The size of the proton from the Lamb shift in muonic hydrogen

for the CREMA collaboration Randolf Pohl Max-Planck-Institut für Quantenoptik Garching, Germany

B July 2010 www.nature.com/nature \$10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

OIL SPILLS There's worse to come BIODIVERSITY The need to cost the Earth EARLY EUROPEANS A northern

SHRINKING THE PROTON New value from exotic atom trims radius by five percent

Outline

Introduction:

- Hydrogen, fundamental constants, QED tests and all that.
- How large is the proton? Muonic hydrogen:
 - (Finite) size does matter!
- Experiment
 - Principle
 - Muon beam
 - Laser system
 - Data
- Results
 - muonic hydrogen $\#1 \longrightarrow$ proton charge radius
 - muonic hydrogen $\#2 \longrightarrow$ proton's Zemach (magnetic) radius
 - muonic deuterium #1 \rightarrow deuteron charge radius, polarizability
 - muonic deuterium $#2 + #3 \longrightarrow$ theory work ahead!

n=3 n=2 n=1

Bohr

$$E = R_{\infty}/n^2$$
$$V \sim 1/r$$

Randolf Pohl

The Rydberg constant:

2006: $R_{\infty} = 10\,973\,731.568\,525 \pm 0.000\,073\,\text{m}^{-1}$ ($u_r = 6.6 \cdot 10^{-12}$) is the most accurately determined fundamental constant.

Increasing accuracy ?!

Test of bound-state QED (Lamb shift) in Hydrogen:

QED-test is limited by the uncertainty of the proton rms charge radius.

Increasing accuracy ?!

Test of bound-state QED (Lamb shift) in Hydrogen:

- test QED \leftarrow best non-H $r_{\rm p} = (0.895 \pm 0.018)$ fm (2%) \leftarrow e-p scattering
- trust QED \rightarrow extract $r_{\rm p} = (0.8768 \pm 0.0069)$ fm (CODATA)

year

QED-test is limited by the uncertainty of the proton rms charge radius.

Increasing accuracy ???

The proton rms charge radius is not the most accurate quantity in the universe.

Increasing accuracy ???

The proton rms charge radius is not the most accurate quantity in the universe.

Proton charge radius and muonic hydrogen

"prompt" ($t \sim 0$)

 μ^{-} stop in H_2 gas $\Rightarrow \mu p^*$ atoms formed ($n \sim 14$)

99%: cascade to μ p(1S), emitting prompt K_{α}, K_{β} ...

1%: long-lived μ p(2S) atoms lifetime $\tau_{2S} \approx 1 \,\mu$ s at 1 mbar H₂

R. Pohl et. al., Phys. Rev. Lett. 97, 193402 (2006).

"delayed" ($t \sim 1 \ \mu$ s)

fire laser ($\lambda \approx 6 \,\mu$ m, $\Delta E \approx 0.2 \,\text{eV}$)

 \Rightarrow induce μ p(2S) $\rightarrow \mu$ p(2P)

 \Rightarrow observe delayed K_{lpha} x-rays

 $\Rightarrow \text{normalize } \frac{\text{delayed } K_{\alpha}}{\text{prompt } K_{\alpha}} \text{ x-rays}$

time spectrum of 2 keV x-rays (\sim 13 hours of data)

Experimental Hall at PSI

$\pi E5$ area at PSI

Muon beam line

Muon beam line

Muon beam: inside 5 T solenoid

Randolf Pohl

6 μ **m wavelength calibration**

- $6 \,\mu$ m light calibration: H₂O vapor absoprtion measurement in air / cell H₂O absorption lines known to a few MHz (HITRAN)
 - $\Rightarrow \delta \nu \approx 300 \text{ MHz uncertainty} \quad (6 \text{ ppm of } \Delta E_{2S-2P}) \text{ due to our calibration accuracy}$ over the whole wavelength range $\lambda = 5.5 \dots 6.1 \ \mu \text{m}$
- Laser frequency detuning is measured in number of Fabry-Perot cavity fringes
 - grid spacing of our measurement: FSR(FP) = 1497.344(6) MHz
 - all measured resonances are within $\pm 70 \text{ FP}$ fringes of a H₂O line

Laser hut

TiSa lasers

Target, cavity and detectors

The situation June 28, 2009, 18:00

The situation June 28, 2009, 18:00

The situation June 28, 2009, 18:00

laser frequency [1 unit = 1497.332(3) MHz, arb. offset]

Randolf Pohl

0

signal [delayed/prompt events]

900
The situation June 28, 2009, 18:00

 $\mu p (2S_{1/2}(F=1) \rightarrow 2P_{3/2}(F=2))$

The time spectra

The resonance: discrepancy, sys., stat.

