Searching for Physics Beyond Standard Model with Neutrinos

R.G. Van de Water Los Alamos National Laboratory

Outline

 Neutrino Oscillations, Mass, and other Properties

MiniBooNE: A Test of the LSND Signal

Future Neutrino Experiments: BooNE & OscSNS

The Standard Model building blocks...

Force carriers

- ← photons ⇔ electromagnetic
- → gluons (g) ⇔ strong force
- → W, Z bosons ⇔ weak force
- no inclusion of gravity...yet

Quarks

- Feel all the forces
- Other than gluons, only particles that experience the strong force

Leptons

- Charged leptons
 - Feel EM and weak
- Neutrinos
 - Interact ONLY via weak force

The weak force...force of transmutation

- Makes the weak interaction truly a force of transmutation
 - The CC channel converts neutrinos into their charged alter egos
 - Converts -1/3 charge quarks into +2/3 counterparts
 - Incidentally, CC also proves that we have three distinct neutrino flavors

Three Salient Features of Neutrinos

- Neutrinos interact very weakly with matter
- Neutrinos (& photons) dominate the universe in terms of number of particles
- Neutrinos undergo oscillations

Neutrino Oscillations

 $\Delta m^2 = m_2^2 - m_1^2$ in eV², L in meters, E_v in MeV

For oscillations to occur, neutrinos must have mass!

Probability of Neutrino Oscillations

$$\mathbf{P}_{\alpha\beta} = \delta_{\alpha\beta} - 4\Sigma_{i}\Sigma_{j} |\mathbf{U}_{\alpha i} \mathbf{U}^{*}_{\beta i} \mathbf{U}^{*}_{\alpha j} \mathbf{U}_{\beta j}| \sin^{2}(1.27\Delta m_{ij}^{2} \mathrm{L/E}_{v})$$

As N increases, the formalism gets rapidly more complicated!

Ν	$#\Delta m_{ij}^2$	# Θ_{ij}	#CP Phases	
2	1	1	0	
3	2	3	1	
6	5	15	10	

Neutrino Uscillations Have Been

Current State of Neutrino Oscillation Evidence

The Liquid Scintillator Neutrino Detector at LANL

Picture of LSND photomultipliers (used later in MB)

Evidence for Oscillations from LSND

If LSND Excess Confirmed: Physics Beyond the Standard Model!

3+2 Sterile Neutrinos	Sorel, Conrad, & Shaevitz (PRD70(2004)073004) Explain Pulsar Kicks? Explain R-Process in Supernovae? Explain Dark Matter?
MaVaNs & 3+1	Hung (hep-ph/0010126)
Sterile Neutrino	Kaplan, Nelson, & Weiner (PRL93(2004)091801) Explain Dark Energy?
CPT Violation	Barger, Marfatia, & Whisnant (PLB576(2003)303) Explain Baryon Asymmetry in the Universe?
Quantum Decoherence	Barenboim & Mavromatos (PRD70(2004)093015)
Lorentz Violation	Kostelecky & Mewes (PRD70(2004)076002) Katori, Kostelecky, Tayloe (hep-ph/0606154)
Extra Dimensions	Pas, Pakvasa, & Weiler (PRD72(2005)095017)
Sterile Neutrino Decay	Palomares-Ruiz, Pascoli, & Schwetz (JHEP509(2005)48)

Current Urgent Questions in v Physics

- 1. What is the absolute neutrino mass scale?
- 2. What are all of the neutrino mixing angles?
- 3. Are neutrinos Majorana or Dirac type?
- 4. Do light, sterile neutrinos exist?
- 5. Do sterile neutrinos explain the dark matter of the universe?
- 6. Is CP violated in the neutrino sector?
- 7. Is CPT or Lorentz Invariance violated in the neutrino sector?

Sterile Neutrinos in the Standard Model Gauge Group

• With spontaneous symmetry breaking, Dirac neutrino mass terms of type,

$\mathrm{m}_D \bar{\nu_L} \nu_R$

- Neutrino mass implies v_R exits!
- v_R has the quantum numbers of the vacuum, thus sterile with respect to the standard model gauge interactions!
- SM with neutrino mass now looks like,

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \sim (3, 2)(1/3), \qquad d_R \sim (3, 1)(-2/3), \qquad u_R \sim (3, 1)(4/3);$$

$$\ell_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \sim (1, 2)(-1), \qquad e_R \sim (1, 1)(-2), \qquad \qquad \mathbf{V}_R \sim (1, 1)(\mathbf{0})$$

 Open question as to mass of sterile states. Look for Active-Sterile neutrino oscillations.

