PHY131H1F - Class 8
Today, finishing off Chapter 4:

- Circular Motion
- Rotation

Quiz time... - Angular Notation: it's all Greek to me!

$$
\frac{d \omega}{d t}=\alpha
$$

The time derivative of ω is α. What are the S.I. units of α ?
A. $\mathrm{m} / \mathrm{s}^{2}$
B. $\mathrm{rad} / \mathrm{s}$
C. N / m
D. rad
E. $\mathrm{rad} / \mathrm{s}^{2}$

Quiz time... - Angular Notation: it's all Greek to me!

$$
\frac{d \theta}{d t}=\omega
$$

θ is an angle, and the S.I. unit of angle is rad.
The time derivative of θ is ω.
What are the S.I. units of ω ?
A. $\mathrm{m} / \mathrm{s}^{2}$
B. $\mathrm{rad} / \mathrm{s}$
C. N / m
D. rad
E. $\mathrm{rad} / \mathrm{s}^{2}$

Last day I asked at the end of class:

- You are driving North Highway 427, on the smoothly curving part that will join to the Westbound 401 Your speedometer is constant at $115 \mathrm{~km} / \mathrm{hr}$. Your steering wheel is not rotating, but it is turned to the left to follow the curve of the highway. Are you accelerating?
- ANSWER: YES! Any change in velocity, either magnitude or speed, implies you are accelerating.
- If so, in what direction?
- ANSWER: West. If your speed is constant, acceleration is always perpendicular to the velocity, toward the centre of circular path.

$s=r \theta \quad$ when θ is measured in radians

Angular Velocity

$v_{t}=r \omega \quad$ when ω is measured in $\mathrm{rad} / \mathrm{s}$

Special case of circular motion: Uniform Circular Motion

Tangential velocity is constantly changing direction

Tangential speed is constant

$$
v_{t}=\frac{2 \pi r}{T}
$$

where $T=$ Period [s]

A carnival has a Ferris wheel where some seats are located halfway between the center and the outside rim. Compared with the seats on the outside rim, the inner cars have
A. Smaller angular speed and greater tangential speed
B. Greater angular speed and smaller tangential speed
C. The same angular speed and smaller tangential speed
D. Smaller angular speed and the same tangential speed
E. The same angular speed and the same tangential speed

Demo and Discussion

Question

A ball rolls in a horizontal circular track (shown from above). Which arrow best represents the ball's path after it leaves the track?

A car is traveling East at a constant speed of $100 \mathrm{~km} / \mathrm{hr}$. Without speeding up of slowing down, it is turning left, following the curve in the highway. What is the
 direction of the acceleration?

A.North
B.East
C.North-East
D.North-West
E.None; the acceleration is zero.

Centripetal Acceleration

Practicals Schedule

 for the next few weeks...

Centripetal Acceleration

- A bike wheel of diameter 1.0 m turns 20 times per second. What is the magnitude of the centripetal acceleration of a yellow dot on the rim?

Summary of definitions:

- θ is angular position. The S.I. Unit is radians, where 2π
radians $=360^{\circ}$.
- ω is angular velocity. The S.I. Unit is $\mathrm{rad} / \mathrm{sec}$.
- α is angular acceleration. The S.I. Unit is $\mathrm{rad} / \mathrm{sec}^{2}$.
- v_{t} is the tangential
- s is the path length along the curve: $s=\theta r$ when θ is in [rad]. speed: $v_{t}=\omega r$ when ω is in $[\mathrm{rad} / \mathrm{s}]$.
- a_{t} is the tangential acceleration: $a_{t}=\alpha r$ when α is in $\left[\mathrm{rad} / \mathrm{s}^{2}\right]$.

Angle, angular velocity, and angular acceleration are related graphically.

- The angular velocity is the slope of the angular position graph.
- The angular acceleration is the slope of the angular velocity graph.

Determines the Tangential acceleration, NOT centripetal acceleration!

Nonuniform Circular Motion

- Any object traveling along a curved path has centripetal acceleration, equal to v^{2} / r.
- If, as it is traveling in a circle, it is speeding up or slowing down, it also has tangential acceleration, equal to $r \alpha$
- The total acceleration is the vector sum of these two perpendicular components

Example

- A circular road has a radius of curvature of 50 m .
- You accelerate away from a stop sign with a steadily increasing speed as you drive on the road.
- 4.0 seconds after starting, at point P in the diagram, you are driving at a speed of $12 \mathrm{~m} / \mathrm{s}$.
- At point P find:
- the tangential acceleration, a_{t}
- the centripetal acceleration, a_{r}
- the total acceleration, a

The fan blade is slowing down. What are the signs of ω and α ?
[Let's define, as Knight often does, positive to be counter-clockwise.]

A. ω is positive and α is positive.
B. ω is negative and α is positive.
C. ω is positive and α is negative.
D. ω is negative and α is negative.

Moving on to Chapters 5 and 6..

- Up until now, we have been studying kinematics, a description of HOW things move and how to describe this.
- In Chapter 5 we begin to study WHY things move the way they do: This is dynamics, which includes the important concepts of Force and Energy.

Before Class 9 on Wednesday

- Please read Chapter 5 of Knight.
- The next MasteringPhysics thing is a Pre-class quiz due Wed. Oct. 10
- Something to think about: A paperback novel has a mass of 0.3 kg and slides at a constant velocity of $5 \mathrm{~m} / \mathrm{s}$, to the right. A physics textbook has a mass of 3.0 kg , and slides at a constant velocity of $5 \mathrm{~m} / \mathrm{s}$, to the right. How does the net force on the textbook compare to the net force on the novel?
- Happy Thanksgiving!

Before Practicals NEXT week (after Thanksgiving)

- Please watch the Class 9 Preclass Video available on portal.
- http://youtu.be/UZe7FaT8WFw

PHY131 Class 9 Prelecture

