

Which of the following objects described below is in dynamic equilibrium?
A. A 100 kg barbell is held at rest over your head.
B. A steel beam is lifted upward at constant speed by a crane.

C. A baseball is flying through the air and air resistance is negligible.
D. A steel beam is being lowered into place. It is slowing down.
E. A box in the back of a truck doesn't slide as the truck is slowing down.

Last day I asked at the end of class:
A basketball and a tennis ball are in freefall.

1. Which, if either, has the larger mass?

ANSWER: The basketball.
2. Which, if either, experiences the larger force of gravity?
ANSWER: The basketball. $\left(F_{g}=m g\right)$
3. Which, if either, experiences the larger acceleration?

ANSWER: Neither. $a_{y}=-g$ for both.
4. Which, if either, has the larger weight?

ANSWER: Neither. They are both "weightless".

A WARNING

- Newton's Laws only apply in a "inertial reference frames". They are not valid if your reference frame is accelerating!
- An inertial reference frame is one that is not accelerating.

Preparation for Practicals this week:

- Take a ride on the Burton Tower elevators!
- All 4 elevators in the 14 -storey tower of McLennan Physical Labs are equipped with a hanging springscale.
- It measures the upward force necessary to support a 500 g mass. (a.k.a. "weight")

- You may find that the measured weight of this object changes as you accelerate - check it out!
- A car is driving at a steady speed on a straight and level road.

Quick quiz [1/4]: inside the car, is it...

A: Inertial Reference Frame
B: Not an inertial reference frame

- A car is driving at a steady speed up a 10° incline.

Quick quiz [2/4]: inside the car, is it...

A: Inertial Reference Frame

B: Not an inertial reference frame

- A car is driving at a steady speed around a curve on a level road.

Quick quiz [4/4]: inside the car, is it...

A: Inertial Reference Frame
B: Not an inertial reference frame

- A car is speeding up after leaving a stop sign, on a straight and level road.

Quick quiz [3/4]: inside the car, is it...

A: Inertial Reference Frame

B: Not an inertial reference frame

$$
\text { Equilibrium } \quad \Sigma \vec{F}=0
$$

- An important problem solving technique is to identify when an object is in equilibrium.
- An object has zero acceleration if and only if the net force on it is zero.
- This is called "equilibrium".
- If an object is in vertical equilibrium (ie it is confined to a stationary horizontal surface) then $\left(F_{\text {net }}\right)_{y}=0$. The sum of y-components of all forces $=0$.
- If an object is in horizontal equilibrium (ie freefall) then $\left(F_{\text {nee }}\right)_{x}=0$.

Gravity for the universe

It was Newton who first recognized that gravity is an attractive, long-range force between any two objects. Somewhat more loosely, gravity is a force that acts on mass. When two objects with masses m_{1} and m_{2} are separated by distance r, each object pulls on the other with a force given by Newton's law of gravity, as follows:
$F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}} \quad$ (Newton's law of gravity)
(Sometimes called "Newton's 4 ${ }^{\text {th }}$ Law", or "Newton's Law of Universal Gravitation")

Gravity for Earthlings

If you happen to live on the surface of a large planet with radius R and mass M, you can write the gravitational force even more simply as

$$
\vec{F}_{\mathrm{G}}=(m g, \text { straight down }) \quad(\text { gravitational force })
$$

where the quantity g is defined to be:

$$
g=\frac{G M}{R^{2}}
$$

At sea level, $g=9.83 \mathrm{~m} / \mathrm{s}^{2}$.
At 39 km altitude, $g=9.71 \mathrm{~m} / \mathrm{s}^{2}$.

Gravity: $F_{\mathrm{G}}=m g$ is just a short form!

$$
\begin{gathered}
F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}} \\
\text { and } \\
\vec{F}_{\mathrm{G}}=(m g, \text { straight down })
\end{gathered}
$$

are the same equation, with different notation! The only difference is that in the second equation we have assumed that $m_{2}=M$ (mass of the earth) and $r \approx R$ (radius of the earth).

Weight \neq Weight ??!?

- Physics textbooks and physics teachers do not all agree on the definition of the word "weight"!
- Sometimes "weight" means the exact same thing as "force of gravity". That is not how Randall Knight uses the word. (I will follow Knight's definitions.)
- In Knight, "weight" means the magnitude of the upward force being used to support an object.
- If the object is at rest or moving at a constant velocity relative to the earth, then the object is in equilibrium. The upward supporting force exactly balances the downward gravitational force, so that weight $=m g$.

Knight's Definition of weight Eq. 6.10, page 147:

The weight of an object is the reading of a calibrated spring scale on which the object is stationary. Weight is the result of weighing. The weight of an object with vertical acceleration a_{y} is

$$
w=m g\left(1+\frac{a_{y}}{g}\right)
$$

Test 1 Marking

- You can find the percentage of your Test 1 mark under the My Grades link on portal.
- Your actual mark is this mark times 40 divided by 100.
- The free-form questions will be handed back to you in Practicals. The marks for each part are written there.
- If you subtract the sum of your free-form marks from the total mark on portal, you can figure out what you got on the multiple choice part.
- If you wish to look over the bubble-sheet you turned in for the multiple choice part, please go to MP129.
- If you are concerned about the marking of your test, you have until Monday, October 22, at 5:00pm, to take these concerns to the office of the Course Coordinator, Dr. Savaria (MP129). No request will be considered after that date.

Weight - example

- When I stand on a scale in my bathroom it reads 185 pounds. 2.2 pounds $=9.8$ Newtons, so this means the upward force on my feet when I am standing still is 185 lbs ($9.8 \mathrm{~N} / 2.2 \mathrm{lbs}$) $=824 \mathrm{~N}$.
- If I ride an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the upward force on my feet?
- [Take a wild guess first: A: 824 N , B: 950 N, C: 698 N, D: 0 N, E: -824 N]

Spring scale on an elevator
You are attempting to pour out 1.0 kg of flour, using a kitchen scale on an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
The amount of flour you pour will be
A. too much.
B. too little.
C. the correct amount.

Pan balance on an elevator

You are attempting to pour out 100 g of salt, using a pan balance on an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$. Will the amount of salt you pour be
A. Too much

B. Too little
C. The correct amount

Self-adjusting forces

- Gravity, F_{G}, has an equation for it which predicts the correct magnitude (it's always $m g$ here on Earth).
- Normal force, Tension and Static friction are all selfadjusting forces: there is no equation for these!!
- Normal force is whatever is needed to keep the object from crashing through the surface.
- Tension is whatever is needed to keep the string or rope from breaking.
- Static friction is whatever is needed to keep the object from slipping along the surface.
- In all these cases, you must draw a free-body diagram and figure out by using equilibrium and Newton's $2^{\text {nd }}$ law what the needed force is.

Before Class 11 on Wednesday

- Please finish reading Chapter 6
- Take a ride on the Burton Tower elevators, do prepwork for Mechanics Module 3 Activity 2.
- Please read the rest of Knight Chapter 6.
- Something to think about:

Does friction always slow things down? Can friction ever speed things up?