MiniBooNE: A Test of the LSND Evidence for Oscillations: Search for $v_{\mu} \rightarrow v_{e}$

Completely different systematic errors than LSND

Much higher energy than LSND

Blind Analysis

Alabama, Bucknell, Cincinnati, Colorado, Columbia, Embry-Riddle, Fermilab, Indiana, Los Alamos, LSU, Michigan, Princeton, St. Mary's, Virginia Tech, Yale

The MiniBooNE design strategy

- Start with 8 GeV proton beam from FNAL Booster
- Add a 174 kA pulsed horn to gain a needed x 6
- Low intrinsic nue background
- Place detector to preserve LSND L/E: MiniBooNE: (500 m) / (700 MeV) LSND: (30 m) / (50 MeV)
- Detect v interations in 800T pure mineral oil detector
 - 1280 8" PMTs provide 10% coverage of fiducial volume
 - 240 8" PMTs provide active veto in outer radial shell

 4×10^{12} protons per 1.6 µs pulse delivered at up to 5 Hz.

 6.3×10^{20} POT delivered.

Results correspond to $(5.58\pm0.12) \times 10^{20}$ POT

MiniBooNE extracts beam from the 8 GeV Booster

Delivered to a 1.7λ Be target

within a magnetic horn (2.5 kV, 174 kA) that (increases the flux by ×6)

The MiniBooNE Detector

- 541 meters downstream of target
- 3 meter overburden
- •12.2 meter diameter sphere
 - (10 meter "fiducial" volume)
 - Filled with 800 t
 - of pure mineral oil (CH₂) (Fiducial volume: 450 t)
 - 1280 inner phototubes,
 240 veto phototubes
 - Simulated with a GEANT3 Monte Carlo

MiniBooNE Detector Tank

10% Photocathode coverage

Two types of Hamamatsu Tubes: R1408, R5912

Charge Resolution: 1.4 PE, 0.5 PE

Time Resolution 1.7 ns, 1.1ns

Events in the Beam Time Window

Raw data

Veto<6 removes through-going cosmics

This leaves "Michel electrons" $(\mu \rightarrow \nu_{\mu}\nu_{e}e)$ from cosmics

Tank Hits > 200 (equivalent to energy) removes Michel electrons, which have 52 MeV endpoint

Stability of running:

MiniBooNE analysis structure

- Start with a Geant 4 flux prediction for the ν spectrum from π and K produced at the target
- Predict v interactions using the Nuance cross section parameterization
- Pass final state particles to Geant 3 to model particle and light propagation in the tank
- Starting with event reconstruction, independent analyses:
 - Boosted Decision Tree (BDT)
 - Track Based Likelihood (TBL)
- Develop particle ID/cuts to separate signal from background
- Fit reconstructed E_{v} spectrum for oscillations

Neutrino Flux from GEANT4 Simulation

"Intrinsic" $\mathbf{v}_{e} + \mathbf{v}_{e}$ sources: $\mu^{+} \rightarrow e^{+} \quad v_{\mu} \quad v_{e} \quad (52\%)$ $K^{+} \rightarrow \pi^{0} \quad e^{+} \quad v_{e} \quad (29\%)$ $K^{0} \rightarrow \pi \quad e \quad v_{e} \quad (14\%)$ Other (5%)

 $v_e / v_\mu = 0.5\%$ Antineutrino content: 6%

Modeling Production of Secondary Pions

• HARP (CERN)

- 5% λ Beryllium target
- 8.9 GeV proton beam momentum

Data are fit to a Sanford-Wang parameterization.

CCQE Scattering

From Q² fits to MB ν_{μ} CCQE data: M_A^{eff} -- effective axial mass E_{lo}^{SF} -- Pauli Blocking parameter

From electron scattering data:

- E_b -- binding energy
- p_f -- Fermi momentum

Calibration Sources

Each event is characterized by 7 reconstructed variables: vertex (x,y,z), time, energy, and direction $(\theta,\phi) \Leftrightarrow (U_x, U_y, U_z)$. Resolutions: vertex: 22 cm direction: 2.8°

energy: 11%

Three types of particles are reconstructed:

Muons:

Produced in most CC events. Usually 2 subevent or exiting.

