COLLEGE PHYSICS

 Chapter 2 INTRODUCTION:

 Chapter 2 INTRODUCTION: Kinematics in One Dimension

Lesson 4

Video Narrated by Jason Harlow, Physics Department, University of Toronto

ACCELERATION

Formulated by Galileo based on his experiments with inclined planes.

Slope upwardSpeed decreases

No slopeDoes speed change?

ACCELERATION

- Acceleration is the rate at which velocity changes:

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}}
$$

- In SI units, the velocity is in m / s, and the time is in s , so the SI units for a are $\mathrm{m} / \mathrm{s}^{2}$.
- This means how many meters per second the velocity changes every second.
- Acceleration is a vector, which is in the same direction as the change in velocity, Δv.

INSTANTANEOUS ACCELERATION

Average acceleration is the change in velocity divided by the elapsed time:

$$
\bar{a}=\frac{\Delta v}{\Delta t}
$$

- The instantaneous acceleration a (a.k.a. "acceleration") is your acceleration at a specific instant in time.
- a can be found by taking the limit of \bar{a} as $\Delta t \rightarrow 0$.
- In certain special cases, a is constant, so the average and instantaneous accelerations are the same.

ACCELERATION: EXAMPLE

A racehorse coming out of the gate accelerates from rest to a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ due west in 1.80 s . What is its average acceleration?

ACCELERATION: EXAMPLE

A racehorse coming out of the gate accelerates from rest to a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ due west in 1.80 s . What is its average acceleration?

ACCELERATION: EXAMPLE

A racehorse coming out of the gate accelerates from rest to a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ due west in 1.80 s . What is its average acceleration?

$$
\begin{gathered}
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}}=\frac{-15-0}{1.80-0} \\
\bar{a}=-8.33 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

The negative sign indicates that the horse is accelerating toward the West.

This is truly an average acceleration, because the ride is not smooth.

ACCELERATION

Because velocity is a vector, it can change in two possible ways:

1. The magnitude can change, indicating a change in speed, or
2. The direction can change, indicating that the object has changed direction.

Example: Car making a turn

A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its velocity. (credit: Steve Cony, Fiickr)

ACCELERATION DIRECTION FOR LINEAR MOTION

- When an object is speeding up, its velocity and acceleration are in the same direction.
- When an object is slowing down, its velocity and acceleration are in opposite directions.
- Direction can be specified with + or - signs.
- For example, something with positive velocity and negative acceleration is slowing down.
- Something with negative velocity and positive acceleration is also slowing down!

GIVE IT A TRY!

A car has positive velocity and positive acceleration. Which is true?
A. The car is speeding up.
B. The car is slowing down.

GIVE IT A TRY!

a
A car has positive velocity and negative acceleration. Which is true?
A. The car is speeding up.
B. The car is slowing down.

GIVE IT A TRY!

A car has negative velocity and positive acceleration. Which is true?
A. The car is speeding up.
B. The car is slowing down.

GIVE IT A TRY!

A car has negative velocity and negative acceleration. Which is true?
A. The car is speeding up.
B. The car is slowing down.

ACCELERATION: EXAMPLE

- A subway train accelerates from rest to $30.0 \mathrm{~km} / \mathrm{h}$ in the first 20.0 s of its motion.
- It then travels at a constant velocity for the next 20.0 s.
- Lastly, it slows to a stop in 8.00 s.
- Assume that for each of these three segments of the train's motion, its acceleration is constant.
- Make graphs of velocity and acceleration for the train over these 48 seconds.

ACCELERATION: EXAMPLE

- Speeding Up
- A subway train accelerates from rest to $30.0 \mathrm{~km} / \mathrm{h}$ in the first 20.0 s of its motion.

$$
\begin{aligned}
& a_{1}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}}=\frac{30 \mathrm{~km} / \mathrm{h}}{20 \mathrm{~s}} \\
& a_{1}=\left(\frac{30 \mathrm{~km} / \mathrm{h}}{20 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right) \\
& a_{1}=0.417 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

ACCELERATION: EXAMPLE

- Constant Velocity

- It then travels at a constant velocity for the next 20.0 s.

$$
\begin{aligned}
& a_{2}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}}=\frac{(30-30) \mathrm{km} / \mathrm{h}}{20 \mathrm{~s}} \\
& a_{2}=0
\end{aligned}
$$

ACCELERATION: EXAMPLE

- Slowing Down
- Lastly, it slows to a stop in 8.00 s .

$$
\begin{aligned}
& a_{3}=\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{0}}{t_{\mathrm{f}}-t_{0}}=\frac{(0-30) \mathrm{km} / \mathrm{h}}{8 \mathrm{~s}} \\
& a_{3}=\left(\frac{-30 \mathrm{~km} / \mathrm{h}}{8 \mathrm{~s}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right) \\
& a_{3}=-1.04 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

ACCELERATION: EXAMPLE

- Cruising velocity in m/s

$$
v_{2}=\left(\frac{30 \mathrm{~km}}{\mathrm{~h}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=8.33 \mathrm{~m} / \mathrm{s}
$$

Time (s)