The resonance: discrepancy, sys., stat.

Uncertainty budget and sensitivity

• Statistics Center position uncertainty ($\sim 4\%$ of Γ)	700 MHz
 Systematics Laser frequency (H₂0 calibration) AC and DC stark shift Zeeman shift (5 Tesla) Doppler shift Collisional shift 	300 MHz < 1 MHz < 30 MHz < 1 MHz 2 MHz
 Total uncertainty of the line determination 	760 MHz
 Discrepancy with prediction 	75 300 MHz
Systematic effects are small since they so	ale like $1/m$

Finite size effect scales like m^3

Proton radius

$$\nu(2S_{1/2}^{F=1} \rightarrow 2P_{3/2}^{F=2}) = 49881.88(76) \text{ GHz}.$$

$$\widetilde{L}^{\text{exp.}} = 206.2949(32) \text{ meV} \\ \widetilde{L}^{\text{th.}} = 209.9779(49) - 5.2262 r_{\text{p}}^{2} + 0.0347 r_{\text{p}}^{3} \text{ meV} \end{cases} \Rightarrow \boxed{r_{\text{p}} = 0.84184(36)(56) \text{ fm}} \\ u_{\text{exp}} = 4.3 \times 10^{-4} \\ u_{\text{theo}} = 6.7 \times 10^{-4} \end{aligned}$$

$$r_{\rm p}$$
=0.84184(67) fm ($u_r = 8 \times 10^{-4}$)

CODATA 2006: $r_{\rm p} = (0.8768 \pm 0.0069)$ fm, from H e-p scattering: $r_{\rm p} = (0.895 \pm 0.018)$ fm

 3.1σ from e-p scatt. 5.0σ from CODATA $r_{\rm p}$ is 4% smaller

 μp theory wrong?

.31 meV 005 meV viation Nuon self-energy + muon VP Higher order VP VP

 μ p experiment wrong?

Frequency mistake by 75 GHz ($\Leftrightarrow 0.15\%$)? That is 100 σ ! $\sigma_{tot} = 760$ MHz, [700 MHz_{stat}, 300 MHz_{syst}] 2nd line in μ p agrees with this 1st line! (\rightarrow next slides)

H experiments wrong?

H experiments wrong?

H(1S-2S): $60 \text{ kHz} \rightarrow 1700\sigma$ all H(2S- $n\ell$) where $n\ell$ = 2P, 4, 6, 8S/D, 12D in the same direction by 1...3 σ

1005.4879 Karshenboim et al: previously missing QED term. 1005.4880 Karshenboim et al: previously missing QED term. 1007.1419 Krutov, Martynenko: Ground-state HFS of $e \mu^{3}$ He 1007.5076 Bernauer et al: New Mainz electron scattering value 1008.3536 Jaeckel, Roy: "Spectroscopy as a test of Coulomb's law" 1008.3861 De Rujula: "QED is not endangered by the proton's size" 1008.4225 Vanderhaegen, Walcher: "Long range structure of the nucleon" 1008.4345 Cloet, Miller: "Third Zemach moment of the proton" 1008.4384 Garcia et al: "Hyperfine splitting in hydrogen with form factors" 1008.4546 De Rujula: "Comment on Third Zemach moment of the proton" 1008.4619 Hill, Paz: "Model independent extraction of the proton charge radius from electron scattering"

1005.48	1008.3536 Jaeckel, Roy: "Spectroscopy as a test of Coulomb's law"					
1005.488	extra hidden photons, minicharged particles					
1007.14	cause deviations from Coulomb's law.					
1007.50	up transition can NOT be explained this					
1008.35	$\mu_{\rm P}$ transition can be completing that the completion of the					
1008.38	(contradicts Lamb shift measurements in ordinary hydrogen)					
1008.422	o vanaomaogon, maionon Longrango oraolaro or monicom					
1008.434	5 Cloet, Miller: "Third Zemach moment of the proton"					
1008.438	4 Garcia et al: "Hyperfine splitting in hydrogen with form factors"					
1008.454	6 De Rujula: "Comment on Third Zemach moment of the proton"					
1008.461	9 Hill, Paz: "Model independent extraction of the proton charge radius from electron scattering"					