Electrons: Tag for $v_{\mu} \rightarrow v_{e}$ CCQE signal. 1 subevent

π^0 s:

Can form a background if one photon is weak or exits tank. In NC case, 1 subevent.

Event Reconstruction

- Use energy deposition and timing of hits in the phototubes
 - Prompt Cherenkov light
 - Highly directional with respect to particle direction
 - Used to give particle track direction and length
 - Delayed scintillation light
 - Amount depends on particle type

Cuts Used to Separate v_{μ} events from v_{e} events

Compare observed light distributions to fit prediction:

Apply these likelihood fits to three hypotheses:

- single electron track L_e
- single muon track L_{μ}
- two electron-like rings (π^0 event hypothesis) L_{π}

Combine three cuts to accomplish the separation: $L_{e\mu}$, $L_{e\pi}$, and 2-track mass

Blue points are signal v_e events Red points are background v_{μ} CC QE events Green points are background v_{μ} NC π^0 events **TBL** Analysis

Summary of Track Based cuts

Source of Uncertainty On v _e background	Tı er	rack Based ror in %	Checked or Constrained by MB data	
Flux from π^+/μ^+ decay	6.2	\checkmark		
Flux from K ⁺ decay	3.3	\checkmark	\checkmark	
Flux from K ⁰ decay	1.5	\checkmark		
Target and beam models	2.8	\checkmark		
v-cross section	12.3	\checkmark	\checkmark	
NC π^0 yield	1.8			
External interactions ("Dirt")	0.8			
Optical model	6.1	\checkmark		
DAQ electronics model	7.5			

The Track-based $v_{\mu} \rightarrow v_{e}$ Appearance-only Result:

 $475 < E_v^{QE} < 1250 \text{ MeV}$: data: 380 events, MC: 358 ±19 ±35 events, 0.55 σ

The result of the $v_{\mu} \rightarrow v_{e}$ appearance-only analysis is a <u>limit</u> on oscillations:

Simple 2-neutrino oscillations excluded at 98% C.L.

Energy fit: $475 < E_v^{QE} < 3000 \text{ MeV}$

But an Excess of Events Observed Below 475 MeV

2-neutrino Oscillation Fits for 300 – 3000 MeV

Best Fit (dashed): $(\sin^2 2\theta, \Delta m^2) = (1.0, 0.03 \text{ eV}^2)$ χ^2 Probability: 18%

> This best fit is not probable but also ruled out by the Bugey reactor experiment.

Going Beyond the First Result

Investigations of the Low Energy Excess

- Possible detector anomalies or reconstruction problems
- Incorrect estimation of the background
- New sources of background
- New physics including exotic oscillation scenarios, neutrino decay, Lorentz violation,

Any of these backgrounds or signals could have an important impact on other future oscillation experiments.

Status of Low Energy v_e Candidate Analysis Since Oscillation Publication

- Have observed a ~4 sigma excess down to 200 MeV (including systematic errors).
- Confirmed excess is electromagnetic (electron or gammaray), i.e. particle ID is working at low energy. MiniBooNE has no ability to distinguish gammas from electrons
- Events have normal reconstruction, e.g. Visible energy, radius, x,y,z, beam angle, run time, etc.
- Major sources of backgrounds all look well modelled, e.g. dirt, radiative delta decay, mis-ID pions and muons.
- Working on possible new sources of single gamma-rays.
- Currently analyzing neutrinos from NuMI source, horn-off, and anti-neutrino data sets.

