COLLEGE PHYSICS

Chapter 2 INTRODUCTION: Kinematics in One Dimension

Lesson 5

Video Narrated by Jason Harlow, Physics Department, University of Toronto

EQUATIONS FOR CONSTANT ACCELERATION:

$$1. \quad x = x_0 + \left(\frac{v_0 + v}{2}\right)t$$

2.
$$v = v_0 + at$$

$$3. x = x_0 + v_0 t + \frac{1}{2} a t^2$$

4.
$$v^2 = v_0^2 + 2a(x - x_0)$$

Strategy: When a = constant, you can use one of these equations to solve for an unknown.

Equations for Constant Acceleration Idea: An object moves along the x-axis with constant acceleration Initial conditions: At time t=0, x=x0, v=v. Finally: At some time, t, the object has position x and velocity v. Elapsed time: St=t Displacement: OX = X-Xo Change in velocity: DV=V-V. First Equation: Use définition of average velocity: v= dx = x-x.

Note that when $\alpha = constant$, $\overline{\tau}$ is exactly half-way between τ . and τ : $\overline{\tau} = \frac{\tau_0 + \tau}{2}$ $\times = \times \cdot + (\frac{\tau_0 + \tau}{2})t$ (1)

$$X = X^{\circ} + \left(\frac{5}{10} + 1\right) + 1$$

A Ducati motorcycle can go from 0 to 60 mph in 3 seconds. Assuming constant acceleration, how far does it travel in this time?

[Note: 1 mile = 1600 m]

First, let's convert to SI units:

$$V=60$$
 miles $(\frac{1600 \text{ m}}{1 \text{ miles}})(\frac{1 \text{ hr}}{3600 \text{ s}}) = 26.667 \text{ m}}{3600 \text{ s}} = 26.667 \text{ m}}$
 $V=0$ $t=3$ s
Set $x_0=0$, solve for x
Use (1): $x=0+(\frac{0+26.667}{2})3$

Equations for Constant Acceleration

Second Equation

Use definition of average acceleration:

$$\overline{a} = \underbrace{\delta V}_{\delta t} = \underbrace{V - V_{\delta}}_{t}$$
Note that when $a = constant$, $\alpha = \overline{\alpha}$.

$$\Rightarrow \alpha = \underbrace{V - V_{\delta}}_{t}$$

$$\Rightarrow at = V - V_{\delta}$$

$$\Rightarrow \Delta = \underbrace{V - V_{\delta}}_{t}$$

$$[v = v_0 + at]$$
 (z)

The maximum acceleration of your car is a "quartergee": $a = 9.8 \text{ m/s}^2 \div 4 = 2.45 \text{ m/s}^2$. If you are driving at 50 km/hr, what is the minimum time required to accelerate to 120 km/hr?

First, let's convert to SI units:

$$V_{\circ} = 50 \text{ km} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) \left(\frac{1 \text{ km}}{3600 \text{ s}} \right) = 13.889 \text{ m}$$
 $V_{\circ} = 120 \text{ km} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right) \left(\frac{1 \text{ hr}}{3600 \text{ s}} \right) = 33.333 \text{ m}$
 $\Rightarrow \text{ Minimum time to change velocity will}$

be when your acceleration is maximum:

 $\alpha = 2.45 \text{ m/s}^2$

Use eq.(2): $V = V_{\circ} + \alpha t$
 $\Rightarrow V_{\circ} = V_{\circ} = 33.333 - 13.889$
 $\Rightarrow V_{\circ} = V_{\circ} = 33.333 - 13.889$

Equations for Constant Acceleration

Third Equation Recall:

$$\begin{array}{lll}
\times &= \times \cdot + \left(\frac{\sqrt{3} + \sqrt{1}}{2}\right) t \\
\boxed{\nabla &= \nabla_0 + at} & (2) \\
\text{Let's eliminate } \nabla & \text{by plugging } (2) \\
\text{into } (1). \\
\times &= \times_0 + \left[\frac{\sqrt{3} + (\sqrt{3} + at)}{2}\right] t \\
&= \times_0 + \left(2\sqrt{3} + at\right) t
\end{array}$$

$$= \times_{o} + (2v_{o} + at) \frac{t}{2}$$

$$\times = \times_{o} + v_{o}t + \frac{1}{2}at^{2}$$
(3)

$$\left[\times = \times_{o} + v_{o}t + \frac{1}{2}at^{2} \right]$$
 (3)

A car rolls down a hill with an initial velocity of v = +10 m/s, and a constant acceleration of a = 1.5 m/s². How far does it roll in 5 seconds?

$$x_{0} = 0$$

$$x_{0} = +10 \text{ m/s}$$

$$x_{0} = +1.5 \text{ m/s}^{2}$$

$$x_{0} = +1.5$$

Equations for Constant Acceleration

Fourth Equation Recall:

$$X = X_{0} + \left(\frac{x_{0} + v}{z}\right) + \left(\frac{v_{0} + v}{z}\right) + \left(\frac{v_{0$$

First, let's solve (2) for t:

$$\Rightarrow |t = \frac{v - v_0}{a}|$$

Next, let's eliminate t by plugging this into eq. (1).

$$\times = \times_{\circ} + \left(\frac{\nabla_{\circ} + \nabla}{2}\right) \left(\frac{\nabla - \nabla_{\circ}}{\alpha}\right)$$

$$\times = \times_{\circ} + \frac{1}{2\alpha} \left(\nabla + \nabla_{\circ}\right) \left(\nabla - \nabla_{\circ}\right)$$

$$= \times_{\circ} + \frac{1}{2\alpha} \left(\nabla^{2} - \nabla_{\circ}^{2}\right)$$

$$\nabla^2 = \nabla_0^2 + 2a(x-X_0)$$
 (4)

A Ducati motorcycle starts from rest, and accelerates at $a = 8.9 \text{ m/s}^2$. How fast is it going when it has traveled 100 m?

EQUATIONS FOR CONSTANT ACCELERATION:

1.
$$x = x_0 + \left(\frac{v_0 + v}{2}\right)t$$
 Does not contain a ! (but you know it's constant)

2.
$$v = v_0 + at$$
 Does not contain position!

3.
$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
 Does not contain v_f !

4.
$$v^2 = v_0^2 + 2a(x - x_0)$$
 Does not contain t!

Strategy: Figure out which variable you don't know and don't care about, and use the equation which doesn't contain it.

PROBLEM-SOLVING STEPS

- 1. Draw a simple sketch. Decide what direction is positive, and note it on your sketch.
- Make a list of what is given: "knowns".Remember, "stopped" means velocity is zero.
- 3. Identify exactly what needs to be determined in the problem: "unknowns".
- 4. Find an equation or set of equations that can help you solve the problem.
- 5. Convert to S.I. units, plug the knowns into the appropriate equations, solve the problem.
- 6. Check to see if the answer is reasonable: does it make sense?