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I: More is different:
Global behavior



King Oscar’s Prize, 1885-1890

Henri Poincaré (1854-1912)



The King and his jury

G. Mittag Leffler K. Weierstrass

C. Hermite S. Kovalevskaia

King Oscar II



Two bodies good
Newton (and Euler) integrated the differential equations for two bodies (Sun + Earth) 
and found the elliptical orbits of Kepler, and they showed that the inverse square law 
also predicted Kepler’s first and third laws. They found celestial order:

Conservation of linear and angular 
momenta and energy 

Real space:
Kepler’s conic sections

Phase space



Three bodies bad
Newton struggled unsuccessfully with the “problem of the moon” (Sun + Earth +Moon). 
This was idealised as the restricted, planar, circular, 3-body problem:

Newton was unable to solve it, and nor could Euler, Lagrange, Laplace, Poisson, …
… and nor could Poincaré, in the end,

Some 3-body orbits: chaos
[Courtesy DsTool.]

+ ++



Poincaré’s prize paper

Acta Mathematica 13, 1-270, 1890.

but he did quite
a lot anyway:

(The first “textbook”
in Dynamical systems.)



Poincaré’s prize paper: contents

270 pages!



Poincaré’s prize paper: results



Doubly asymptotic (homoclinic) orbits

p 195

p 220

….. p 223 …. 

The Melnikov integral, up to a constant!
[V.K. Melnikov, Trans. Moscow. Mat. Soc. 12. 1-57, 1963.]



A simple pendulum is simpler
… and tells most of our story:

With a motionless support, as in the 2-body problem, conservation of energy

allows us to plot ordered sets of periodic orbits and a separatrix (a doubly-asymptotic orbit).



… but add a small external oscillation      
or couple to a second oscillator (two degrees of freedom):

… and the separatrix splits so that orbits can wander between 
librations and rotations, giving sensitive dependence and chaos!



The stable and unstable manifolds
intersect in doubly asymptotic or 
homoclinic points. An infinite, but discrete set survives the 
perturbations. Shortly, we’ll see what their presence implies for nearby 
orbits. But now we return to …. 

In three dimensional                                      orbits can tie themselves in 
knots! This is best seen in the           cross-section via a Poincaré map:



Poincaré’s mistake: Phragmen’s questions,

L.E. Phragmen: Acta’s
copy editor, proof reader.

H. Gylden: 
Mittag-Leffler’s nemesis.

and Poincaré’s response to Mittag-
Leffler:



Paris, Dec 1st 1889:

The final version was
Submitted in Jan 1890.
Only two months for
corrections and new 
material!



Poincaré’s mistake: the original paper



Poincaré’s mistake: how the paper changed

The “notes” prompted by Phragmen’s 
questions were all incorporated into the 
text and an entirely new part appeared.

In two months Poincaré laid the 
foundations of “chaos theory.”

[With thanks to June Barrow-Green, Poincaré
and the Three Body Problem, AMS/LMS, 1997.
Also see F. Diacu and PH Celestial Encounters,
PUP, 1996.]



Global Behavior: Towards the horseshoe
George Birkhoff proved that near a homoclinic point there is an infinite 
set of periodic points, including points with arbitrarily long periods 
(they “mark time” near the saddle point). [Dynamical Systems, AMS, 1927]. 

In 1913 Birkhoff had proved Poincaré’s “last geometric theorem.”

And that’s far from all that’s near a homoclinic point!    It implies …



Smale’s Horseshoe
At IAS in 1959, having turned the sphere inside out and solved 
the Poincaré conjecture in n > 4 dimensions, Stephen Smale 
started thinking about dynamical systems. Norman Levinson had 
told him about early work on forced relaxation oscillations that 
suggested that his conjecture about structurally stable systems 
having only finitely many periodic orbits might be incorrect. �At 
IMPA in Rio, Smale made pictures of possible Poincaré maps 
and realised that he could define a structurally stable map with 
infinitely many periodic orbits and much more: a chaotic invariant 
set. Two years later Lee Neuwirth (Bebe’s dad) helped Smale 
define the form of the map that we now know:

First and                                                           … second, third, and fourth go round ….

Iterate!

(M. Shub, AMS Notices)



How the flow makes the map:

… idealise and make it piecewise linear:



The set X of points that never leaves the central square is a Cantor set: 
uncountable, perfect, containing no open sets, every point an 
accumulation point. Georg Cantor had invented these beasts to give 
analysts nightmares. Smale coded the infinite set with the two “letters” 
0 and 1:

This translates the nasty geometry of X into symbolic dynamics: words 
in a two letter alphabet: out of chaos came order.

It wasn’t the first such idealised model … 

Middle third Cantor set

The horseshoe

Cantor sets



The value of abstraction: Cat map or bat map?

Notes by A. Avez on Ergodic Theory of Dynamical Systems,

University of Minnesota, School of Mathematics, (1966).

Thanks to David Chillingworth.

… or hyperbolic toral 
automorphism.