Detector Anomalies or Reconstruction Problems

No Detector anomalies found

- Example: rate of electron candidate events is constant (within errors) over course of run

event/POT vs day, 300<Enu<475 MeV

No Reconstruction problems found

- All low-E electron candidate events have been examined via event displays, consistent with 1-ring events

Signal candidate events are consistent with single-ring neutrino interactions ⇒ But could be either electrons or photons

New Result for 200 – 300 MeV Bin

Excess persists below 300 MeV but background is also rising

Background Estimates

_E, ^{QE} [MeV]	200-300	300-475	475-1250	
total background	284 ±25	274±21	358±35	(syst.
error) v _e intrinsic	26 258	67 207	229 129	
v_{μ} <u>Mddced</u> NC π ⁰	115	76	62	
NC $\Delta \rightarrow N\gamma$	20	51	20	
Dirt	99	50	17	
other	24	30	30	
Data	375±19	369±19	380±19	<u>(stat.</u>
<u>error)</u>		▲		
Data-MC	91±31	95±28	22±40	<u>(stat+syst)</u>
"Dirt Background" v interactions outside of the detector that mainly give a single gamma from π^0 decay	 NC π⁰ largest Dirt background significant NC Δ→Nγ falling off Intrinsic ν_e negligible 	• Three main: – NC π^0 – Dirt bkgnd – NC $\Delta \rightarrow N\gamma$ • Intrinsic v_e small	 Intrinsic ν_e largest NC π⁰ significant Others small 	Ι

How Well Does the NC π^0 Constraint Work?

Results after removing the mass and $L_{e\pi}$ cut

- Good agreement in
 "Identified π⁰ region"
- Excess for low energy sample clearly observed below 50 MeV
- Excess cannot be explained by simply scaling up the π⁰ and Rad-∆ background

Black points: Data Red histogram: Prediction

Particle Identification

No major discrepancy in Particle Identification

Possible Sources of Additional Single Gamma Backgrounds

Since MiniBooNE cannot tell an electron from a single gamma, any process that leads to a single gamma in the final state can be a background

- Processes that remove/absorb one of the gammas from a v_{μ} induced NC $\pi^0 \rightarrow \gamma\gamma$
 - Photonuclear absorption was missing from our GEANT3 detector Monte Carlo
 - But tends to give extra final state particles.
 - Reduces size of excess
 - Systematics being calculated
 - No effect above 475 MeV

- v processes that produce a final state single gamma
 - Example: "Anomaly mediated neutrino-photon interactions at finite baryon density."
 - Standard Model process
 - \Rightarrow Under active investigation, prediction of
 - ~140 $(g_{\omega}/10)^4$ events, where g_{ω} is 10 to 30.
 - Can use photon energy to check prediction. (Harvey, Hill, and Hill, arXiv:0708.1281[hep-ph])

Is the Low-Energy Excess Due to a Signal?

- Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density (arXiv:0708.1281: Jeffrey A. Harvey, Christopher T. Hill, Richard J. Hill)
- CP-Violation 3+2 Model: Maltoni & Schwetz, arXiv:0705.0107
- Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 (2005) 095017
- Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009
- CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303

3+2 Analysis

Idea: If light sterile neutrinos (v_s) exist, then:

Includes CP phase; $\phi = -\phi$ for antineutrinos $P(\nu_{\alpha} \to \nu_{\beta}) = 4|U_{\alpha 4}|^2 |U_{\beta 4}|^2 \sin^2 x_{41} + 4|U_{\alpha 5}|^2 |U_{\beta 5}|^2 \sin^2 x_{51} + \sqrt{2}$ $v_{\mu} \rightarrow v_{s} \rightarrow v_{e}$ $8|U_{\alpha 5}||U_{\beta 5}||U_{\alpha 4}||U_{\beta 4}|\sin x_{41}\sin x_{51}\cos(x_{54}-\phi_{54})$ $P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4[(1 - |U_{\alpha 4}|^2 - |U_{\alpha 5}|^2)(|U_{\alpha 4}|^2 \sin^2 x_{41} + |U_{\alpha 5}|^2 \sin^2 x_{51}) +$ $v_{\mu} \rightarrow v_{s}$ $+|U_{\alpha 4}|^2|U_{\alpha 5}|^2\sin^2 x_{54}]$ $v_e \rightarrow v_s$ With SBL approximation $\Delta m_{solar} = 0$, $\Delta m_{ATM} = 0$, and $x_{ii} = \Delta m_{ii}L/4E$ **Experimental constraints from:** LSND, KARMEN, NOMAD, MB, CCFR, CDHS, CHOOZ, BUGEY (+ atm constraint) (v, disappearance disappearance appearance Constraint) experiments $(v_{\mu} \rightarrow v_{\mu} \text{ or } v_{e} \rightarrow v_{e})$ experiments $(v_u \rightarrow v_e)$ 3+2 models can produce differences between neutrino and antineutrino appearance rates!

