicted Observed

Nornberg, Spence, Jacobson, Kendrick, and Forest, Intermittent magnetic field 
excitation by a turbulent flow of liquid sodium, Phys. Rev. Lett. 97 044503 (2006).



Surface magnetic field fluctuations have both 
normal distributions and intermittent characteristics

Near Equator

Near Poles
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Intermittency varies with Rm
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Conditional Averaging shows events get larger, and 
shorter with increasing Rm
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Conjecture: Flow increasingly 
spends time as dynamo
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 Liquid metal experiments are beginning to 
investigate self-exciting dynamos
 constrained helical flows are dynamos 

 Main Results from Madison Experiment
 Dipole generation by turbulence
 measurement of the magnetic field 

generated by fluctuations
 Intermittent self-excitation

Summary



Theorem:  For a stationary, axisymmetric flow and magnetic 
field, no dipole moment can exist for the current distribution 
inside the experiment (even with externally applied fields) 

Use cylindrical coordinates (s, Z,φ) and stream functions for velocity and mag-
netic fields:

"v = ∇Φ×∇φ + vφφ̂ (1)
"B = ∇Ψ×∇φ + Bφφ̂ (2)

The dipole moment µz =
∫

sJφd3x is generated by toroidal currents:

Jφ = σ"v × "B · φ̂ (3)

= σ
|∇Φ×∇Ψ|

s2
(4)

Switching to flux coordinates (Ψ, $) where d3x = d"dΨ
Bp

, the dipole becomes

µz = σ

∫ ∫
|∇Φ×∇Ψ| d$dΨ

sBp
(5)

= σ

∫
dΨ

∫
∂Φ
∂$

d$ ≡ 0 (6)



Proof continued

 Conclusion:  symmetry breaking fluctuations must 
be responsible for observed dipole
  consistent with an α-effect and the self-

generated toroidal field:  Jφ=σαBφ  

Integrating Φ along open poloidal flux contours gives
∫ b

a

∂Φ
∂"

d" = Φ(b)− Φ(a) = 0

since vessel boundary had Φ = const. Closed poloidal
flux contours give ∮

∂Φ
∂"

d" ≡ 0

Therefore, µz = 0 for axisymmetric flows. QED

Ψ   

Φ   