1008.3861 De Rujula: "QED is not endangered by the proton's size" 1005.48 (Phys. Lett. B, in press) 1005.48 A large third Zemach moment 1007.14 $\langle r_p^3 \rangle_{(2)} = \int d^3 r_1 \, d^3 r_2 \, \rho(r_1) \, \rho(r_2) \, |\boldsymbol{r}_1 - \boldsymbol{r}_2|^3$ 1007.50 of the proton can explain all three measurements: μp , H, e-p 1008.35 $\rho(r)$ is not a simple Dipole, but has "core" and "tail" 1008.38 Sick's CF fit to e-p data has χ^2 /dof = 1.65 for dof = 310 1008.422 $\implies p = 3.9 \times 10^{-12}$ 1008.434 "This casts doubt even on the corresponding extracted value 1008.43 of the mean square radius ..." 1008.454 1008.4619 HIII, Paz: "Model independent extraction of the proton charge radius from electron scattering"

1005.48	1008.4345 Cloet, Miller: "Third Zemach moment of the proton"
1005.488	(is a comment on De Rujula)
1007.14	Such a large third Zemach moment is impossible.
1007.50	$\langle r_p^3 \rangle_{(2)}(\text{DeRujula}) = 36.6 \pm 6.9 \text{fm}^3$
1008.35	$\langle r_p^3 \rangle_{(2)}({ m Sick}) = 2.71 \pm 0.13 { m fm}^3$
1008.380	
1008.422	5 Vandernaegen, Vvalcher: "Long range structure of the nucleon"
1008.434	5 Cloet, Miller: "Third Zemach moment of the proton"
1008.438	4 Garcia et al: "Hyperfine splitting in hydrogen with form factors"
1008.454	6 De Rujula: "Comment on Third Zemach moment of the proton"
1008.461	9 Hill, Paz: "Model independent extraction of the proton charge radius from electron scattering"

1005 1970 Karabanhaim at alt providually missing OED tarm

1008.4619 Hill, Paz: "Model independent extraction of the proton charge radius from electron scattering"

so-called "model-independent" fits are in fact model-dependent uncertainties may have been underestimated

1008.4225 Vanderhaegen, Walcher: "Long range structure of the nucleon"

1008.4345 Cloet, Miller: "Third Zemach moment of the proton"

1008.4384 Garcia et al: "Hyperfine splitting in hydrogen with form factors"

1008.4546 De Rujula: "Comment on Third Zemach moment of the proton"

1008.4619 Hill, Paz: "Model independent extraction of the proton charge radius from electron scattering"

1005 1970 Karebanhaim at alt providually missing OED tarm

1008.4619 Hill, Paz: "Model independent extraction of the proton charge radius from electron scattering"

	$k_{\max} = 1$	2	3	4	5
polynomial	836^{+8}_{-9}	867^{+23}_{-24}	866^{+52}_{-56}	959^{+85}_{-93}	1122^{+122}_{-137}
	$\chi^2 = 34.49$	32.51	32.51	31.10	28.99
continued fraction	882^{+10}_{-10}	869^{+26}_{-25}	-	-	_
	$\chi^2 = 32.81$	32.51			
z expansion (no bound)	918^{+9}_{-9}	868^{+28}_{-29}	879^{+64}_{-69}	1022_{114}^{102}	1193_{174}^{152}
	$\chi^2 = 36.14$	32.52	32.48	30.35	28.92
z expansion $(a_k \le 10)$	918^{+9}_{-9}	868^{+28}_{-29}	879^{+38}_{-59}	880^{+39}_{-61}	880^{+39}_{-62}
	$\chi^2 = 36.14$	32.52	32.48	32.46	32.45

Table 1: Proton charge radius extracted from data of Table 1 of 18 ($Q^2 \leq 0.04 \,\text{GeV}^2$) in units of 10^{-18} m, using different functional behaviors of the form factor. Dashes denote fits that do not constrain the slope to be positive.