Analysis by Maltoni & Schwetz [hep-ph/0705.0107]

3+2 Global Fit Results

3+2 neutrino models:

provide a good fit to LSND and the recent MB data
can account for the low

energy

event excess in MB

However:

there is significant tension between
 appearance and disappearance data

Note: analysis done without full MiniBooNE error matrix

MB will perform full analysis, G. Karagiorgi.

3+2 Model CP Phase Fits Has CP violation been observed?

Sterile Neutrinos That Take Shortcuts in Extra Dimensions

 Prior to MiniBooNE's first result, it was put forward that sterile neutrinos can take shortcuts in extra dimensions.

(Päs, Pakvasa, Weiler, Phys.Rev. D72 095017, 2005)

- A resonance in active-sterile neutrino oscillations arises from an increase in the path-length of active neutrinos relative to sterile neutrinos in the bulk.
 - Below the resonance, the standard oscillation formulas apply.
 - Above the resonance, active-sterile oscillations are suppressed.
 - A resonance energy in the range of 30–400 MeV allows an explanation of all neutrino oscillation data, including LSND data in a 3+1 model
 - And this model can evade the problems with the Bugey and CDHS limits.
- This paper predicted that a significant oscillation signal would only be seen in MiniBooNE at low energy!!

Schematic representation of a periodically curved brane in Minkowski spacetime.

^Vsterile

brane

geodesic

Future Work

- Understand the low-energy excess of events!
- Analyze antineutrino data, NuMI v in MiniBooNE data, & SciBooNE data.
- Approved to run two more years to collect enough antineutrino data to test LSND with antineutrinos.
- If low-energy excess is consistent with a signal, new experiments at FNAL (BooNE) and/or SNS (OscSNS) will be proposed to explore physics Beyond the Standard Model.

OscSNS at ORNL: A Smoking Gun Measurement of Active-Sterile Neutrino Oscillations

 $\overline{v}_{\mu} \rightarrow \overline{v}_{e} \quad \Delta(L/E) \sim 3\% ; \overline{v}_{e} p \rightarrow e^{+} n$

SNS: ~1 GeV, ~1.4 MW

 $v_{\mu} \rightarrow v_{s} \quad \Delta(L/E) < 1\%$; Monoenergetic v_{μ} ; $v_{\mu} C \rightarrow v_{\mu} C^{*}(15.11)$

OscSNS would be capable of making precision measurements of v_{e} appearance & v_{μ} disappearance and proving, for example, the existence of sterile neutrinos! (see Phys. Rev. D72, 092001 (2005)). Flux shapes are known perfectly and cross sections are known very well.

Search for Sterile Neutrinos with OscSNS Via Measurement of NC Reaction: $v_{\mu} C \rightarrow v_{\times} C^{*}(15.11)$

Garvey et al., Phys. Rev. D72 (2005) 092001

Measurement of 3+2 Model with OscSNS Garvey et al., Phys. Rev. D72 (2005) 092001

Conclusions

- Despite recent progress, many basic properties of neutrinos are still unknown and the possibility of future surprises remains strong.
- MiniBooNE rules out a simple $v_{\mu} \rightarrow v_{e}$ appearance-only model as an explanation of the LSND excess at 98% CL. (Phys. Rev. Lett. 98, 231801 (2007), arXiv:0704.1500v2 [hep-ex])
- However, more events are observed than expected in the lower energy range from 200<E, QE<475MeV.
- This unexplained deviation is under intense investigation

Backup Slides

"Dirt" background

- dirt background is due to ν interactions outside detector creating neutrals that enter tank
- measured in "dirt-enhanced" samples:
 - before box-opening, fit predicted: $1.00{\pm}0.15$
 - in different (open) sample, a fit says that meas/pred is 1.08 ± 0.12 .
- shape of visible E and distance-to-wall distributions are well-described by MC

 ν_{μ} dirt π^{0}

Event Type of Dirt Events

Visible Energy and $cos\theta$ of Events

-Low Energy: Excess distributed among visible E, $\cos \Theta$ bins. -High Energy:Predicted background agrees with data.