Thanks to Clancy Rowley.



Levinson pointed the way to the horseshoe …
Annals of Math 50, 1949.



… via Cartwright and Littlewood’s work

J. London Math Soc 20, 180-189, 1945.
(from WW II work on radar)





… which was sustained by Van der Pol (1889-1959)

Van der Pol & Van den Mark
Nature 120, 363-364, 1927.

The first devil’s staircase?



Meanwhile, in Moscow, Kolmogorov’s
seminar was busy with celestial mechanics. In 1954 at the Mathematical Congress in 
Amsterdam he announced the K theorem. Moser, a recent graduate who had worked 
with C.L. Seigel, was asked to write a commentary for Mathematical Reviews. He began 
asking questions about details that he couldn’t understand. Eventually he traveled to 
Moscow. Arnold, then a student of Kolmogorov, translated his lecture. … and so 

K + A + M = KAM.

KAM theory is an ongoing story, but roughly speaking it ties together …



Order and Chaos
Integrable Hamiltonian systems like the simple pendulum, have families of invariant 
circles or tori. Under perturbations, a “thick” Cantor set of these survive, separated by 
gaps inhabited by homoclinic tangles and smaller tori and so on ad infinitum ….

Is this what Poincaré had glimpsed in December 1889?
In any case, now it’s everywhere, in heaven and on earth:



Celestial homoclinic chaos (touring the solar system)



Terrestrial homoclinic chaos 1 (it’s not only in the stars)

Fluid mixing: Voth, Haller & Gollub, 
PRL, 88, #254501, 2002.

Buckling rods: Domokos-H, 
Proc. Roy. Soc. A, 459, 1535, 2003.



Terrestrial homoclinic chaos 2 (from planets to plants)



II: Less is more:
Local behavior



Less is more: local behavior
The early work tackled the hard problem of global behavior. Studies
of behaviors near degenerate equilibria came later, starting with 
Andronov and Pontryagin’s “coarse systems” in 1937 [Dokl. Akad. Nauk. SSSR 

14, 247-251 The Gorkii (Nizhny-Novgorod) school + Moscow Mat Mech. ].

One takes a geometrical view of the infinite-dimensional space of all 
dynamical systems (perhaps with special structures or symmetries) and 
asks: Which ones survive small perturbations (structural stability) and 
Which ones are typically found (generic properties)?

If a system isn’t structurally stable, then one asks: What wonders are 
lurking within it and how do I reveal them (unfoldings)?
This approach enormously extended, enriched and generalized the 
existing area of bifurcation theory. It provides a taxonomy of beasts in 
the dynamical forest: a hunting license for nonlinear mechanics.



Center manifolds, normal forms, and unfolding
The center manifold theory of Pliss (USSR, 1964) and Kelley (USA, 1967) allows one 
to discard all the stable (and unstable) dimensions and focus on the bifurcating center 
directions:

Nonlinear coordinates changes, giving normal forms , simplify the system and allow
one to analyze it with a minimal parameter set (codimension):

[Takens-Bogdanov codimension 2 normal form]

Thom and Zeeman’s Catastrophe Theory (1960-75) achieved this for gradient systems, 
whose orbits go downhill with no recurrence, periodic orbits or chaos.

Arrowsmith & Place, CUP, 1994.



Unfolding fluid instabilities: Taylor-Couette flow

Andereck, Liu & Swinney, JFM, 164, 155-183, 1986.                           Chossat & Iooss, Springer, 1994.



More is different: complex systems …
… well, not those complex systems (Santa Fe Inst & all), but many important 
problems don’t belong to the nice classes of smooth, structurally stable, hyperbolic, 
dynamical systems for which we have nice theories. Some examples are:

Differential-delay dynamical systems

Hybrid dynamical systems *

Piecewise smooth dynamical systems

Stochastic dynamical systems *



Hybrid chaos: milling cutters



• The ivory tower of abstraction is good, but you’d 
better have some friends with their feet on the ground.

• Simple (canonical) models are really useful.

• Central themes: homoclinic orbits, judicious 
linearization dimension reduction, normal forms, 
unfolding.

• Less is more: reduce, transform and simplify!
• More is different: parameters, dimensions, 

components, impacts, noises, ….. !

The morals of the story

--- The End   ---
& thank you for your attention.

http://tutorials.siam.org/dsweb/enoc/





Early attempts to unfold a codimension two singularity:

again the van der Pol oscillator played a role (this time in the near-harmonic oscillator 
limit), and again Mary Cartwright was involved:

J. Inst. E.E. 95, iii, 88, 1948.



From Cartwright to Gillies and Takens-Bogdanov

Quart. J. Mech. Appl. Math. 7, 152-167, 1954.



Takens-Bogdanov double zero normal form:
H-Rand, Quart. J. Appl. Math. 35, 495-509, 1978

Guckenheimer-H, Springer, 1983.



If you think this was all too much, well …

I left a lot out:



A poll on important topics  [SIAM@50, 2003]