1(

10

1005 1070 Karebonhoim at alterrayiously missing OED t 1008.4619 Hill, Paz: "Model independent extraction of the proton charge radius from electron scattering" Variation of the fitted proton charge radius as a function of maximum Q^2 0.9 $r_E^p(\mathrm{fm})$ 1(10 1(0.8 1(1(s from 0.5 $Q_{\rm max}^2$

New $r_{\rm p}$ and R_{∞}

R. Pohl et al., Nature 466, 213 (2010).

New $r_{\rm p}$ and R_{∞}

Randolf Pohl

New r_p and R_∞

accuracy of the Rydberg constant fractional uncertainty 0⁻⁰ 0⁻⁰ 0⁻⁹ single measurements least-square adjustments Ο **10**⁻¹⁰ our value from muonic hydrogen **10**⁻¹¹ **10**⁻¹² 1940 1950 1960 1970 1980 1990 2010 1930 2000 year

R. Pohl et al., Nature 466, 213 (2010).

More measurements

Randolf Pohl

p. 26

 $\mu p (2S_{1/2}(F=0) \rightarrow 2P_{3/2}(F=1)) at \lambda = 5.5 \,\mu m$

 $\mu d (2S_{1/2}(F=3/2) \rightarrow 2P_{3/2}(F=5/2))$

(still preliminary)

 $\mu d (2S_{1/2}(F=1/2) \rightarrow 2P_{3/2}(F=3/2 \text{ and } 1/2))$

- Relative pos. fit to each others but not with the first μd line
- Background well known from previous μd line

Summary

• measured μp ($2S_{1/2}(F=1) \rightarrow 2P_{3/2}(F=2)$) to 15 ppm (stat.+syst.) $\rightarrow r_p$ to 8×10^{-4} (experimental precision 4×10^{-4})

 $\mathbf{r}_{\mathrm{p}} = 0.84184 \pm 0.00067\,\text{fm}~\text{is}~5\sigma$ away from CODATA-2006

The proton is 4% smaller, and the Rydberg constant R_∞ is 4.9 sigma off

- measured μp ($2S_{1/2}(F=0) \rightarrow 2P_{3/2}(F=1)$) to 25 ppm (stat., online) exactly at the position deduced with our new r_p \rightarrow Zemach radius to a few % (radius of the magnetic moment distribution)
- measured μ d ($2S_{1/2}$ (F=3/2) $\rightarrow 2P_{3/2}$ (F=5/2)) to 20 ppm (stat., online) not exactly where we expected it from r_p and H-D isotope shift \rightarrow deuteron polarizability
- measured μ d ($2S_{1/2}(F=1/2) \rightarrow 2P_{3/2}(F=3/2)$) observed μ d ($2S_{1/2}(F=1/2) \rightarrow 2P_{3/2}(F=1/2)$) \rightarrow check calculations in μ d

http://muhy.web.psi.ch

Yeah!

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- Goal: Measure $\Delta E(2S-2P)$ in $\mu^{4}He$, $\mu^{3}He$
- \Rightarrow alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- Goal: Measure $\Delta E(2S-2P)$ in $\mu^{4}He$, $\mu^{3}He$
- \Rightarrow alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- Goal: Measure $\Delta E(2S-2P)$ in $\mu^{4}He$, $\mu^{3}He$
- \Rightarrow alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)
- aims:
 - help to solve the proton size puzzle
 - absolute charge radii of helion, alpha
 - Iow-energy effective nuclear models: ¹H, ²D, ³He, ⁴He
 - better bound-state QED test together with He⁺(1S-2S) [Udem @ MPQ]

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- Goal: Measure $\Delta E(2S-2P)$ in $\mu^{4}He$, $\mu^{3}He$
- \Rightarrow alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)
- aims:
 - help to solve the proton size puzzle
 - absolute charge radii of helion, alpha
 - Iow-energy effective nuclear models: ¹H, ²D, ³He, ⁴He
 - better bound-state QED test together with He⁺(1S-2S) [Udem @ MPQ]
- identical muon beam
- similar laser, no Raman cell (\rightarrow more pulse energy)
- similar, maybe better x-ray detectors (8.2 keV)
- event rate: 16-48 events per hour (not 6 per hour, μp)
- line with 300 GHz (1 nm!)

μp Lamb shift collaboration in 2009

F. KOTTMANN

A. ANTOGNINI, T.W. HÄNSCH, T. NEBEL, R. POHL

D. TAQQU

E.-O. Le BIGOT, F. BIRABEN, P. INDELICATO, L. JULIEN, F. NEZ

F.D. AMARO, J.M.R. CARDOSO, D.S. COVITA, L.M.P. FERNANDES, J.A.M. LOPEZ, C.M.B. MONTEIRO, J.M.F. DOS SANTOS, J.F.C.A. VELOSO

A. GIESEN, K. SCHUHMANN T. GRAF

C.-Y. KAO, Y.-W. LIU

P. RABINOWITZ

A. DAX, P. KNOWLES, L. LUDHOVA, F. MULHAUSER, L. SCHALLER

Universidade de Coimbra

University of Stuttgart Germany

ETH Zürich, Switzerland MPQ, Garching, Germany

PSI, Switzerland

Laboratoire Kastler Brossel, Paris, France

Department of Physics, Coimbra, Portugal

Dausinger + Giesen, Stuttgart, Germany Institut für Strahlwerkzeuge, Stuttgart, Germany National Tsing Hua University, Hsinchu, Taiwan Department of Chemistry, Princeton, USA former members, spent holidays at run 2009

Proton Size Investigators thank you for your attention

Contributions to the μ **p Lamb shift**

#	Contribution	Value	Unc.
3	Relativistic one loop VP	205.0282	•
4	NR two-loop electron VP	1.5081	2010
5	Polarization insertion in two Coulomb lines	0.1509	licato, -
6	NR three-loop electron VP	0.00529	o Inden
7	Polarisation insertion in two and three Coulomb lines (corrected)	0.00223	Y •
8	Three-loop VP (total, uncorrected)		
9	Wichmann-Kroll	-0.00103	
10	Light by light electron loop ((Virtual Delbrück)	0.00135	0.00135
11	Radiative photon and electron polarization in the Coulomb line $lpha^2(Zlpha)^4$	-0.00500	0.0010
12	Electron loop in the radiative photon of order $lpha^2 (Zlpha)^4$	-0.00150	
13	Mixed electron and muon loops	0.00007	
14	Hadronic polarization $\alpha (Z\alpha)^4 m_r$	0.01077	0.00038
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	0.000047	
16	Hadronic polarization in the radiative photon $lpha^2 (Zlpha)^4 m_r$	-0.000015	
17	Recoil contribution	0.05750	
18	Recoil finite size	0.01300	0.001
19	Recoil correction to VP	-0.00410	
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	-0.66770	
21	Muon Lamb shift 4th order	-0.00169	
22	Recoil corrections of order $\alpha (Z\alpha)^5 \frac{m}{M} m_r$	-0.04497	
23	Recoil of order α^6	0.00030	
24	Radiative recoil corrections of order $\alpha (Z\alpha)^n \frac{m}{M} m_r$	-0.00960	
25	Nuclear structure correction of order $(Z\alpha)^5$ (Proton polarizability)	0.015	0.004
26	Polarization operator induced correction to nuclear polarizability $lpha(Zlpha)^5m_r$	0.00019	
27	Radiative photon induced correction to nuclear polarizability $lpha(Zlpha)^5 m_r$	-0.00001	
	Sum	206.0573	0.0045

Contribution	our selection		Pachucki	Borie
Leading nuclear size contribution	-5.19745	$< r_{\rm p}^2 >$	-5.1974	-5.1971
Radiative corrections to nuclear finite size effect	-0.0275	$< r_{\rm p}^2 >$	-0.0282	-0.0273
Nuclear size correction of order $(Z\alpha)^6 < r_{ m p}^2 >$	-0.001243	$< r_{\rm p}^2 >$		
Total $< r_{\rm p}^2 >$ contribution	-5.22619	$< r_{\rm p}^2 >$	-5.2256	-5.2244
Nuclear size correction of order $(Z\alpha)^5$	0.0347	$< r_{\rm p}^{3} >$	0.0363	0.0347
Nuclear size correction of order $(Z\alpha)^6 < r_{\rm p}^4 >$	-0.000043	$< r_{\rm p}^2 >^2$		

P. Indelicato, 2010

Contributions to the μ **p Lamb shift**

Lamb shift: $\Delta E_{LS} = 206.0573(45) - 5.2262 r_p^2 + 0.0347 r_p^3 \text{ meV}$ u = 0.0045 meV dominated by proton polarizability

2S Hyperfine structure: $\Delta E_{HFS}^{2S} = 22.8148 (78) \text{ meV}$ using $R_Z = 1.022 \text{ fm}$ and scatter.

Fine structure: $\Delta E_{FS} = 8.352082 \text{ meV}$

 $2P_{3/2}$ Hyperfine structure: $\Delta E_{HFS}^{2P_{3/2}} = 3.392588 \text{ meV}$